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Abstract

:

The widespread deployment of distributed generation (DG) has significantly impacted the planning and operation of current distribution networks. The environmental benefits and the reduced installation cost have been the primary drivers for the investment in large-scale wind farms and photovoltaics (PVs). However, the distribution network operators (DNOs) face the challenge of conductor upgrade and selection problems due to the increasing capacity of DG. In this paper, a hybrid optimization approach is introduced to solve the optimal conductor size selection (CSS) problem in the distribution network with high penetration of DGs. An adaptive genetic algorithm (AGA) is employed as the primary optimization strategy to find the optimal conductor sizes for distribution networks. The aim of the proposed approach is to minimize the sum of life-cycle cost (LCC) of the selected conductor and the total energy procurement cost during the expected operation periods. Alternating current optimal power flow (AC-OPF) analysis is applied as the secondary optimization strategy to capture the economic dispatch (ED) and return the results to the primary optimization process when a certain conductor arrangement is assigned by AGA. The effectiveness of the proposed algorithm for optimal CSS is validated through simulations on modified IEEE 33-bus and IEEE 69-bus distribution systems.
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1. Introduction


Nowadays, the large-scale installation of distribution generation (DG) of different types, including wind and photovoltaic (PV) farms, has significantly impacted the operation and planning of low voltage networks. The International Renewable Energy Agency (IRENA) reported that global renewable energy prices would be reduced to the cost range of traditional fossil fuels generation [1]. Most developed countries have launched their plans to support the development of renewable energies due to their environmental benefits. In the UK, for instance, a contract for difference (CfD) mechanism was introduced to improve the economic competitiveness of renewable resources in the electricity market [2]. However, increasing investment in DGs introduces new challenges to the distribution network operators (DNOs) due to the natural characteristic of PV and wind resources, namely, poor predictability and variability of output. Power losses, voltage profiles and frequency of the power system are often considered as the major impacts and factors in distribution networks with high penetration of DGs [3,4]. The rapid decline in the cost of renewable technologies has promoted the rapid integration of DGs at the distribution level. The maximum current carrying capacity of conductors is expected to satisfy the potential output of installed DGs and the increasing load demands. Meanwhile, the life-cycle cost (LCC) of the chosen conductors is also a significant factor that needs to be assessed since the objective of the DNOs is to provide a cost-effective service in the competitive market. Therefore, a judicious choice is that the selected conductors can satisfy the long-term load growth in the networks and achieve the optimal economic balance between the infrastructure investment and the energy procurement saving from consuming the installed DGs (the PV and wind DGs are commonly considered as zero marginal cost generation plants).



The common conductor size selection (CSS) problems have been widely researched and investigated in the past decades. Funkhouser and Huber [5] firstly introduced the approach for determining economical conductor sizes for distribution networks. The approach found the minimized investment of the conductor combination in a 13 kV distribution network and considered the voltage regulation and short-circuit current safety requirement. The economic model of conductors was carefully established in the approach, where the labour cost, material cost and installation cost were fully considered in the paper. However, most of the costs such as the annual costs of energy losses and energy price applied in the papers were fixed, thereby failing to reflect operating scenarios in real power systems. In [6], a practical approach to the CSS was proposed for utility engineers. The approach considered the maximum allowable voltage drop and load growth as the objective in the cable selection and can achieve the optimal results quickly by a heuristic method. However, the method ignored the economic objective and can only be applied in pure radial distribution networks due to the simplified power flow analysis strategy. In [7], the authors maximized the total financial saving in conductor material and energy losses. However, the proposed approach used the same conductor type for each branch in the networks. The judicious CSS approach is expected to allocate the optimal conductor type to different branches in the networks since the various load profiles at each feeder results in different burdens to each branch. A Mixed-Integer LP Approach was applied to solve the CSS problems by Franco et al. [8]. The approach used a linearization method to simplify the optimization process and guaranteed the accuracy and convergence speed. Recently, several studies [9,10,11,12,13,14,15,16] used heuristic and evolution algorithm to solve the CSS problems. In [9,10], particle swarm optimization (PSO) was introduced to minimize the overall cost of power losses and the investment of selected conductors and reference [11,12,13,14] applied genetic algorithm (GA). In [15], a novel approach based on crow search algorithm (CSA) was proposed for optimal CSS problems in low voltage networks. The harmony search algorithm with a differential operator was applied in [16] to solve the optimal CSS problems and minimize the total capital investment in conductors and the energy losses cost.



