Towards Zero Energy Stadiums: The Case Study of the Dacia Arena in Udine, Italy
Abstract
:1. Introduction
1.1. Stadiums and Sustainability: From Timber Recyclable Structure to Qatar 2022
1.2. FIFA World Championship, Towards Russia 2018
1.3. European Football Championship 2016
1.4. Italian Stadiums
2. Materials and Methods
2.1. Dacia Arena in Udine, Italy
2.2. Dynamic Simulation Settings
2.3. Investigated Scenarios
3. Results and Discussion
3.1. Energy Requirements
3.2. Alternative Strategies towards Zero Energy Stadiums
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- European Commission. EPBD Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the Energy Performance of Buildings; European Commission: Brussels, Belgium, 2010. [Google Scholar]
- ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers). Energy Standard for Buildings except Low-Rise Residential Buildings; (ASHRAE) Standard, 90.1; ASHRAE: Atlanta, GA, USA, 2013. [Google Scholar]
- Berardi, U. A cross-country comparison of the building energy consumptions and their trends. Resour. Conserv. Recycl. 2017, 123, 230–241. [Google Scholar] [CrossRef]
- European Commission. Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the Promotion of the Use of Energy from Renewable Sources and Amending and Subsequently Repealing Directives 2001/77/EC and 2003/30/EC; European Commission: Brussels, Belgium, 2008. [Google Scholar]
- European Commission. A Policy Framework for Climate and Energy in the Period from 2020 to 2030. In Technical Report COM; European Commission: Brussels, Belgium, 2014. [Google Scholar]
- World Green Building Council. World Green Building Council Annual Report; World Green Building Council: London, UK, 2017. [Google Scholar]
- C. O. T. Parties. COP21 2016. Available online: http://www.ambafrance-it.org/Parigi-2015-sul-Clima-COP21 (accessed on 20 February 2018).
- Smulders, T.; Graus, W.; van Rossom, R.; Noordermeer, G. Green Stadium: As Green as Grass. Master’s Thesis, University Utrecht, Utrecht, The Netherlands, 2012. [Google Scholar]
- Imtech. Vision Green Stadiums. 2011. Available online: http://imtech.eu/EN/corporate/About-Imtech/Visions/Vision-Green-Stadiums.html (accessed on 17 December 2012).
- Dovi, V.; Friedler, F.; Huisingh, D.; Klemes, J. Cleaner energy for sustainable future. J. Clean. Supply 2009, 17, 889–895. [Google Scholar] [CrossRef]
- Breech, J. Cowboys Stadium Uses More Electricity than Liberia, CBS Sport. Available online: https://www.cbssports.com/nfl/news/cowboys-stadium-uses-more-electricity-than-liberia/ (accessed on 23 February 2018).
- Love Energy Savings. How Football Is Driving Energy Efficiency & Sustainability Targets. Available online: https://www.loveenergysavings.com/guides/how-football-is-helping-to-drive-energy-efficiency-and-sustainability-targets/ (accessed on 23 February 2018).
- Legge n.147. Legge per lo Sviluppo Dell’impiantistica Sportiva. Available online: http://documenti.camera.it/Leg17/Dossier/Pdf/AFP006_II.pdf (accessed on 26 February 2018).
- Rubner Holzbau and Bear Stadiums. Gli Stadi del Futuro, Modulari, in Legno Lamellare ed Ecosostenibili. Available online: http://www.infobuild.it/approfondimenti/gli-stadi-del-futuro-modulari-in-legno-lamellare-ed-ecosostenibili/ (accessed on 26 February 2018).
- Sofotasiou, P.; Hughes, B.; Calautit, J. Qatar 2022: Facing the FIFA World Cup climatic and legacy challenges. Sustain. Cities Soc. 2015, 14, 16–30. [Google Scholar] [CrossRef] [Green Version]
- Pearlmutter, D.; Erell, E.; Etzion, Y.; Meir, I.; Di, H. Refining the use of evaporation in an experimental down-draft cool tower. Energy Build. 1996, 23, 191–197. [Google Scholar] [CrossRef]
- Laylin, T. Tangram 2022 World Cup Stadium Cools Itself Like a Lizard. Available online: http://stadiumdb.com/designs/qat/tangram_2022_world_cup_stadium (accessed on 26 February 2018).
