Comparison of Mechanical Behavior and Acoustic Emission Characteristics of Three Thermally-Damaged Rocks
Abstract
:1. Introduction
2. Materials and Methodology
2.1. Description of Rock Specimen
2.2. Experimental Procedure
3. Results and Discussion
3.1. Mechanical Behavior
3.1.1. P-Wave Velocity
3.1.2. Strength and Modulus
3.1.3. Stress–Strain Relation
3.1.4. Failure Mode
3.2. Acoustic Emission Characteristic
3.3. Discussion
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Ranjith, P.G.; Daniel, R.V.; Chen, B.J.; Perera, M.S.A. Transformation plasticity and the effect of temperature on the mechanical behaviour of Hawkesbury sandstone at atmospheric pressure. Eng. Geol. 2012, 151, 120–127. [Google Scholar]
- Tiskatine, R.; Eddemani, A.; Gourdo, L.; Abnay, B.; Aharoune, A.; Bouirden, L. Experimental evaluation of thermo-mechanical performances of candidate rocks for use in high temperature thermal storage. Appl. Energy 2016, 171, 243–255. [Google Scholar] [CrossRef]
- Yang, S.Q.; Ranjith, P.G.; Jing, H.W.; Tian, W.L.; Ju, Y. An experimental investigation on thermal damage and failure mechanical behavior of granite after exposure to different high temperature treatments. Geothermics 2017, 65, 180–197. [Google Scholar] [CrossRef]
- Rong, G.; Peng, J.; Cai, M.; Yao, M.; Zhou, C.; Sha, S. Experimental investigation of thermal cycling effect on physical and mechanical properties of bedrocks in geothermal fields. Appl. Therm. Eng. 2018, 141, 174–185. [Google Scholar] [CrossRef]
- Gónzalez-Gómez, W.S.; Quintana, P.; May-Pat, A.; Avilés, F.; May-Crespo, J.; Alvarado-Gil, J.J. Thermal effects on the physical properties of limestones from the Yucatan Peninsula. Int. J. Rock Mech. Min. 2015, 75, 182–189. [Google Scholar] [CrossRef]
- Peng, J.; Rong, G.; Cai, M.; Yao, M.D.; Zhou, C.B. Physical and mechanical behaviors of a thermal-damaged coarse marble under uniaxial compression. Eng. Geol. 2016, 200, 88–93. [Google Scholar] [CrossRef]
- Yao, M.; Rong, G.; Zhou, C.; Peng, J. Effects of thermal damage and confining pressure on the mechanical properties of coarse marble. Rock Mech. Rock. Eng. 2016, 49, 2043–2054. [Google Scholar] [CrossRef]
- Li, Z.; Wong, L.N.Y.; Teh, C.I. Low cost colorimetry for assessment of fire damage in rock. Eng. Geol. 2017, 228, 50–60. [Google Scholar] [CrossRef]
- Yavuz, H.; Demirdag, S.; Caran, S. Thermal effect on the physical properties of carbonate rocks. Int. J. Rock Mech. Min. 2010, 47, 94–103. [Google Scholar] [CrossRef]
- Tian, H.; Kempka, T.; Xu, N.X.; Ziegler, M. Physical properties of sandstones after high temperature treatment. Rock Mech. Rock Eng. 2012, 45, 1113–1117. [Google Scholar] [CrossRef]
- Sirdesai, N.N.; Singh, T.N.; Gamage, R.P. Thermal alterations in the poro-mechanical characteristic of an Indian sandstone–a comparative study. Eng. Geol. 2017, 226, 208–220. [Google Scholar] [CrossRef]
- Sirdesai, N.N.; Singh, A.; Sharma, L.K.; Singh, R.; Singh, T.N. Determination of thermal damage in rock specimen using intelligent techniques. Eng. Geol. 2018, 239, 179–194. [Google Scholar] [CrossRef]
- Keshavarz, M.; Pellet, F.L.; Loret, B. Damage and changes in mechanical properties of a gabbro thermally loaded up to 1,000 C. Pure Appl. Geophys. 2010, 167, 1511–1523. [Google Scholar] [CrossRef]
- Chen, Y.L.; Ni, J.; Shao, W.; Azzam, R. Experimental study on the influence of temperature on the mechanical properties of granite under uniaxial compression and fatigue loading. Int. J. Rock Mech. Min. 2012, 56, 62–66. [Google Scholar] [CrossRef]