The majority of the previous research of optimal CSS problems focused on minimizing the total cost of investment of conductors and the total energy losses. Various approaches and innovative algorithms have been introduced to improve the efficiency and accuracy of the same problems. However, few papers considered the participation of DGs in the optimal CSS problems. The large-scale installation of DGs and the declined levelized cost of renewable generation challenge the traditional optimal CSS strategy. Installed DGs in the distribution systems are often considered as zero marginal cost energy resources in the power operation analysis. In the distribution systems with high penetration of renewable generations, DNOs need to allocate suitable conductors to different branches to consume the available output of DGs, thus maximizing the economic benefits from renewable resources. Therefore, the selected conductors are expected to have enough current carrying capacity to satisfy the peak output of the installed DGs. On the other hand, the investment of conductors is also an important economic factor that needs to be considered. Therefore, DNOs find it difficult to identify the optimal conductor arrangement for the distribution system with high penetration DGs. During the CSS process, DNOs often face two opposite results: (1) excessive investment on the conductor selection; and (2) the selected conductors have insufficient capacity to consume available renewable resources, thus increasing the total energy procurement cost.



In this paper, we propose a hybrid optimization algorithm to solve the CSS problems in distribution systems with high penetration DGs. Adaptive genetic algorithm (AGA) and alternating current optimal power flow (AC-OPF) are employed together to find the optimal sizing of conductors to minimize the sum of the LCC of selected cables and the total energy procurement cost from traditional fossil fuels generation. The AGA in the proposed approach is designed to improve the convergence speed and avoid falling into the local optimum point of the CSS problems in distribution systems. This innovative GA restricts the initial population to satisfy the network operation constraints such a voltage regulation and conductors’ maximum current carrying capacity in distribution systems, thus allowing an improved efficiency of the optimization process. The adaptive function in the proposed GA provides a dynamic mutation and crossover strategies to avoid a low convergence speed or falling in local optimum points. The AC-OPF is applied as a secondary optimization tool in the proposed approach to finding the optimal economic dispatch (ED) when the primary optimization assigns the selected conductor size at each branch. The proposed framework considers for the first time the potential cost conflict between the conductor LCCs and the costs of renewable resources curtailment when dealing with the CSS problems at distribution level, by using an improved AGA that specifically designs for the CSS problem. Moreover, a precise conductor investment and O&M cost model is introduced in this paper to ensure the accuracy of the proposed framework.



The remaining parts of the paper are organized as follows. Section 2 presents the objective functions and constraints as well as the overall methodology. The network and data that are prepared for verifying the proposed algorithm are presented in Section 3, and numerical test results are also presented. Section 4 provides the main conclusions and future search plan.




2. Problems Formulation


The objective function of the proposed optimal CSS problem and the related mathematic formulations are presented in this section.



2.1. Objective Function


The aim of the optimal CSS problem is to allocate the suitable conductor type from the given inventories to each branch in the network, thus minimizing the sum of all conductor’s LCCs, power losses costs and the total energy procurement costs during the expected operation years of the conductors. The optimal process is subject to common power system operation constraints such as voltage limits, thermal limits and power balance. LCC of a certain conductor LCCl includes the investment cost, operation cost and maintenance cost. In particular, the investment cost includes the purchasing costs of fixed assets, purchasing costs of accessories (such as towers, wood poles and insulators), design and installation costs and other costs (such as land acquisition fee). The operation cost of a certain distribution line in this paper is considered as the total power losses costs of this feeder during its whole life cycle. The maintenance cost of a certain distribution line in this paper includes inspection cost and recondition cost (recondition the conductors to eliminate the hidden trouble and ensure the stability of the conductors).



