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Abstract: Precise information of fault location plays a vital role in expediting the restoration process,
after being subjected to any kind of fault in power distribution grids. This paper proposed the
Stockwell transform (ST) based optimized machine learning approach, to locate the faults and to
identify the faulty sections in the distribution grids. This research employed the ST to extract
useful features from the recorded three-phase current signals and fetches them as inputs to different
machine learning tools (MLT), including the multilayer perceptron neural networks (MLP-NN),
support vector machines (SVM), and extreme learning machines (ELM). The proposed approach
employed the constriction-factor particle swarm optimization (CF-PSO) technique, to optimize the
parameters of the SVM and ELM for their better generalization performance. Hence, it compared
the obtained results of the test datasets in terms of the selected statistical performance indices,
including the root mean squared error (RMSE), mean absolute percentage error (MAPE), percent bias
(PBIAS), RMSE-observations to standard deviation ratio (RSR), coefficient of determination (R2),
Willmott’s index of agreement (WIA), and Nash–Sutcliffe model efficiency coefficient (NSEC) to
confirm the effectiveness of the developed fault location scheme. The satisfactory values of the
statistical performance indices, indicated the superiority of the optimized machine learning tools
over the non-optimized tools in locating faults. In addition, this research confirmed the efficacy of the
faulty section identification scheme based on overall accuracy. Furthermore, the presented results
validated the robustness of the developed approach against the measurement noise and uncertainties
associated with pre-fault loading condition, fault resistance, and inception angle.

Keywords: distribution grid; extreme learning machine; fault location; feature extraction; multilayer
perceptron neural network; s-transform; support vector machine

1. Introduction

The detailed information regarding the faulty area and fault location, plays a vital role in
expediting the restoration process in electric utilities after being subjected to any kind of fault.
Consequently, there is a growing research interest to locate faults and identify faulty sections in
distribution grids efficiently, to reduce customer minute losses and revenue losses for the utilities.
The available fault location techniques for distribution grids can be categorized into three major
groups namely the impedance, the traveling wave, and the knowledge-based techniques [1–3].
The impedance-based technique, evaluates fault location using voltage and current measurements
available at the substation end, as well as technical information of the distribution grids, including grid
topology, load, and line data. This approach analyzes the fault location either in phase domain [4–6]
or using symmetrical components [7–9]. However, the impedance-based fault location approach,
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frequently leads towards multiple estimations and they are generally based on a hectic iterative
process. Additionally, the dynamic behavior of loads, the presence of laterals, inherent properties
of distribution grids, measurement noise, and fault resistance and inception angle uncertainties,
heavily degrade the performance of these techniques [1–3].

However, the development of advanced measurement infrastructure, communication systems,
and the willingness of the electric system decision makers paved the way for a faster and more
accurate fault location technique, called the traveling wave technique. The technique is based
on the characteristic frequencies of the traveling waves associated with faults in the electrical
grids [10], and can be ramified into A, B, and C-type [11]. The A-type and the B-type fault location
techniques, are based on online measurements and use single/double ended recorded traveling waves
originated by faults, whereas the C-type technique injects traveling waves manually to locate faults
in electricity grids [12]. These techniques are very useful for long transmission/distribution lines,
but distribution lines are short by nature. Consequently, they cannot effectively locate faults in short
length distribution lines. The third category fault location technique namely, the knowledge-based
approach, offers auspicious prospects in dealing with distribution grid faults considering their intrinsic
complexities. In Reference [13], the artificial neural network (ANN) was employed to locate distribution
grid faults based on voltage, current, and active power measurements collected from the substation
end. The authors of Reference [14–17], combined the wavelet transform and different machine learning
tools to locate faults in distribution grids. However, the wavelet transform (WT) based decompositions,
do not uphold the phase information of the original signal and are sometimes sensitive to the presence
of measurement noise [18–20].

However, most of the referenced fault location techniques did not consider the presence of
measurement noise and uncertainties associated with pre-fault loading condition, fault resistance,
and inception angle in locating faults and identifying faulty sections in power distribution grids.
Additionally, an advanced signal processing technique (SPT) namely, the Stockwell transform that
combines the advantages of wavelet transform and short time Fourier transform was employed recently
to detect and classify faults in distribution grids in Reference [21], but not employed in locating faults
and identifying faulty sections in distribution grids. Therefore, this research proposes the hybrid
fault location and faulty section identification approach, for power distribution grids, combining the
Stockwell transform and different machine learning tools. The proposed approach starts with the
extraction of useful features from the ST decomposed faulty current signals, collected from different
branches of the grids. Then it fetches the extracted characteristic features, as inputs of the different
machine learning tools, including the MLP-NN, SVM, and ELM to get decisions on fault location and
faulty section. Additionally, the proposed technique employs the CF-PSO to optimize the SVM and
ELM key parameters, to achieve better accuracy in locating distribution grid faults. The presented
results, demonstrated the independence of the proposed approach in the presence of measurement
noise, pre-fault loading condition, fault resistance, and inception angle.

2. Background Theories

The combination of SPT and MLT, received significant attention in diagnosing power systems
transients in recent years [22–24], where the researchers used SPT to collect characteristic features
related to the electrical transients, and fetched them as inputs to MLT. The following parts of this
section, briefly describe the employed SPT and MLT in this research.

2.1. Stockwell Transform

Among many SPT, the Fourier transform (FT), is one of the most widely used techniques to
transform time domain signals into the frequency domain to analyze harmonics and design filters.
However, the FT loses the temporal information and provides erroneous results for non-stationary
signals. In response to this deficiency, Dennis Gabor (1946) employed a small sampling window
of the regular interval to map a signal into a two-dimensional function of time and frequency,
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and the adaptation is known as short time Fourier transform (STFT) [25]. Unfortunately, the STFT
cannot provide better time-frequency resolution simultaneously, where a better frequency resolution
leads towards a worse time resolution, and vice versa. The wavelet transform (WT), resolves the
resolution problem by employing larger windows at lower frequencies and smaller windows at higher
frequencies [26]. However, the WT is sensitive to the presence of measurement noise and does not
uphold the phase information of the non-stationary signals. Consequently, Stockwell et al. [18–20]
developed the ST combining the benefits of the STFT and WT, that effectively upholds the referenced
frequency and phase information. The ST of a signal x(t) can be defined as:

S(τ, f ) = S{x(t)} =
∫ ∞

−∞
x(t) w(τ − t, f ) e−j2π f tdt (1)

where, w(t, f ) = | f |√
2π

e−
t2 f 2

2 is the Gaussian window function, f represents the frequency, and t and τ

are the time variables.
The ST transforms the time domain signals, into both the frequency and time domains.