- Inserra, C.; Biwa, S.; Chen, Y. Influence of thermal damage on linear and nonlinear acoustic properties of granite. Int. J. Rock Mech. Min. 2013, 62, 96–104. [Google Scholar] [CrossRef]
- Rong, G.; Peng, J.; Yao, M.; Jiang, Q.; Wong, L.N.Y. Effects of specimen size and thermal-damage on physical and mechanical behavior of a fine-grained marble. Eng. Geol. 2018, 232, 46–55. [Google Scholar] [CrossRef]
- Rong, G.; Yao, M.; Peng, J.; Sha, S.; Tan, J. Influence of initial thermal cracking on physical and mechanical behaviour of a coarse marble: Insights from uniaxial compression tests with acoustic emission monitoring. Geophys. J. Int. 2018, 214, 1886–1900. [Google Scholar]
- Liang, W.G.; Xu, S.G.; Zhao, Y.S. Experimental study of temperature effects on physical and mechanical characteristics of salt rock. Rock Mech. Rock. Eng. 2006, 39, 469–482. [Google Scholar] [CrossRef]
- Dwivedi, R.D.; Goel, R.K.; Prasad, V.V.R.; Sinha, A. Thermo-mechanical properties of Indian and other granites. Int. J. Rock Mech. Min. Sci. 2008, 45, 303–315. [Google Scholar] [CrossRef]
- Brotóns, V.; Tomás, R.; Ivorra, S.; Alarcón, J.C. Temperature influence on the physical and mechanical properties of a porous rock: San Julian’s calcarenite. Eng. Geol. 2013, 167, 117–127. [Google Scholar] [CrossRef]
- Liu, S.; Xu, J. An experimental study on the physico-mechanical properties of two post-high-temperature rocks. Eng. Geol. 2015, 185, 63–70. [Google Scholar] [CrossRef]
- Tian, H.; Kempka, T.; Xu, S.; Ziegler, M. Mechanical properties of sandstones exposed to high temperature. Rock Mech. Rock Eng. 2016, 49, 321–327. [Google Scholar] [CrossRef]
- Mahmutoglu, Y. Mechanical behaviour of cyclically heated fine grained rock. Rock Mech. Rock Eng. 1998, 31, 169–179. [Google Scholar] [CrossRef]
- Liu, S.; Xu, J. Mechanical properties of Qinling biotite granite after high temperature treatment. Int. J. Rock Mech. Min. 2014, 71, 188–193. [Google Scholar] [CrossRef]
- Tian, H.; Ziegler, M.; Kempka, T. Physical and mechanical behavior of claystone exposed to temperatures up to 1000°C. Int. J. Rock Mech. Min. 2014, 70, 144–153. [Google Scholar] [CrossRef]
- Peng, J.; Rong, G.; Cai, M.; Yao, M.D.; Zhou, C.B. Comparison of mechanical properties of undamaged and thermal-damaged coarse marbles under triaxial compression. Int. J. Rock Mech. Min. 2016, 83, 135–139. [Google Scholar] [CrossRef]
- Liu, Q.; Qian, Z.; Wu, Z. Micro/macro physical and mechanical variation of red sandstone subjected to cyclic heating and cooling: An experimental study. Bull. Eng. Geol. Environ. 2017, 1–15. [Google Scholar] [CrossRef]
- Yin, T.; Li, X.; Cao, W.; Xia, K. Effects of thermal treatment on tensile strength of Laurentian granite using Brazilian test. Rock Mech. Rock. Eng. 2015, 48, 2213–2223. [Google Scholar] [CrossRef]
- Roy, D.G.; Singh, T.N. Effect of heat treatment and layer orientation on the tensile strength of a crystalline rock under Brazilian test condition. Rock Mech. Rock. Eng. 2016, 49, 1663–1677. [Google Scholar]
- Nasseri, M.H.B.; Schubnel, A.; Young, R. Coupled evolutions of fracture toughness and elastic wave velocities at high crack density in thermally treated Westerly granite. Int. J. Rock Mech. Min. Sci. 2007, 44, 601–616. [Google Scholar] [CrossRef]
- Chaki, S.; Takarli, M.; Agbodjan, W.P. Influence of thermal damage on physical properties of a granite rock: Porosity, permeability and ultrasonic wave evolutions. Constr. Build. Mater. 2008, 22, 1456–1461. [Google Scholar] [CrossRef]