- Aly, S.; Fathalah, K. Combined absorption-desiccant solar powered air conditioning system. Warme-und Stoffubertragung 1988, 23, 111–121. [Google Scholar] [CrossRef]
- Nagengast, A.; Hendrickson, C.; Matthews, H. Variations in photovoltaic performance due to climate and low-slope roof choice. Energy Build. 2013, 64, 493–502. [Google Scholar] [CrossRef]
- Arup Associates. Qatar Showcase. Available online: http://www.arupassociates.com/en/case-studies/qatar-showcase/ (accessed on 26 February 2018).
- Kennett, S. Qatar’s Zero Carbon Stadium: 96 Degrees in the Shade 2010. Available online: http://www.building.co.uk/buildings/qatars-zero-carbon-stadium-96-degrees-in-the-shade/5008557.article (accessed on 26 February 2018).
- Van Hooff, T.; Blocken, B.; Van Harten, M. 3D CFD simulations of wind flow and wind-driven rain shelter in sports stadia: Influence of stadium geometry. Build. Environ. 2011, 46, 22–37. [Google Scholar] [CrossRef]
- Qatar Foundation: Solar Energy Put to the Test. Available online: http://www.qf.org.qa/content/the-foundation/issue-49/solar-energy-put-to-the-test (accessed on 26 February 2018).
- Sartori, I.; Napolitano, A.; Voss, K. Net zero energy buildings: A consistent definition framework. Energy Build. 2012, 48, 220–232. [Google Scholar] [CrossRef] [Green Version]
- Hughes, B.R.; Rezazadeh, F.; Chaudhry, H.N. Economic viability of incorporating multi-effect distillation with district cooling systems in the United Arab Emirates. Sustain. Cities Soc. 2013, 7, 37–43. [Google Scholar] [CrossRef]
- Fédération Internationale de Football Association. Summary of the 2014 FIFA World Cup Brazil Carbon Footprint. Available online: http://resources.fifa.com/mm/document/fifaworldcup/generic/02/11/20/03/summaryofthe2014fwccarbonfootprint_neutral.pdf (accessed on 26 February 2018).
- Fèdèration Internationale de Football Association. FIFA Football for the Planet. Available online: http://www.fifa.com/sustainability/football-for-planet.html (accessed on 26 February 2018).
- Fèdèration Internationale de Football Association. Football for the Planet, Neutral Carbon Emissions. Available online: http://resources.fifa.com/mm/document/fifaworldcup/generic/02/11/19/92/footballfortheplaneten_neutral.pdf (accessed on 26 February 2018).
- Hayes, G.; Karamichas, J. Olympic Games, Mega-Events and Civil Societies: Globalization, Environment, Resistance; Palgrave Macmillan: Basingstoke, UK, 2012. [Google Scholar]
- Fédération Internationale de Football Association. Carbon Management and Climate Protection at FIFA, Football for the Planet. Available online: http://resources.fifa.com/mm/document/afsocial/environment/02/83/13/97/carbonmanagementandclimateprotectionatfifa_neutral.pdf (accessed on 26 February 2018).
- Azzoni, T. Brazil Trying to Make Good Use of New Stadiums, Las Vegas Sun. Available online: https://lasvegassun.com/news/2014/dec/19/brazil-trying-make-good-use-new-stadiums/ (accessed on 26 February 2018).
- Haisley, B. Brazil’s World Cup Stadiums Were a Colossal Waste of Money, Deadspin. Available online: https://deadspin.com/brazils-world-cup-stadiums-were-a-colossal-waste-of-mon-1703964012 (accessed on 26 February 2018).
- Fèdèration Intarnationale de Football Association. The Castelao, Brazil 2014’s First Green Stadium. Available online: http://www.fifa.com/worldcup/news/y=2014/m=1/news=the-castelao-brazil-2014-first-green-stadium-2266430.html (accessed on 26 February 2018).
- Solar, Y. Powering Brazil’s Most Iconic Football Stadium. Available online: http://www.solaripedia.com/files/1319.pdf (accessed on 25 June 2018).
- Turner, J. 8 Football Stadiums Designed to Save the World, Redbull. Available online: https://www.redbull.com/int-en/8-football-stadiums-designed-to-save-the-world (accessed on 26 February 2018).
- Deriu, M. Dal Brasile, lo Stadio Che Produce Energia per le Case. Available online: http://www.fotovoltaicosulweb.it/guida/dal-brasile-lo-stadio-che-produce-energia-per-le-case.html (accessed on 26 February 2018).
- Paris, N. Commuters’ Footsteps Power Part of Train Station, the Telegraph. Available online: http://www.telegraph.co.uk/travel/destinations/europe/france/nord-pas-de-calais/articles/Commuters-footsteps-power-part-of-train-station/ (accessed on 26 February 2018).