The coefficients of this transform produce complete resolutions for each designated frequency and
cover the whole temporal axis by picking up the possible values of τ where the τ indicates the center of
the window function. Different values of f are employed to adjust the sizes of the Gaussian windows,
with a view to realizing multiresolution over different frequencies over the temporal axis. However, the
ST on a signal provides an M×N matrix, commonly known as the S-matrix, where all the elements are
complex numbers. The rows of the matrix pertain to frequency characteristics and the columns pertain
to time characteristics. However, the following equation gives the energy matrix of the same signal:

E = |SM×N |2 (2)

The proposed fault location approach, generates three S-matrices and three E-matrices, from a
three-phase current signal through ST. Hence, it creates new vectors namely Scmax, Srmax, and Emax

from the S-matrices and the E-matrices. The Scmax-vectors contain the maximum absolute values of the
columns of the S-matrices, whereas the Srmax-vectors contain the maximum absolute values of the rows
of the S-matrices, and the Ecmax-vectors contain the absolute maximum values of the columns of the
energy matrices. The approach also produces another set of vectors called Sc-phase-max, that contain the
phase angles of the S-matrices associated with the elements of Scmax. Eventually, the proposed approach
applies standard statistical techniques on the produced vectors and extracts characteristic features that
contain fault signature. Among many features, the amplitude, the gradient of amplitude, mean value,
standard deviation, entropy, skewness, kurtosis, time of occurrence, and energy of different harmonics
are widely used features for the analysis of power quality transients [21,27–29].

2.2. Multilayer Perceptron Neural Network

Artificial neural networks have become very popular for many engineering applications, due to
their parallel computing abilities and adaptiveness to external disturbances. The MLP-NN is one
of the widely used ANN and consists of input, hidden, and output layers. The hidden layer uses
squashing functions to process the inputs before sending them to the output layer. In order to minimize
training error, the supervised learning algorithm optimizes randomly initiated connecting weights and
biases [30–32]. In this paper, the total number of hidden neurons for the MLP-NN are chosen through
a systematic trial and error approach.

2.3. Support Vector Machine

The SVM was first introduced by Boser et al. [33] with a view to efficient analysis of data, and was
primarily restricted to classification problems only. With the passage of time, the SVM was extended
to solve regression problems that construct an optimal geometric hyperplane to distinguish the
available data, and to map them into the higher dimensional feature space [34]. It forms a separation
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surface employing various functions including sigmoidal, polynomial, and radial basis functions.
This paper employed a MATLAB/SIMULINK based SVM-KM toolbox [35], to locate distribution grid
faults. It considered the mean absolute percentage error (MAPE) of the test dataset as the objective
function, while optimizing SVM parameters including regularization coefficients (λ and C), tolerance of
termination criterion (ε), and kernel option (Ko) employing CF-PSO.

2.4. Extreme Learning Machine

Huang et al. [36] introduced the extreme learning machines for single hidden layer feedforward
neural networks, that are a thousand-fold faster over the traditional feedforward neural networks,
in attaining generalization performance efficiently. The ELM evaluates the output weights analytically,
by picking the input weights randomly [37]. This paper employs an ELM toolbox [38], developed in
the MATLAB/SIMULINK platform to locate distribution grid faults. Like the SVM, this research
considers the MAPE of the test dataset as the objective function, while optimizing ELM parameters
including the regularization coefficient (CR) and the kernel option (Kp) with the aid of CF-PSO.

2.5. Constriction-Factor Partcile Swarm Optimization

The population-based stochastic optimization approach widely known as the particle swarm
optimization (PSO) mimics the social behavior of swarms [39]. Initially, it was considered that the
inertia weight of the PSO technique gets decreased monotonously in each generation to update the
velocity, hence to update the position of the swarms. This monotonicity sometimes leads towards fall
of the quality of the solutions. Consequently, Clerc [40] introduced the idea of constriction factor to
update the velocity by ensuring system convergence and effective diversified search. The following
steps briefly discuss the CF-PSO technique:

Step 1: Initialization

The CF-PSO employs the following equations to initialize positions and velocities of the swarms
randomly from the search space, for a pre-specified number of particles:

xi,j = U
(
xmin,j, xmaxj

)
, ∀ i, j (3)

vi,j = U
(
vmin,j, vmaxj

)
, ∀ i, j (4)

where, U represents the uniform distribution; i and j represent particle size and dimension of the
problem; xmin and xmax refer to the lower and upper boundaries of the solution space; vmin and vmax

represent the lower and upper boundaries of the velocities of the particles.

Step 2: Fitness assessment and updating the best solution

This step assesses the fitness of swarms, based on their randomly initiated positions. Hence,
it stores the fitness values of all swarms as the individual best solutions for the first generation. From
the second generation, this step compares the new fitness of the swarms with the fitness of the previous
generation and updates the individual best solutions accordingly. Besides this, the step picks the global
best solution from the individual best solutions in each generation. Finally, the CF-PSO chooses the
optimal solution from the global best solutions.

Step 3: Checking the stopping criteria

The CF-PSO checks the stopping criteria after a certain number of generations, to avoid premature
convergence. It stops the optimization algorithm if the objective function does not change for a
pre-specified number of generations, or it reaches the targeted number of generations.

Step 4: Updating inertia weights, velocities, and positions
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This step upgrades the inertia weights and the velocity of each swarm, with the aid of the
following equations in each generation. Hence, this step upgrades the positions of the swarms based
on the revised velocities.

wt = wmax −
wmax − wmin

tmax × t (5)

vt
j,k = c f

(
wt × vt−1

j,k + c1rt
1 ×

[
x∗(t−1)

j,k − x(t−1)
j,k

]
+ c2rt

2 ×
[

x∗∗(t−1)
j,k − x(t−1)

j,k

])
(6)

c f =
2∣∣∣2− ϕ−
√
(ϕ2 − 4ϕ)

∣∣∣ ; c1 + c2 = ϕ; |c1| ≤ |c2|; ϕ > 4 (7)

xt
j,k = vt

j,k + x(t−1)
j,k (8)

where, wt is the inertia weight of tth generation; vt
j,k is the velocity of jth particle in tth generation; v(t−1)

j, k

and x(t−1)
j,k are the velocity and the position of jth particle in (t − 1)th generation x∗∗(t−1)

j,k ; and x∗(t−1)
j,k

are the global and individual best positions of (t − 1)th generation. wmax and wmin are the maximum
and minimum values of inertia weight; cf is the constriction factor; r1 and r2 are uniformly distributed
random numbers in [0 1]; and c1 and c2 are known as the cognitive and social parameters, respectively.