- Yang, S.Q.; Hu, B. Creep and long-term permeability of a red sandstone subjected to cyclic loading after thermal treatments. Rock Mech. Rock. Eng. 2018. [Google Scholar] [CrossRef]
- Fan, L.F.; Wu, Z.J.; Wan, Z.; Gao, J.W. Experimental investigation of thermal effects on dynamic behavior of granite. Appl. Therm. Eng. 2017, 125, 94–103. [Google Scholar] [CrossRef]
- Wong, L.N.Y.; Li, Z.; Kang, H.M.; Teh, C.I. Dynamic loading of Carrara marble in a heated state. Rock Mech. Rock. Eng. 2017, 50, 1487–1505. [Google Scholar] [CrossRef]
- Meredith, P.G.; Knight, K.S.; Boon, S.A.; Wood, I.G. The microscopic origin of thermal cracking in rocks: An investigation by simultaneous time-of-flight neutron diffraction and acoustic emission monitoring. Geophys. Res. Lett. 2001, 28, 2105–2108. [Google Scholar] [CrossRef] [Green Version]
- Browning, J.; Meredith, P.; Gudmundsson, A. Cooling-dominated cracking in thermally stressed volcanic rocks. Geophys. Res. Lett. 2016, 43, 8417–8425. [Google Scholar] [CrossRef] [Green Version]
- Griffiths, L.; Lengliné, O.; Heap, M.J.; Baud, P.; Schmittbuhl, J. Thermal cracking in Westerly Granite monitored using direct wave velocity, coda wave interferometry, and acoustic emissions. J. Geophys. Res.-Solid Earth 2018, 123, 2246–2261. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, C.Y. Thermally induced acoustic emission in Westerly granite. Geophys. Res. Lett. 1980, 7, 1089–1092. [Google Scholar]
- Fredrich, J.T.; Wong, T. Micromechanics of thermally induced cracking in three crustal rocks. J. Geophys. Res.-Solid Earth 1986, 91, 12743–12764. [Google Scholar] [CrossRef]
- Freire-Lista, D.M.; Fort, R.; Varas-Muriel, M.J. Thermal stress-induced microcracking in building granite. Eng. Geol. 2016, 206, 83–93. [Google Scholar] [CrossRef] [Green Version]
- Kranz, R.L. Microcracks in rocks: A review. Tectonophysics 1983, 100, 449–480. [Google Scholar] [CrossRef]
- Wang, H.F.; Bonner, B.P.; Carlson, S.R.; Kowallis, B.; Heard, H.C. Thermal stress cracking in granite. J. Geophys. Res. Solid Earth 1989, 94, 1745–1758. [Google Scholar] [CrossRef]
- Zhu, Z.; Tian, H.; Jiang, G.; Cheng, W. Effects of high temperature on the mechanical properties of Chinese marble. Rock Mech. Rock. Eng. 2018, 51, 1937–1942. [Google Scholar] [CrossRef]
- Simmons, G.; Cooper, H.W. Thermal cycling cracks in three igneous rocks. Int. J. Rock Mech. Min. Geomech. Abstr. 1978, 15, 145–148. [Google Scholar] [CrossRef]
- Sprunt, E.S.; Brace, W.F. Direct observation of microcavities in crystalline rocks. Int. J. Rock Mech. Min. 1974, 11, 139–150. [Google Scholar] [CrossRef]
- Homand-Etienne, F.; Houpert, R. Thermally induced microcracking in granites: Characterization and analysis. Int. J. Rock Mech. Min. Geomech. Abstr. 1989, 26, 125–134. [Google Scholar] [CrossRef]
- Zuo, J.P.; Xie, H.P.; Zhou, H.W.; Peng, S.P. SEM in situ investigation on thermal cracking behaviour of Pingdingshan sandstone at elevated temperatures. Geophys. J. Int. 2010, 181, 593–603. [Google Scholar]
- Wang, H.F.; Heard, H.C. Prediction of elastic moduli via crack density in pressurized and thermally stressed rock. J. Geophys. Res. 1985, 90, 10342–10350. [Google Scholar] [CrossRef]
- Clark, S.P. Handbook of Physical Constants; Geological Society of America: New York, NY, USA, 1966. [Google Scholar]