- The Institution of Engineers Australia. Smart Tiles Harness the Power of Footsteps. Available online: https://www.engineersaustralia.org.au/portal/news/smart-tiles-harness-power-footsteps (accessed on 26 February 2018).
- Pavagen, Heathrow Airport. Available online: http://www.pavegen.com/heathrow (accessed on 26 February 2018).
- BBC. The First Player-Powered Football Pitch Opens in Brazil. Available online: http://www.bbc.co.uk/newsbeat/article/29156221/the-first-player-powered-football-pitch-opens-in-brazil (accessed on 26 February 2018).
- Alitalia. Ulisse Magazine, June 2016; Volume 6.
- Stadium Database. Stade Pierre Mauroy (Grand Stade Lille-Métropole). Available online: http://stadiumdb.com/stadiums/fra/grand_stade_lille (accessed on 6 March 2018).
- AAS Architecture. Allianz-Riviera Stadium by Wilmotte & Associés. Available online: http://aasarchitecture.com/2014/12/allianz-riviera-stadium-wilmotte-associes.html (accessed on 6 March 2018).
- Architect Magazine. Nouveau Stade de Bordeaux Herzog & de Meuron. Available online: http://www.architectmagazine.com/project-gallery/nouveau-stade-de-bordeaux (accessed on 6 March 2016).
- Apollon Football Ltd. Company. Apollon F.C. Official Website. Available online: http://www.apollon.com.cy/en/news-detail/10567/accreditations (accessed on 6 March 2018).
- Union of European Football Associations. UEFA, Post Event Report 2016. Available online: https://www.uefa.com/MultimediaFiles/Download/OfficialDocument/uefaorg/General/02/42/47/58/2424758_DOWNLOAD.pdf (accessed on 6 March 2018).
- Wikipedia. List of Future Stadiums. Available online: https://en.wikipedia.org/wiki/List_of_future_stadiums (accessed on 6 March 2018).
- Football Italia. Atalanta Presents New Stadium Plans. Available online: https://www.football-italia.net/112563/atalanta-present-new-stadium-plans (accessed on 6 March 2018).
- Comune di Verona. Solare Fotovaltaico Su Edifici Pubblici. Available online: http://www.comune.verona.it/nqcontent.cfm?a_id=48635 (accessed on 6 March 2018).
- Studio, R.B. Engineering S.r.l. Commerciale, Area 12 Juventus Stadium. Available online: http://www.studiorb.it/progetti/commerciale/area-12-juventus-stadium/33 (accessed on 6 March 2018).
- Regni, C.; Petrozzi, A.; Pisello, A.L.; Cotana, F. Renewable Energy and Energy Efficiency in Sportive Infrastructure. The Case Study of Friuli Stadium in Udine. Master’s Thesis, Università degli Studi di Perugia, Perugia, Italy, 2016. [Google Scholar]
- Ente Italiano di Unificazione (UNI). Riscaldamento e Raffrescamento Degli Edifici. Available online: http://www.uni.com/index.php?option=com_content&view=article&id=4819:riscaldamento-e-raffrescamento-degli-edifici-pubblicata-la-serie-nazionale-uni-10349&catid=170&Itemid=2612 (accessed on 25 June 2018).
- Khalil, E. Flow patterns and thermal comfort around spectators in air conditioned sport facilities. In Proceedings of the 15th International Energy Conversion Engineering Conference, Atlanta, GA, USA, 10–12 July 2017. [Google Scholar]
- La Prestazione Energetica Degli Edifici Residenziali. Available online: https://www.certificazioneenergeticafacile.it/certificato-energetico/prestazione-energetica/ (accessed on 26 February 2018).
- Manni, M.; Tecce, R.; Cavalaglio, G.; Coccia, V.; Nicolini, A.; Petrozzi, A. Architectural and energy refurbishment of the headquarter of the University of Teramo. Energy Procedia 2017, 126, 565–572. [Google Scholar] [CrossRef]
- ENF Solar. Conergy PowerPlus 245-265P. Available online: https://it.enfsolar.com/pv/panel-datasheet/Polycrystalline/24127 (accessed on 26 February 2018).
- Piazza della Repubblica. Attuazione Della Direttiva 2009/28/CE Sulla Promozione Dell’uso Dell’energia Da Fonti Rinnovabili, Recante Modifica E Successiva Abrogazione Delle Direttive 2001/77/CE e 2003/30/CE; Gazzetta Ufficiale: Rome, Italy, 2011. [Google Scholar]
- Zarlenga, F. La possibilità di utilizzo della risorsa geotermica a bassa e media entalpia per la sostenibilità ambientale. EAT Energia Ambiente Territorio 2011, 3, 31–40. [Google Scholar]
- E.GEO. Available online: www.egeoitalia.com (accessed on 26 February 2018).