Figure 1 shows the complete flowchart of the presented CF-PSO algorithm. However, this
paper sets vmax and vmin to 4 and −4, respectively, and starts checking of the stopping criteria
after 30 generations, through a systematic trial and error approach, and based on the experience as
described in References [41–43]. Likewise, this paper sets other parameters as wmax = 1.2, wmin = 0.1,
4.05 ≤ ϕ ≤ 4.15, 2.00 ≤ c1 ≤ 2.05.
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3. Proposed Fault Location Technique

The proposed fault location technique comprises of three steps namely the data generation,
ST based feature extraction and selection, and training and testing of the machine learning tools to
locate faults/identify faulty sections in the distribution grids. The following parts of this section
describe the mentioned steps:

3.1. Data Generation

The proposed fault location/faulty section identification scheme, applies hundreds of faults on
the selected test distribution feeders by varying the pre-fault loading condition, fault resistance, class,
and inception angle. For each faulty case, the proposed technique records three-phase current signals
from different locations/branches of the distribution feeders, with a sampling frequency of 20 kHz.
The technique also keeps track of the fault locations and faulty sections, for future use to train different
machine learning tools as the regression and classification problems, respectively. However, the ST
extracted features are employed as inputs, and the fault locations and faulty sections are considered as
the outputs.

3.2. ST Based Feature Extraction and Selection

To select the useful features, the proposed fault location technique decomposes one pre and one
post cycle current signals recorded from an applied phase-A-to-ground (AG) fault, on the four-node
test distribution feeder employing the ST. Hence, the developed approach calculates the following
statistical features from the produced Scmax, Srmax, Emax, and Sc-phase-max vectors, as discussed in Section
II (A):

• F1 to F4: Standard deviations of the vectors.
• F5 to F8: Maximum values of the vectors.
• F9 to F12: Minimum values of the vectors.
• F13 to F16: Mean values of the vectors.
• F17 to F20: Entropies of the vectors.
• F21 to F24: Skewness of the vectors.
• F25 to F28: Kurtosis of the vectors.

Therefore, the proposed approach collects 28 features for the phase-A-current and repeats the
same step for 500 similar faulty cases. Eventually, the technique ends up with a matrix of 500 × 28
for the phase-A-current. Then it selects twelve useful features, and removes twelve more redundant
and insignificant features, based on their correlation factor. In addition, the technique also removes
four more features, as they possess constant/zero values for all 500 faulty cases. Consequently,
the developed technique selects a total of thirty-six (= 12 × 3) features, for each three-phase branch
currents. Table 1 summarizes the feature selection and removal process.
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Table 1. ST Extracted Feature Selection and Removal Process Summary.

Selected Features Correlation Factor/Comment Action

F5 & F6 1.00 Remove feature F6
F9 & F13 1.00 Remove feature F13
F21 & F24 1.00 Remove feature F24
F25 & F28 1.00 Remove feature F28
F21 & F25 0.9999 Remove feature F25
F5 & F9 0.9997 Remove feature F9

F11 & F15 0.9996 Remove feature F15
F5 & F8 0.9965 Remove feature F8

F22 & F26 0.9958 Remove feature F26
F7 & F11 0.9957 Remove feature F7

F8, F12 & F16 1.00 Remove features F12 & F16
F17, F19 & F20 Most of the cases they are zero Remove all of them

F27 It is constant for all cases Remove F27
The selected features: F1, F2, F3, F4, F5, F10, F11, F14, F18, F21, F22, and F23

3.3. Training and Testing of the Machine Learning Tools

As mentioned earlier, the proposed technique records three-phase faulty current signals from
different locations/branches of the selected test distribution feeders and extracts thirty-six features
employing the ST for each three-phase branch current signal, where the faulty cases are generated by
varying the pre-fault loading condition, fault resistance, inception angle, class, and location. Then the
technique employs the selected ST extracted features to the machine learning tools as inputs, and the
fault locations/faulty sections as outputs. The proposed ST based MLT approach, considers the
fault location problem as a regression problem, and the faulty section identification problem as a
classification problem. It is worth mentioning, that the proposed approach employs 70% of the
generated faulty cases for the training purpose and uses rest of the cases for testing purposes.

The proposed fault location technique (regression problem), evaluates different statistical
performance indices, including the mean absolute percentage error (MAPE), root mean squared error
(RMSE), percent bias (PBIAS), RMSE-observations to standard deviation ratio (RSR), the coefficient
of determination (R2), Willmott’s index of agreement (WIA), and the Nash–Sutcliffe model efficiency
coefficient (NSEC) on the test datasets, to investigate the efficacy of the employed machine learning
tools. According to Lewis [44], any model is considered highly accurate for forecasting, if the developed
model gives a MAPE less than 10%. Additionally, lower values of the RMSE and RSR indicate the
strength of the model [45], whereas the ideal value of the PBIAS is zero, which says the developed
model can predict desired outputs accurately. Negative and positive values of PBIAS, demonstrate
the overestimation and underestimation of the predicted outputs, respectively. Moreover, the values
of R2, WIA, and NSEC vary from 0 to 1. The value 1 refers to a perfect match between the predicted
and actual outputs, whereas the value 0 demonstrates that the output cannot be predicted at all
from available inputs [45,46]. Like the statistical performance indices, the scatter plot provides a
comprehensive summary of a set of bivariate data (two variables) and is often employed to determine
the potential associations between the variables. The resulting pattern, demonstrates the type and
strength of the relationship between two variables. The more data points located in the neighborhood
of the identity line (i.e., y = x), the more the data sets agree with each other. If the model output and
actual data are the same, then all data points fall on the identity line. Based on the evaluated statistical
performance indices of the test datasets, the proposed technique selects the fault location (regression
problem) models. Conversely, the faulty section identification technique (classification problem) selects
the efficient model based on the overall accuracy. However, after selection of the efficient models,
the proposed ST based MLT approach diagnoses the faults based on the recorded three-phase current
signals, as illustrated graphically in Figure 2.
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3.4. Cross Validation

Cross-validation is a popular strategy for assessing how the results of statistical analysis
techniques generalize to an independent data set [47]. To select an accurate model, the researchers
developed several cross validation techniques, including the k-fold cross-validation, jackknife
cross-validation, and independent data test [48–53]. This research work, employed the k-fold cross
validation technique to select the appropriate machine learning predictor. The employed validation
technique partitions the available data into k segments or folds (roughly equal) and employs k-1
segments for training the predictor model, and the remaining segment for validation of the model.