In this paper, we propose a lump sum payment of total asset purchasing costs to simplify the formulation, where the annual discount rate is not applied in the objective function. The investment costs ICl, operation cost OCl and maintenance cost MCl of a certain conductor l can be expressed by Equations (1)–(3), then the LCC of this conductor can be expressed by Equation (4).


ICl=APl+ACl+INl



(1)






OCl=∑tTPLlt×EPt



(2)






MCl=(ISPl×IST+RECl×RET)×T



(3)






LCCl=APl+ACl+INl+∑tTPLlt×EPt+(ISPl×IST+RECl×RET)×T



(4)




where APl is the asset purchasing cost of the conductor l, ACl is the accessories purchasing cost of the conductor l, INl is the installation cost of the conductor l, PLlt is the total power losses of the conductor l in the operation year t, OCl is the operation cost of the conductor l, PLlt is the power losses of the conductor l in the operation year t, EPt is the average energy procurement costs in operation year t and T is the expected life span of the conductor. MCl represents the life-cycle maintenance cost of the conductor l, ISPl is the inspection cost of the conductor l, ISP (times/year) is per year inspection times of the conductor l, RECl is the recondition cost of the conductor l, RET(times/year) is the per year recondition times of the conductor l.



Since we consider the full life span economic performance of the conductors, the existing loads in the networks are expected to have an accepted load growth rate lg. Instead of the fixed energy price that is applied in the majority of earlier research, we use a quadratic cost function to establish a dynamic energy price curve. The load at each bus i with load growth lg and the generator cost function are expressed by Equations (5)–(7).


PDit=PDi×(1+lg)(t−1)



(5)






QDit=QDi×(1+lg)(t−1)



(6)






GCgi=αgi×PGgi2+βgi×PGgi+γgi



(7)




where PDit and QDit are active and reactive load at feeder i in the operation year t.Pi and Qi are active and reactive load at bus i in the first operation year. αgi, βgi and γgi are cost coefficients for generator gi. GCgi and PGgi are generator cost and corresponding power output of generator gi.



AC-OPF analysis can be employed to obtain the energy procurement costs and confirm the precise power losses when each branch of the network is allocated with a particular type of conductor. Therefore, the objective function of the proposed CSS problems can be expressed by Equation (8).


min ∑tT∑gGGCgt+∑lL(APl+ACl+INl+∑tTPLlt×EPt+(ISPl×IST+RECl×RET)×T)



(8)




subject to:


Pit=Vit∑j=1nVjtYijcos(θijt+δjt−δit)



(9)






Qit=Vit∑j=1nVjtYijsin(θijt+δjt−δit)



(10)






Pgit−PDit=Pit



(11)






Qgit−QDit=Qit



(12)






∑iPgit−∑iPDit=Plosst



(13)






∑iQgit−∑iQDit=Qlosst



(14)






Vmin≤Vit≤Vmax



(15)






Pgi,min≤Pgit≤Pgi,max



(16)






Qgi,min≤Qgit≤Qgi,max



(17)






|δi−δj|≤|δi−δj|max



(18)




where, Pit and Qit are the active and reactive power injected at bus i at operation year t,Yij is the admittance parameter of the distribution line between bus i and bus j. θijt, δjt and δit are relevant phase angles. Expressions (15)–(18) indicate that voltage at each bus, power generation and phase angles are constrained by relevant limitations.