- Comune di Peugia. Nuovo Sistema di Climatizzazione di Edifici Artigianali in Ambito Urbano Basato Sulle Fonti Energetiche Rinnovabili. Available online: http://www.comune.perugia.it/pagine/progetto-scer (accessed on 26 February 2018).
- EREC. Chapter 5: 45% by 2030. Contribution of Renewable Energy Technologies for Final Energy Consumption. 2012. Available online: http://www.ewea.org/blog/2011/05/renewable-energy-target-of-45-by-2030-vital/ (accessed on 25 June 2018).
- UNFCCC. Marrakech Action Proclamation for Our Climate and Sustainable Development. 2016. Available online: https://unfccc.int/sites/default/files/marrakech_action_proclamation.pdf (accessed on 25 June 2018).
- UNFCCC. Report of the Conference of the Parties on Its Twenty-Second Session, Marrakech. 2017. Available online: https://unfccc.int/sites/default/files/16_cp.22.pdf (accessed on 25 June 2018).
Features | Lille | Nice | Bordeaux | Lyon |
---|---|---|---|---|
Accessibility | ||||
Approximate UEFA capacity | 50,000 | 36,000 | 42,000 | 58,000 |
Wheelchair spaces | 230 | 120 | 120 | 246 |
Easy-access seats close to amenities | 115 | 100 | 100 | 123 |
Transport | ||||
Public transport accessibility | ✓ | ✓ | ✓ | ✓ |
Energy | ||||
Renewable energy generation in situ 1 | SP, Gt | SP | SP | SP |
Renewable energy purchase | ✓ | |||
Water | ||||
Rainwater collection system | ✓ | ✓ | ✓ | ✓ |
Optimization of water consumption | ✓ | intelligent sprinklers | - | motion detectors |
Waste | ||||
Selective sorting in non-public areas | ✓ | ✓ | ✓ | ✓ |
Selective sourcing in public areas | ✓ | ✓ | - | - |
Waste minimization 2 | a, b, c, d | a, b, c, d | a, b, c, d | a, b, c, d |
Stadium | Capacity | City | Tenant | Opening |
---|---|---|---|---|
Stadio della Roma | 52,500 | Rome | A.S. Rome | 2020 |
New Fiorentina Stadium | 40,430 | Florence | A.C.F. Fiorentina | - |
New Cagliari Stadium | 30,000 | Cagliari | Cagliari Calcio | 2021 |
New Stadio Castellani | 20,266 | Empoli | Empoli F.C. | - |
Atleti Azzurri D’Italia Arena | 24,000 | Bergamo | Atalanta B.F.C. | 2020 |
Features | Units | Values |
---|---|---|
Specific peak power per square meter | [W/m2] | 150 |
Required peak power | [kW] | 1200 |
Anti-freeze percentage concentration on thermos vector fluid | [%] | 34.0 |
Pump flow rates | [m3/h] | 42–90 |
Inlet temperature | [°C] | 42 |
Outlet temperature | [°C] | 28–30 |
Set-point temperature | [°C] | 20 |
Outdoor Thermal Loads | Indoor Thermal Loads | ||
---|---|---|---|
Thermal flow through opaque walls | Qwall (t) | Thermal flow related to people presence | Qpers (t) |
Thermal flow through glazed surfaces | Qglaz (t) | Thermal flow related to appliances | Qappl (t) |
Thermal flow due to global irradiation | Qirr (t) | Thermal flow related to lighting system | Qlight (t) |
Thermal flow due to thermal bridges | Qbridge (t) | Thermal flow due to other contributes | Qother (t) |
Thermal flow due to ventilation | Qvent (t) |
Climate Parameters | Input Data |
---|---|
Location | Udine, Argentina Square |
Latitude | 46°03′00″ |
Longitude | 13°14′00″ |
Altitude | 113 m above sea-level |
Climatic Zone | E |
Degree days | 2323 |
Maximum wind velocity | 4 m/s |
Average yearly relative humidity | 72% |
Average amount of annual precipitation | 999.9 mm |
Average annual maximum temperature | 17.0 °C |