4. Results and Discussions

The proposed fault location/faculty section identification techniques based on the ST and
MLT, were tested on two different test distribution feeders. The following parts of this
section, briefly introduce the test distribution feeders and provide essential discussions on the
simulation results.

4.1. Example 1: Four-Node Test Distribution Feeder

The four-node test distribution feeder consists of two distribution transformers, a distribution
line, a lumped load, and a source, as presented in Figure 3, whereas Table 2 presents the technical
specifications of the test feeder. This research modeled the test distribution feeder for Example 1 in the
MATLAB/SIMULINK environment, considering its unbalanced loading condition.
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Table 2. Four-node test distribution feeder specifications.

Item Details

Transformer I 12 MVA, 120/25 kV, Yg-D
Transformer II 12 MVA, 25 kV/575 V, Yg-D

Length of distribution line 30 km
System frequency 60 Hz

Load (Unbalanced)
Phase A (1 MW, 0.48 MVAR)
Phase B (2 MW, 0.65 MVAR)
Phase C (2.5 MW, 1.2 MVAR)

Load variations ±10%

4.1.1. Fault Location with Un-Optimized MLT

The proposed fault location technique, generated 1200 cases of AG faults by varying the pre-fault
loading condition, fault resistance, inception angle, and location. It recorded a three-phase current
signal from the data measurement bus for each faulty case and employed the ST to extract the features
from the recorded current signals. After selection of the previously mentioned thirty-six features for
each faulty case, the proposed fault location technique fetched them as inputs to different machine
learning tools, where their outputs were the corresponding fault locations. The proposed fault location
scheme chose the SVM and ELM control parameters randomly, as summarized in Table 3 whereas the
number of hidden neurons of the MLP-NN were chosen through a systematic trial and error approach.
However, the proposed technique employed 70% of the available data for training and the rest of the
data for testing purposes.

Table 3. Randomly selected machine learning tools (MLT) control parameters.

MLT Values of the Control Parameters

MLP-NN Number of hidden neuron = 6
SVR C = 1000, λ = 10−8, ε = 0.1, KO = 100 and kernel = Gaussian RBF
ELM CR = 1010, Kp = 1.5 × 108 and kernel = Gaussian RBF

Figure 4 presents the targeted and the ST based MLT predicted fault locations, for forty randomly
selected observations from the test dataset of AG faults, for comparison purpose. It visually appears
that the MLP-NN technique adequately predicted the desired outputs in most of the cases. Conversely,
the fault location accuracies of the other two techniques (the SVM and ELM) were poor, compared to
the MLP-NN approach. Figure 5 presents the scatter plots of the test dataset, which depicts that
the data points are closer to the identity line for the MLP-NN approach as expected for an efficient
model. On the other hand, the scatter plots of the SVM and ELM models illustrated their inefficiency
in locating faults in the four-node test distribution feeder. The dissatisfactory performance of these two
models requires further investigation through the optimization of their key parameters, employing the
well-known stochastic approaches to achieve better performance. However, like AG faulty cases,
the proposed approach collected features for other types of faults including phase-B-to-ground
(BG), phase-C-to-ground (CG), phase-A-phase-B-to-ground (ABG), phase-B-to-phase-C-ground (BCG),
phase-C-to-phase-A-ground (CAG), and phase-A-to-phase-B-to-phase-C-to-ground (ABCG). Instead of
presenting similar figures and discussions, this research summarized the operational times along with
the selected statistical performance indices, for the test datasets of the ST based MLT techniques, for all
seven types of faults in Table 4.
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Table 4. Operation time and statistical performance indices for test datasets with randomly selected
MLT parameters.

Fault Type Technique
Time Statistical Performance Measures

Training Testing RMSE MAPE RSR PBIAS R2 WIA NSCE

AG
ANN 11.5469 0.0156 0.3333 0.0442 0.0378 0.0642 0.9993 0.9996 0.9986
SVR 28.6094 0.0469 2.6432 0.4612 0.2999 0.0569 0.9576 0.9775 0.9100
ELM 0.0625 0.0156 2.2721 0.4152 0.2578 −1.238 0.9671 0.9834 0.9335

BG
ANN 11.5000 0.0156 0.4419 0.0816 0.0517 −0.193 0.9987 0.9993 0.9973
SVR 27.4688 0.0313 2.9087 0.5246 0.3400 1.5522 0.9443 0.9711 0.8844
ELM 0.0781 0.0625 2.2018 0.4499 0.2574 0.5975 0.9664 0.9834 0.9338

CG
ANN 12.2344 0.0313 0.3327 0.0589 0.0385 −0.151 0.9993 0.9996 0.9985
SVR 28.7656 0.0469 2.2030 0.4376 0.2550 1.1159 0.9686 0.9837 0.9350
ELM 0.1250 0.0469 1.6798 0.3493 0.1944 0.4669 0.9810 0.9905 0.9622

ABG
ANN 11.0000 0.0156 0.2627 0.0337 0.0298 0.0849 0.9996 0.9998 0.9991
SVR 33.4219 0.0156 3.1566 0.6123 0.3579 0.6687 0.9741 0.9680 0.8719
ELM 0.0938 0.0156 1.8594 0.3139 0.2108 −0.384 0.9776 0.9889 0.9555

BCG
ANN 12.3750 0.0156 1.9296 0.1843 0.2240 1.2046 0.9748 0.9875 0.9498
SVR 29.6094 0.0156 3.0060 0.5706 0.3489 1.1242 0.9759 0.9696 0.8783
ELM 0.0469 0.0156 1.8044 0.3047 0.2094 0.0152 0.9779 0.9890 0.9561

CAG
ANN 11.1406 0.0469 0.2019 0.0261 0.0228 −0.030 0.9997 0.9999 0.9995
SVR 31.6563 0.0156 3.1285 0.6507 0.3533 0.5950 0.9732 0.9688 0.8752
ELM 0.1250 0.0156 1.9358 0.3451 0.2186 0.9108 0.9759 0.9881 0.9522