- Ulusay, R.; Hudson, J.A. The complete ISRM suggested methods for rock characterization, testing and monitoring: 1974-2006. ISRM commission on testing methods. Environ. Eng. Geosci. 2007, 15, 47–48. [Google Scholar]
- Peng, J.; Rong, G.; Cai, M.; Zhou, C.B. A model for characterizing crack closure effect of rocks. Eng. Geol. 2015, 189, 48–57. [Google Scholar] [CrossRef]
- Eberhardt, E.; Stead, D.; Stimpson, B.; Read, R.S. Identifying crack initiation and propagation thresholds in brittle rock. Can. Geotech. J. 1998, 35, 222–233. [Google Scholar] [CrossRef] [Green Version]
- Fredrich, J.T.; Evans, B.; Wong, T.F. Effect of grain size on brittle and semibrittle strength: Implications for micromechanical modelling of failure in compression. J. Geophys. Res. Solid Earth. 1990, 95, 10907–10920. [Google Scholar] [CrossRef]
- Tuğrul, A.; Zarif, I.H. Correlation of mineralogical and textural characteristics with engineering properties of selected granitic rocks from Turkey. Eng. Geol. 1999, 51, 303–317. [Google Scholar] [CrossRef]
- Everitt, R.A.; Lajtai, E.Z. The influence of rock fabric on excavation damage in the Lac du Bonnett granite. Int. J. Rock Mech. Min. 2004, 41, 1277–1303. [Google Scholar] [CrossRef]
- Tuǧrul, A. The effect of weathering on pore geometry and compressive strength of selected rock types from Turkey. Eng. Geol. 2004, 75, 215–227. [Google Scholar] [CrossRef]
- Schultz, R.A.; Okubo, C.H.; Fossen, H. Porosity and grain size controls on compaction band formation in Jurassic Navajo Sandstone. Geophys. Res. Lett. 2010, 37, L22306. [Google Scholar] [CrossRef]
- Cheung, C.S.N.; Baud, P.; Wong, T. Effect of grain size distribution on the development of compaction localization in porous sandstone. Geophys. Res. Lett. 2012, 39, L21302. [Google Scholar] [CrossRef]
- Faoro, I.; Vinciguerra, S.; Marone, C.; Elsworth, D.; Schubnel, A. Linking permeability to crack density evolution in thermally stressed rocks under cyclic loading. Geophys. Res. Lett. 2013, 40, 2590–2595. [Google Scholar] [CrossRef] [Green Version]
- Peng, J.; Wong, L.N.Y.; Teh, C.I. Influence of grain size heterogeneity on strength and micro-cracking behavior of crystalline rocks. J. Geophys. Res. Solid Earth 2017, 122, 1054–1073. [Google Scholar] [CrossRef]
Rock Type | Bulk Density (g/cm3) | Grain Density (g/cm3) | Saturation Density (g/cm3) | Total Porosity (%) | Effective Porosity (%) | P-Wave Velocity (km/s) |
---|---|---|---|---|---|---|
Quartz Sandstone | 2.402 | 2.672 | 2.463 | 10.10 | 6.11 | 4.786 |
Marble | 2.699 | 2.720 | 2.702 | 0.77 | 0.30 | 5.814 |
Granite | 2.823 | 2.861 | 2.831 | 1.33 | 0.80 | 5.430 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, J.; Yang, S.-Q. Comparison of Mechanical Behavior and Acoustic Emission Characteristics of Three Thermally-Damaged Rocks. Energies 2018, 11, 2350. https://doi.org/10.3390/en11092350
Peng J, Yang S-Q. Comparison of Mechanical Behavior and Acoustic Emission Characteristics of Three Thermally-Damaged Rocks. Energies. 2018; 11(9):2350. https://doi.org/10.3390/en11092350
Chicago/Turabian StylePeng, Jun, and Sheng-Qi Yang. 2018. "Comparison of Mechanical Behavior and Acoustic Emission Characteristics of Three Thermally-Damaged Rocks" Energies 11, no. 9: 2350. https://doi.org/10.3390/en11092350
APA StylePeng, J., & Yang, S. -Q. (2018). Comparison of Mechanical Behavior and Acoustic Emission Characteristics of Three Thermally-Damaged Rocks. Energies, 11(9), 2350. https://doi.org/10.3390/en11092350