Average annual minimum temperature | 7.0 °C |
Parameters | January | February | March | April | May | June | July | August | September | October | November | December |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Tmeant [°C] | 3.1 | 4.5 | 7.9 | 12 | 16.6 | 20.1 | 22.3 | 21.8 | 18.5 | 13.6 | 8.2 | 4.4 |
Tmin [°C] | −0.2 | 0.7 | 3.4 | 7.1 | 11.2 | 14.8 | 16.7 | 16.4 | 13.4 | 8.9 | 4.7 | 1.1 |
Tmax [°C] | 6.5 | 8.4 | 12.5 | 17 | 22 | 25.4 | 28 | 27.2 | 23.7 | 18.4 | 11.8 | 7.8 |
Rainfall [mm] | 75 | 76 | 86 | 117 | 107 | 150 | 98 | 120 | 132 | 124 | 138 | 118 |
Level | Zone | Hours per Day | Days per Week | System | |
---|---|---|---|---|---|
TPS * | ASHP ** | ||||
1 | Wellness area | 2 | 6 | - | ✓ |
Locker rooms | 4 | 6 | - | ✓ | |
Training facility | 4 | 3 | - | ✓ | |
Media center | 4 | 2 | ✓ | - | |
Offices (type A) | 10 | 7 | - | ✓ | |
2 | Offices (type A) | 10 | 7 | - | ✓ |
3 | Bar (VIP, West Gallery) | 4 | 0.5 | ✓ | - |
Medical center | 6 | 6 | - | ✓ | |
4 | Conference room | 4 | 0.5 | ✓ | - |
Restaurant | 6 | 7 | - | ✓ | |
Area relax | 4 | 6 | - | ✓ | |
5 | Other services | 2 | 3 | ✓ | - |
6 | Other services | 2 | 3 | ✓ | - |
7 | Other services | 2 | 3 | ✓ | - |
8 | Other services | 2 | 3 | ✓ | - |
9 | Offices (type B) | 4 | 0,5 | ✓ | - |
Lower Limit [kWh/m2 year] | Category | Upper Limit [kWh/m2 year] |
---|---|---|
- | A | 26.0 |
26.0 | B | 39.0 |
39.0 | C | 52.0 |
52.0 | D | 65.0 |
65.0 | E | 78.0 |
78.0 | F | 91.1 |
91.1 | G | 130.1 |
Plant | Heating Energy Demand | Cooling Energy Demand | ||
---|---|---|---|---|
Total [kWh/year] | Max [kWh/year] | Total [kWh/year] | Max [kWh/year] | |
methane-TPS | 1,278,700 | 305,000 | - | - |
ASHP | 165,000 | 50,000 | 94,000 | 27,500 |
new plant | 783,000 | 163,000 | 159,500 | 44,000 |
Location | Exposure | Tilt Angle | Surface [m2] | Power [kW] | Inverter [n] |
---|---|---|---|---|---|
outer ring | South | 9° | 1052 | 120 | 12 |
Southeast | 663 | 72 | 7 | ||
East | 1584 | 180 | 18 | ||
middle ring | South | 3° | 1052 | 120 | 12 |
Southeast | 982 | 106 | 11 | ||
East | 1584 | 180 | 18 |
Configurations | Plant | Size | Primary Energy Type | Primary Energy Consumption [kWh/year] |
---|---|---|---|---|
Alternative a | Geothermal Heat Pump | (500 kWt, 175 kWf) | Electricity form PV | 260,000 |
Alternative b | Biomass boiler and Absorption Chiller | Chemical Energy from biomass | 1,500,000 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manni, M.; Coccia, V.; Nicolini, A.; Marseglia, G.; Petrozzi, A. Towards Zero Energy Stadiums: The Case Study of the Dacia Arena in Udine, Italy. Energies 2018, 11, 2396. https://doi.org/10.3390/en11092396
Manni M, Coccia V, Nicolini A, Marseglia G, Petrozzi A. Towards Zero Energy Stadiums: The Case Study of the Dacia Arena in Udine, Italy. Energies. 2018; 11(9):2396. https://doi.org/10.3390/en11092396
Chicago/Turabian StyleManni, Mattia, Valentina Coccia, Andrea Nicolini, Guido Marseglia, and Alessandro Petrozzi. 2018. "Towards Zero Energy Stadiums: The Case Study of the Dacia Arena in Udine, Italy" Energies 11, no. 9: 2396. https://doi.org/10.3390/en11092396
APA StyleManni, M., Coccia, V., Nicolini, A., Marseglia, G., & Petrozzi, A. (2018). Towards Zero Energy Stadiums: The Case Study of the Dacia Arena in Udine, Italy. Energies, 11(9), 2396. https://doi.org/10.3390/en11092396