ABCG
ANN 12.6406 0.0313 0.3496 0.0327 0.0425 −0.002 0.9991 0.9995 0.9982
SVR 29.2500 0.0469 3.6239 0.7279 0.4409 1.7376 0.9867 0.9514 0.8056
ELM 0.0625 0.0313 2.5005 0.4327 0.3042 −0.535 0.9529 0.9769 0.9075

It showed the SVM technique required an almost three-fold time to get trained, compared to the
MLP-NN technique, whereas the training process of the ELM technique was a hundred times faster
than the MLP-NN approach. The test times for all the approaches were almost equal, and are less than
few cycles of a 60 Hz power system network. Additionally, the RMSE, MAPE, and RSR values were
quite low, whereas the R2, WIA, and NSCE were almost unity for the MLP-NN approach; indicating
the strength and effectiveness of the MLP-NN approach in locating all types of faults. Furthermore,
the PBIAS values were positive for a few cases and negative for the others, which demonstrates
underestimations and overestimations of the fault distances, respectively. However, these values
were very small and closer to zero; hence, the smaller underestimations and overestimations could be
neglected for the ST based MLP-NN approach. On the contrary, the statistical performance indices
of the other two approaches (the SVM and ELM), were not satisfactory for all seven types of faults.
Consequently, they required further investigation through the optimization of their key parameters,
employing the well-known stochastic approaches to achieve better accuracy.

4.1.2. Fault Location with Optimized MLT

The ST based MLP-NN technique, showed satisfactory performance in locating faults in four-node
test feeders, but the performance of the other two MLT techniques were dissatisfactory. Consequently,
this section optimizes their key parameters employing the constriction factor-based particle swarm
optimization. The paper presented the detailed procedures of the CF-PSO, in Section 2.5. The objective
function of the CF-PSO was to minimize the MAPE of the actual and the predicted fault locations,
for the test datasets. After going through 100 generations with a population size of 20 individuals,
the CF-PSO ended up with the optimized SVM control parameters. Similarly, the CF-PSO optimized
the control parameters of the ELM in 100 generations, with a population size of 80 individuals. Table 5
summarizes the obtained optimal control parameters of both machine learning approaches. It is worth
mentioning, that this paper neither optimized the number of hidden neurons nor the connecting
weights and biases of the MLP-NN, due to its better performance with the systematically selected
number of neurons.
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Table 5. CF-PSO optimized MLT control parameters.

MLT Values of the Control Parameters

MLP-NN Number of hidden neuron = 6
SVR C = 1000, λ = 8.5 × 10−3, ε = 4.75×10−1, KO = 100 and kernel = Gaussian RBF
ELM CR = 5 × 1011, Kp = 3.5 × 109 and kernel = Gaussian RBF

Figure 6 presents the targeted and the ST based MLT predicted fault locations, for forty randomly
selected observations from the test dataset of AG faults, where the SVM and ELM techniques used
their CF-PSO optimized key parameters, as presented in Table 5. It visually appeared that all the MLT
techniques adequately predict the desired outputs in almost every case. Furthermore, Figure 7 presents
the scatter plots of the developed MLT for the test dataset, which depicts that the data points are closer
to the identity line for the employed techniques. Hence, the presented results confirmed the superiority
of the optimized MLT, over the MLT with randomly picked parameters. Table 6 summarizes the
operational times, along with the selected statistical performance indices of the test datasets of the
ST based optimized MLT approaches, for all seven types of faults. The training and testing times
for the selected machine learning tools were like that of Table 4. As can be observed from the table,
the RMSE, MAPE, and RSR values were quite low, whereas the R2, WIA, and NSCE values were almost
unity, indicating the strength and effectiveness of the proposed approach in locating faults. However,
the PBIAS values were positive for a few cases and negative for the others, which demonstrated
underestimations and overestimations of the fault distances, respectively. However, these values were
closer to zero; hence, the smaller underestimations and overestimations could be neglected.

Table 6. Operation time and statistical performance indices for test datasets with CF-PSO optimized
MLT parameters.

Fault Type Technique
Time Statistical Performance Measures

Training Testing RMSE MAPE RSR PBIAS R2 WIA NSCE

AG
ANN 11.5469 0.0156 0.3333 0.0442 0.0378 0.0642 0.9993 0.9996 0.9986
SVR 26.2813 0.0156 0.3646 0.0094 0.0414 0.0304 0.9991 0.9996 0.9983
ELM 0.1250 0.0469 0.2517 0.0266 0.0286 0.0388 0.9996 0.9998 0.9992

BG
ANN 12.5000 0.0156 0.4419 0.0816 0.0517 −0.193 0.9987 0.9993 0.9973
SVR 26.3281 0.0156 0.2271 0.0058 0.0265 0.1045 0.9996 0.9998 0.9993
ELM 0.0781 0.0625 0.3172 0.0335 0.0371 −0.035 0.9993 0.9997 0.9986

CG
ANN 12.2344 0.0313 0.3327 0.0589 0.0385 −0.151 0.9993 0.9996 0.9985
SVR 29.8438 0.0156 0.2263 0.0030 0.0262 0.2070 0.9997 0.9998 0.9993
ELM 0.0938 0.0313 0.1668 0.0221 0.0193 −0.001 0.9998 0.9999 0.9996

ABG
ANN 11.0000 0.0156 0.2627 0.0337 0.0298 0.0849 0.9996 0.9998 0.9991
SVR 28.1250 0.0156 0.4898 0.0814 0.0555 0.0985 0.9992 0.9992 0.9969
ELM 0.0781 0.0156 0.1899 0.0209 0.0215 −0.012 0.9998 0.9999 0.9995

BCG
ANN 12.3750 0.0156 1.9296 0.1843 0.2240 1.2046 0.9748 0.9875 0.9498
SVR 30.1875 0.0313 0.4868 0.0799 0.0565 0.1896 0.9991 0.9992 0.9968
ELM 0.0625 0.0469 0.1638 0.0201 0.0190 0.0309 0.9998 0.9999 0.9996

CAG
ANN 12.1406 0.0469 0.2019 0.0261 0.0228 −0.030 0.9997 0.9999 0.9995
SVR 26.5156 0.0313 0.4878 0.0874 0.0551 0.0111 0.9991 0.9992 0.9970
ELM 0.1094 0.0313 0.1714 0.0188 0.0194 −0.012 0.9998 0.9999 0.9996