2.2. Adaptive Genetic Algorithm


GAs are one of the most popular optimization algorithms that are applied to solve complex optimization and adaptation problems. The basic principles of the GA technique are based on natural selection and were initially introduced by Holland in [17]. Traditional GA approach includes the process of creating initial population, selection, crossover and mutation. The best fitness value and its corresponding individual are obtained when the maximum number of iterations is reached, or the convergence criterion is satisfied. However, the performance of GA largely depends on presupposed control parameters such as crossover rate and mutation rate, where a poor choice of parameters may result in a premature convergence solution or low convergence speed [18,19,20]. The AGA with self-controlled parameters is widely researched and proved as one of the best solutions to deal with the problem of falling into the local optimum result or low convergence speed in common GA approach [21,22,23]. The proposed AGA in this paper is specifically designed for the aim of optimal CSS in the distribution power systems. Similar to the standard GA approach, a set of the initial population with Np chromosomes are created at the beginning of the approach. Each chromosome can be represented as Ci = [c1, c2, c3, …, cD], where D is the number of genes in the chromosome Ci. In this paper, we assume the number of branches in the network is Nb and the available types of conductors in the inventory is Nc. In the proposed AGA approach, ci∈[1, Nc] and the value of ci represents the CSS of branch i. Therefore, each chromosome represents one solution of CSS in the network, where each gene of chromosome related to the selection of its corresponding branch. For example, in a CSS problem, it is assumed that the system has ten branches and four different available types of conductors in the inventory. Then, based on the previous definitions, the number of branches Nb equals to 10 and the number of available conductor types Nc equals to 4. For a random individual, it will have the chromosome like this “3 1 2 2 4 2 4 4 3 2 1”, and each gene in the chromosome represents a choice of conductor type for the corresponding branch. In particular, the first gene in this chromosome indicates that the branch c1 will be allocated as the type 3 conductor.



Double adaptive crossover rates, hybrid fitness value and self-adaptive mutation operator are innovatively introduced in this approach. Instead of the normal single fitness value structure in the standard GA approach, a hybrid fitness value is designed for the SSC problems since the individual who has the optimal fitness value is also required to satisfy the network constraints at the same time. We assume f (Ci) is the fitness value of individual Ci and V(Ci) is the auxiliary fitness value of individual Ci. If the individual Ci can satisfy the network constraints such as the voltage constraints and thermal constraints in the optimal power flow analysis, then V(Ci)=1; otherwise V(Ci)=0. The individuals that cannot survive in the network constraints test will be replaced by a new random individual that can satisfy the network constraints test. In the crossover operator, we assume two crossover rates: elite crossover rate crelite and standard crossover rate crsta. The individual who has the best fitness value in the iteration t is marked as Cbf(t), where this individual can generate offspring with other individuals in the population with the probability PCelite prior. Then, the rest of the individuals will generate offspring following the standard GA crossover process with the probability PCsta. In self-adaptive mutation operator, two adaptive factors σn and σm are introduced to achieve the function of self-adaptive GA, and the factors are expressed by Equations (19)–(22).


σn(t)=ρ×(1−10(−1μ(t)) )



(19)






μ(t)=|avefitness(t)−avefitness(t−1)avefitness(t−1)−avefitness(t−2)|



(20)






σm(t)=ε×10(ωNtole(t))



(21)






{Ntole(t)=Ntole(t−1)+1;if objevtive function maintain the samebest fitbess value at iteration t+1Ntole(t) =0;if objevtive function obtain better fitness vauleat iteration t+1



(22)




where avefitness(t) is the average fitness value of all population at iteration t, Ntole is the count number of iterations above which the GA process cannot achieve a better fitness value and ω, ε, ρ are auxiliary factors supporting the adaptive factors. σn(t) represents the stability of overall population and the is applied to the adapt the number of genes that need to be mutated in next iteration. σm(t) is used here to help the proposed GA approach to escape the local optimum point, where this factor is related to the mutation rate in next iteration. The genes that are required to mutate in iteration t and the mutation rate in iteration t are expressed by Equations (23) and (24).


Nmut(t)=Nb×σn(t)



(23)






Pmut(t)=σm(t)



(24)







Equations (21) and (22) indicate that the mutation rate will continually increase when the proposed GA approach falls into a local optimum point and cannot generate better fitness value. However, the increasing mutation rate will reach the presupposed auxiliary index ε (ε ∈ (0,1)) to maintain the stability of the mutation operator. Further, the index ω in Equation (21) is designed as a presupposed index to control the variation speed of the mutation rate. Based on Equation (22), it is noted that the mutation rate will reset to the initial value when a better fitness value is captured. This function can efficiently secure the new best fitness value and allow the corresponding chromosome or genes to fully integrate to the population through the elite crossover process.