ABCG
ANN 11.6406 0.0313 0.3496 0.0327 0.0425 −0.001 0.9991 0.9995 0.9982
SVR 30.7813 0.0469 0.5138 0.0852 0.0625 0.3396 0.9994 0.9990 0.9961
ELM 0.0625 0.0313 0.2942 0.0255 0.0358 0.2254 0.9994 0.9997 0.9987
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4.1.3. Fault Location with Optimized MLT in the Presence of Measurement Noise

The presented results of the previous section, confirmed the superiority of the optimized MLT
approaches over their non-optimized counter parts, where this section provides the results of the test
datasets in the presence of measurement noise. Figure 8 shows the targeted and the ST based MLT
models predicted fault locations, for forty randomly selected observations from the test dataset of AG
faults, in the presences of measurement noise (30 dB SNR). It visually appeared that all ST based MLT
approaches, estimated the fault distances with similar accuracy. Moreover, the scatter plots of Figure 9
of the developed MLT models for the test dataset, also depicts that the data points were closer to the
identity line as expected for any efficient model. Additionally, Figure 10 presents the comparison of
the predicted fault distances with the actual fault distances; and Figure 11 presents the scatter plot of
the proposed MLT models, for the test dataset of AG faults, in the presence of 20 dB SNR. Figure 8 to
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Figure 11 illustrate the efficacy of proposed ST based MLT models in predicting the fault distances
efficiently, even with the presence of measurement noise. Furthermore, Tables 7 and 8 present the
selected statistical performance indices, along with the required operational time of the proposed ST
based MLT approaches, in the presence of 30 dB and 20 dB SNR, respectively. It can be observed from
both tables, that the training and testing times, for the selected machine learning tools, are like that of
Table 4.
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Additionally, the RMSE, MAPE, RSR, and PBIAS were quite low, whereas the R2, WIA, and NSCE
were almost unity for the optimized MLT approaches, indicating the strength and the effectiveness
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Table 7. Operation time and the statistical performance indices, for the test datasets with CF-PSO
optimized MLT, in the presence of 30 dB SNR.

Fault Type Technique
Time Statistical Performance Measures

Training Testing RMSE MAPE RSR PBIAS R2 WIA NSCE

AG
ANN 12.3906 0.0156 0.4775 0.0761 0.0542 −0.075 0.9986 0.9993 0.9971
SVR 30.4688 0.0313 0.4179 0.0564 0.0474 −0.006 0.9989 0.9994 0.9978
ELM 0.1250 0.0156 0.4959 0.0606 0.0563 0.1173 0.9984 0.9992 0.9968

BG
ANN 12.0000 0.0156 0.5551 0.0993 0.0649 −0.443 0.9979 0.9989 0.9958
SVR 26.6406 0.0313 0.2184 0.0042 0.0255 −0.056 0.9997 0.9998 0.9993
ELM 0.0781 0.0156 0.3641 0.0529 0.0426 −0.243 0.9991 0.9995 0.9982

CG
ANN 12.2813 0.0313 0.2729 0.0495 0.0316 −0.145 0.9995 0.9998 0.9990
SVR 27.3438 0.0313 0.7008 0.1291 0.0811 0.5864 0.9969 0.9984 0.9934
ELM 0.0781 0.0625 0.2815 0.0357 0.0326 0.1662 0.9995 0.9997 0.9989

ABG
ANN 12.9531 0.0156 0.2220 0.0264 0.0252 0.0921 0.9997 0.9998 0.9994
SVR 31.4063 0.0156 0.4898 0.0814 0.0555 0.0758 0.9991 0.9992 0.9969
ELM 0.0625 0.0156 0.2551 0.0307 0.0289 0.0261 0.9996 0.9998 0.9992

BCG
ANN 11.9375 0.0313 0.1421 0.0229 0.0165 −0.094 0.9999 0.9999 0.9997
SVR 33.1094 0.0156 0.4876 0.0802 0.0566 0.1567 0.9991 0.9992 0.9968
ELM 0.0781 0.0156 0.2271 0.0244 0.0264 0.0301 0.9997 0.9998 0.9993

CAG
ANN 12.2813 0.0469 0.1599 0.0265 0.0181 0.0164 0.9998 0.9999 0.9997
SVR 28.9844 0.0156 0.4880 0.0876 0.0551 0.0313 0.9991 0.9992 0.9970
ELM 0.0938 0.0313 0.2265 0.0241 0.0256 0.0912 0.9997 0.9998 0.9993

ABCG
ANN 10.7344 0.0156 0.1960 0.0252 0.0238 0.0435 0.9997 0.9999 0.9994
SVR 29.3906 0.0156 0.5138 0.0852 0.0625 0.3203 0.9993 0.9990 0.9961
ELM 0.0469 0.0469 0.4437 0.0408 0.0540 0.1201 0.9985 0.9993 0.9971

Table 8. Operation time and the statistical performance indices, for the test datasets with CF-PSO
optimized MLT, in the presence of 20 dB SNR.

Fault Type Technique
Time Statistical Performance Measures

Training Testing RMSE MAPE RSR PBIAS R2 WIA NSCE

AG
ANN 12.7344 0.0313 0.6308 0.1032 0.0716 0.1823 0.9975 0.9987 0.9949
SVR 26.7344 0.0313 0.4518 0.0635 0.0513 0.0368 0.9987 0.9993 0.9974
ELM 0.1250 0.0313 0.5413 0.0684 0.0614 −0.190 0.9981 0.9991 0.9962

BG
ANN 11.3438 0.0156 0.7414 0.1215 0.0867 0.0410 0.9962 0.9981 0.9925
SVR 31.5781 0.0313 0.5687 0.0144 0.0665 0.4296 0.9978 0.9989 0.9956
ELM 0.1094 0.0156 0.6717 0.0775 0.0785 1.1419 0.9971 0.9985 0.9938

CG
ANN 10.6563 0.0313 0.4570 0.0625 0.0529 −0.129 0.9986 0.9993 0.9972
SVR 33.8906 0.0313 0.7456 0.1352 0.0863 0.1454 0.9964 0.9981 0.9926
ELM 0.0781 0.0313 0.3366 0.0425 0.0390 −0.118 0.9992 0.9996 0.9985

ABG
ANN 11.6250 0.0313 0.3126 0.0357 0.0354 0.0672 0.9994 0.9997 0.9987
SVR 32.5938 0.0156 0.4989 0.0823 0.0566 0.1467 0.9991 0.9992 0.9968
ELM 0.0625 0.0156 0.3678 0.0360 0.0417 −0.032 0.9991 0.9996 0.9983

BCG
ANN 11.4375 0.0313 0.4005 0.0778 0.0465 0.0445 0.9989 0.9995 0.9978
SVR 28.4531 0.1920 0.4934 0.0801 0.0573 0.1787 0.9990 0.9992 0.9967
ELM 0.0781 0.0313 0.3747 0.0346 0.0435 0.0331 0.9991 0.9995 0.9981

CAG
ANN 11.8594 0.0156 0.2753 0.0407 0.0311 0.0033 0.9995 0.9998 0.9990
SVR 27.5938 0.4898 0.4972 0.0890 0.0562 −0.146 0.9990 0.9992 0.9968
ELM 0.1094 0.1920 0.3388 0.0392 0.0383 0.1323 0.9993 0.9996 0.9985

ABCG
ANN 10.3281 0.0313 0.4188 0.0453 0.0509 0.1053 0.9987 0.9994 0.9974
SVR 29.1250 0.0156 0.5161 0.0854 0.0628 0.3574 0.9994 0.9990 0.9961
ELM 0.0938 0.4898 0.6710 0.0504 0.0816 0.2233 0.9967 0.9983 0.9933

4.1.4. Validating the Developed Fault Location Technique

In order to validate the developed ST based fault location scheme for the four-node test
distribution feeder, the following faults were applied on the distribution line and predicted the
fault location employing the trained and tested machine learning tools. It is worth mentioning,
the proposed approach generated the faulty cases by varying the pre-fault loading condition,
presence of measurement noise, and fault resistance and inception angle. Then it employed the
ST to extract the useful features and fetched them to the trained machine learning tools as inputs, to
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get a decision on the applied faults. As can be seen from Table 9, the developed signal processing
based MLT approach located all applied faults with satisfactory accuracy (<1%), which validated the
effectiveness of the employed approach.

Table 9. Fault location results obtained employing the ST based machine learning tools, for the
four-node test distribution feeder.

Applied Fault Information Employed
Technique

Predicted Fault Information

Type Location (km) Location (km) Accuracy (%)

AG 9.0
ANN 8.9999 0.0003
SVR 9.0071 0.0237
ELM 8.9961 0.0130

BG 27.5
ANN 27.3093 0.6357
SVR 27.4908 0.0307
ELM 27.5084 0.0280

CG 17.5
ANN 17.5247 0.0823
SVR 17.2249 0.09170
ELM 17.5371 0.1237

ABG 3.5
ANN 3.5169 0.0563
SVR 3.5071 0.0237
ELM 3.5000 0.0000

BCG 21.5
ANN 21.5281 0.0937
SVR 21.5071 0.0237
ELM 21.5001 0.0003

CAG 10.0
ANN 10.0691 0.2303
SVR 10.0071 0.0237
ELM 10.0002 0.0007

ABCG 24.0
ANN 23.7609 0.7970
SVR 23.7249 0.9170
ELM 23.9999 0.0003

4.2. Example 2: Thirteen-Node Test Distribution Feeder

The proposed ST based machine learning approach was also employed to identify the faulty
sections of the IEEE 13-node test distribution feeder. The selected test distribution feeder operates at
4.16 kV and displays most of the characteristic features of the power distribution grids, as shown in
Figure 12 [54]. Consequently, it is usually used to test common features of the distribution system
analysis software. The highly loaded test feeder consists of a single voltage regulator at the substation,
an in-line transformer, shunt capacitor banks, overhead distribution lines, and underground cables
of various configurations, and several unbalanced spot and distributed loads. Moreover, the test
feeder contained single-phase, double-phase, and three-phase laterals. This research modeled the
test feeder in an RSCAD environment and implemented the developed model in a Real Time Digital
Simulator (RTDS) machine. The proposed ST based faulty section identification approach generated
900 faulty cases by varying the pre-fault loading condition, fault resistance, inception angle, type,
and location, through employing the ‘batch-mode’ operation option of the RSCAD software. After
generation of different fault scenarios, the proposed approach recorded three-phase current signals
from eight different branches/locations of the test feeder, as indicated in Figure 12, with a sampling
frequency of 20 kHz. Then it processed the recorded signals, employing ST in the MATLAB/SIMULINK
environment and extracted useful features, as discussed in Section 3.2. It is worth mentioning, that
the proposed approach collected 288 features (~8 branches × 36 features per branches), for each
fault scenario. Furthermore, this research divided the test distribution feeder into nine sections, as
indicated by the rectangular boxes in Figure 12. Consequently, this research prepared the faulty section
identification problem as a classification problem.



Energies 2018, 11, 2328 18 of 23

Energies 2018, 11  17 of 22 

 

SVR 21.5071 0.0237 

ELM 21.5001 0.0003 

CAG 10.0 

ANN 10.0691 0.2303 

SVR 10.0071 0.0237 

ELM 10.0002 0.0007 

ABCG 24.0 

ANN 23.7609 0.7970 

SVR 23.7249 0.9170 

ELM 23.9999 0.0003 

4.2. Example 2: Thirteen-Node Test Distribution Feeder 

The proposed ST based machine learning approach was also employed to identify the faulty 

sections of the IEEE 13-node test distribution feeder. The selected test distribution feeder operates at 

4.16 kV and displays most of the characteristic features of the power distribution grids, as shown in 

Figure 12 [54]. Consequently, it is usually used to test common features of the distribution system 

analysis software. The highly loaded test feeder consists of a single voltage regulator at the 

substation, an in-line transformer, shunt capacitor banks, overhead distribution lines, and 

underground cables of various configurations, and several unbalanced spot and distributed loads. 

Moreover, the test feeder contained single-phase, double-phase, and three-phase laterals. This 

research modeled the test feeder in an RSCAD environment and implemented the developed model 

in a Real Time Digital Simulator (RTDS) machine. The proposed ST based faulty section identification 

approach generated 900 faulty cases by varying the pre-fault loading condition, fault resistance, 

inception angle, type, and location, through employing the ‘batch-mode’ operation option of the 

RSCAD software. After generation of different fault scenarios, the proposed approach recorded 

three-phase current signals from eight different branches/locations of the test feeder, as indicated in 

Figure 12, with a sampling frequency of 20 kHz. Then it processed the recorded signals, employing 

ST in the MATLAB/SIMULINK environment and extracted useful features, as discussed in Section 

3.2. It is worth mentioning, that the proposed approach collected 288 features (~8 branches × 36 

features per branches), for each fault scenario. Furthermore, this research divided the test distribution 

feeder into nine sections, as indicated by the rectangular boxes in Figure 12. Consequently, this 

research prepared the faulty section identification problem as a classification problem. 