2.3. Methodology


The proposed hybrid CSS optimization approach contains two main mechanisms: AC-OPF study and AGA. AGA is applied as the primary optimization mechanism which is responsible for collecting the simulation results from the AC-OPF, exploring the best individual and updating the evolution strategy of the approach. AC-OPF is responsible for accessing the minimum energy costs of each individual in the population of every iteration. The detailed flow chart of the approach is shown in Figure 1. In particular, the framework follows the steps below:




	(1)

	
AGA module generates the initial population with the required number of the individuals.




	(2)

	
AGA module decodes the individuals and applies the decoded information to allocate the CSS. It is noted that each individual represents a unique CSS plan for the chosen distribution network.




	(3)

	
The CSS of each individual is captured and loaded to the AC-OPF optimization module and the LCC assessment module.




	(4)

	
The AC-OPF optimization module processes the power flow study of each individual by the relevant CSS plan. In order to capture the change of power losses due to the increasing load demand, the power flow study is operated N times for each individual, where N represents the expected operation years of the conductors. It is noted that the individuals that cannot survive in the requirement of minimal voltage constraints or thermal constraints are eliminated immediately and replaced by the one who can satisfy the relevant constraints. This process is prior to the fitness value calculation. Finally, for each survived individual in the current iteration, the sum of the power losses and the energy procurement costs during the expected operation years are obtained.




	(5)

	
For each individual in the current iteration, the LCC assessment module evaluates the LCC of each conductor and provides a system level LCCs data. The system level conductor LCCs here represent the sum of each conductor’s life cycle cost in the network.




	(6)

	
After the power flow analysis and calculation in the AC-OPF module and the LCC assessment module, the fitness value of each individual (sum of the system level conductor LCC, the total energy procurement costs and energy losses costs) is confirmed.




	(7)

	
After all individuals in the current iteration are assessed, the selection module is expected to find the best fitness value in this iteration and compare it with the present best fitness value.




	(8)

	
AGA module generates the adaptive crossover factor and adaptive mutation factor for the next iteration, where the factors are evaluated and decided by all individuals’ fitness value of current and last iteration (explained in Section 2.2 already).




	(9)

	
Move to the next iteration or stop the process since the maximum number of iterations is reached or the convergence criterion is satisfied.











3. Numerical Results


The proposed hybrid optimal CSS approach is tested on the a 33-bus distribution network and a 69-bus distribution network in the numerical tests. In each test network, three distributed wind turbines with different available outputs are allocated at selected branches. The relevant parameters of the AGA used in this numerical test are summarized in Table 1.



In order to identify the efficiency and the performance of the proposed AGA, the standard generic algorithm is applied in this paper for the aim of comparison, and the parameters used for the standard GA are shown in Table 2.



The available conductor types in the inventory and the relevant specifications are listed in Table 3. It is noted that the data of the conductors are different between manufactories and the unit price of the conductors vary between different markets. We refer to several papers [7,16,24] to provide this data.



The parameters used to evaluate the LCC of the conductors are shown in Table 4. It is difficult to identify the precise installation and accessories costs of each conductor. However, we link those relevant costs with the unit wire purchase cost of conductors with different sizes. The detailed evaluation approach has been explained in Section 2.1. For example, if one of the branches in the network is allocated by the conductor with type Gopher, the LCC can be evaluated by express: 210($/km)×length of conductor(km)×(450%+100%+50%)×[1+(75%+8%×12+5%)×operation year].



(1) Case study of the 33-bus distribution network



The proposed CCS optimization approach is tested on a 33-bus network in this section, where three wind generators are connected to the network at branch 9, branch 18 and branch 26. The single line diagram of this 33-bus distribution network is shown in Figure 2, and the relevant operation data and network constraints are listed in Table 5.