 

Figure 12. IEEE thirteen-node test distribution feeder. Figure 12. IEEE thirteen-node test distribution feeder.

4.2.1. Faulty Section Identification in Noise-Free Environment

After collection of useful features, the proposed approach trained and tested the MLP-NN with
a different number of neurons, where the best neural network consisted of eleven hidden neurons,
in terms of minimum mean squared error and overall accuracy. In addition, the proposed approach
systematically chose the tan-sigmoid as a squashing function and the resilient backpropagation
technique as the training algorithm. Like the fault location technique of the four-node test distribution
feeder, the faulty section identification approach also employed 70% of the available data for training
purposes and the rest of the data for testing purposes. Table 10 summarizes the technical features
related to the MLP neural networks employed for faulty section identification purposes. Table 11
presents a 9 × 9 confusion matrix obtained from the MLP neural networks, as they identified nine
faulty sections employing the proposed approach in a noise-free environment. The diagonal and
off-diagonal elements of the confusion matrix, represent the successful and unsuccessful identification
of faulty sections, respectively. As can be observed from the table, the proposed technique identified the
faulty sections with an accuracy of almost 100%, which demonstrated the successful implementation
of the adopted ST based machine learning approach.

Table 10. Multilayer perceptron neural networks (MLP-NN) parameters for the faulty section
identification problem.

Item Specifications

Number of hidden neurons 11
Squashing function Tan-sigmoid
Training algorithm Resilient backpropagation
Objective function Mean squared error (MSE)

Training data 70%
Testing data 30%
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Table 11. Faulty section identification results for noise-free measurement.

Symbol S1 S2 S3 S4 S5 S6 S7 S8 S9

S1 900 0 0 0 0 0 0 0 0
S2 0 900 0 0 0 0 0 0 0
S3 0 1 899 0 0 0 0 0 0
S4 0 0 0 900 0 0 0 0 0
S5 0 0 0 0 900 0 0 0 0
S6 0 0 0 0 0 900 0 0 0
S7 0 0 0 0 0 0 899 1 0
S8 0 0 0 0 0 0 0 900 0
S9 0 0 0 0 0 0 0 0 900

Overall accuracy = 99.975%

4.2.2. Faulty Section Identification in the Presence of Measurement Noise

The proposed technique added a different level of additive white gaussian noise to the recorded
three-phase branch current signals, with a view to testing the efficacy of the proposed faulty section
identification approach, in the presence of measurement noise. Then it extracted the same features from
the noisy signals, and employed them as inputs to the MLP-NN. Table 12 summarizes the faulty section
identification results of the ST based MLP-NN approach, in the presence of measurement noise. As can
be seen, the ST based approach ended up with the overall accuracies of 99.876%, 99.741%, and 99.235%
for the 40 dB, 30 dB, and 20 dB SNR, respectively. Consequently, the obtained results validated the
efficacy of the proposed ST based faulty section identification technique, for both noise-free and noisy
conditions. In addition, the developed approach confirmed its independence on the pre-fault loading
condition, fault type, resistance, and inception angle.

Table 12. Faulty section identification results under noisy measurement.

Faulty Section
Samples Classified Successfully

40 dB SNR 30 dB SNR 20 dB SNR

S1 900 897 895
S2 899 896 893
S3 898 899 894
S4 897 896 891
S5 900 900 896
S6 900 895 892
S7 898 899 895
S8 900 900 893
S9 898 895 889

Overall accuracy (%) 99.876 99.741 99.235

4.2.3. Validating the Developed Faulty Section Identification Technique

To validate the developed ST based faulty section identification technique for the thirteen-node
test distribution feeder, the following faults were applied on different locations of the feeder and
predicted the faulty section employing the trained and tested MLP-NN. It is worth mentioning,
the proposed approach generated the faulty cases by varying the pre-fault loading condition,
presence of measurement noise, fault resistance, and inception angle. Then it employed the ST to
extract the useful features and fetched them to the trained MLP-NN as inputs, to get a decision on the
applied faults. As can be seen from Table 13, the developed signal processing based MLP-NN approach
identified all applied faults accurately, which validated the effectiveness of the employed approach.
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Table 13. Faulty section identification results obtained employing the ST based machine learning tools,
for the IEEE thirteen-node test distribution feeder.

Applied Fault Information
ST Based MLP-NN Predicted Faulty Section

Type Node Faulty Section

AG 652 3 3
BG 671 6 6
CG 611 1 1

ABG 692 5 5
BCG 646 8 8
CAG 680 4 4

ABCG 650 9 9

5. Conclusions and Future Scope

This paper presented advanced signal processing-based machine learning tools to locate faults
and identify faulty sections in distribution grids. The proposed approach decomposed three-phase
current signals recorded from different branches/locations of the distribution grids, employing the ST
to extract the useful characteristic features of faulty cases. Then it employed the extracted features as
inputs to different machine learning tools and trained them to locate the faults, and to identify the
faulty section in the distribution grids. Additionally, this research employed the CF-PSO technique to
optimize the parameters of the support vector and extreme learning machines; whilst it optimized the
MLP-NN through a systematic approach to achieve better generalization performance. The presented
results validated the efficacy of the developed fault diagnosis approach. Additionally, the optimized
machine learning tools outperformed the non-optimized tools in locating distribution grid faults,
in terms of the selected statistical performance indices, i.e., the RMSE, MAPE, PBIAS, RSR, R2, WIA,
and NSEC. Moreover, the ST based ELM approach required lesser training time compared to the SVM
and MLP-NN techniques. However, the trained MLT diagnosed the applied faults in a fraction of a
second, signaling the real-time implementation of the developed fault diagnosis scheme. Furthermore,
the developed faulty section identification approach, identified faulty sections with almost 100%
accuracy. Finally, the presented results confirmed the independency of the proposed ST based MLT
approach, in the fault inception angle and resistance, pre-fault loading conditions, and presence of
measurement noise. As a future extension, the signal processing based MLT approach can be applied to
diagnose faults in distribution grids, with the incorporation of renewable energy resources, considering
their associated uncertainties. The proposed approach can also be extended to diagnose simultaneous
faults at distribution level.
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