The quadratic generation cost function of the main generator connected at node 1 is expressed in Equation (25) and it is noted that we consider the wind farm as a zero marginal cost generator in this approach.


encost($/MWh)=0.78×PG2−2.1×PG+10.4



(25)




where PG is the power output of this generator and is within the limitation of its generation output (0≤PG≤10 MW).



A hybrid termination condition approach is used to identify the end of iterations. In particular, the algorithm will be terminated when either of the conditions is reached: (1) when there has been no improvement in the population for 100 iterations; or (2) when the GA reaches 300 generations. However, the results of 300 iterations are provided in all cases to ensure the continuity of the simulation by different cases.



The overall results of the proposed AGA optimal CSS for the selected 33-bus distribution network are shown in Figure 3. It is observed that the best fitness can be achieved after approximately 150 iterations. The mutation rate is self-adaptive during the process of the AGA, which is shown in Figure 4. It can be observed that the mutation rate is increased when the AGA cannot provide better fitness value and resets to zero when a better fitness value is achieved.



The detailed optimum results of CSS by two different approaches are shown in Table 6. After the decoding process, the best conductor type of each branch in the 33-bus network can be checked on this table.



Table 3 indicates that the expensive conductor has a relatively lower value of resistance, thus allowing lower energy losses when the system has the same load condition. Therefore, there is a potential conflict between the total life span energy losses costs and the total LCCs of all conductors in the network. Figure 5 reveals this conflict and proves the proposed algorithm can successfully achieve the balance between these two conflicting costs. On the other hand, even though the wind farm in the network is considered as a zero marginal cost generator, attempting to fully consume all available output of the renewable resources in the demand side may result in high conductor investment costs or high energy losses costs. Figure 6 shows that the optimum power consumption of the wind farm in each iteration. From the results in Figure 6, it is observed that parts of the available capacity are curtailed to achieve the minimum total costs (including total energy losses costs, energy purchase costs and conductor investment costs). Based on the proposed approach, the conductor sizes that cannot satisfy the minimum and maximum voltage constraints are eliminated and replaced by the new ones that can satisfy the constraints. Figure 7 and Figure 8 illustrate that the minimum and maximum voltage occur in each iteration and proves that the proposed approach can successfully ensure that all the conductors satisfy the voltage constraints (0.94 to 1.1 p.u.).



(2) Case study of the IEEE 69-bus distribution network



The proposed CCS optimization approach is tested on an IEEE 69-bus network in this section, where three wind generators are connected to the network at branch 6, branch 36 and branch 53. The single line diagram of this 69-bus distribution network is shown in Figure 9, and the relevant operation data and network constraints are listed in Table 7.



Same as the case of IEEE 33-bus network, the quadratic generation cost function of the main generator connected at node 1 is expressed in Equation (25) and the wind farm is also considered as a zero marginal cost generator in the case of 69-bus network.



The overall results of the proposed AGA optimal CSS for the selected 69-bus distribution network are shown in Figure 10. It is observed that the best fitness can be achieved after approximately 160 iterations. The mutation rate is self-adaptive during the process of the AGA, which is shown in Figure 11. It can be observed that the mutation rate is increased when the AGA cannot provide a better fitness value and resets to zero when a better fitness value is achieved. Further, it is noted that the best fitness value is captured after 250 iterations since the 69-bus system is more complicated than the 33-bus system.



Similar to the results of the 33-bus system, Figure 12 reveals the conflict between total energy losses and the life cycle costs of all conductors in the 69-bus network, thus proving that the proposed algorithm can successfully achieve the balance between these two contrary costs. Figure 13 indicates the optimum power consumption of the wind farm generations in each iteration in the case of the 69-bus system. Similar to the results in the 33-bus system, parts of the available capacity are curtailed for achieving the minimum total costs (including total energy losses costs, energy purchase costs and conductor’s investment costs).



Similar to the results in the case study of the 33-bus network, the individuals that cannot satisfy the minimum and maximum voltage constraints are eliminated and replaced by the new individuals that can satisfy the constraints. Figure 14 and Figure 15 illustrate that the minimum and maximum voltage occur in each iteration and proves that the proposed approach can successfully ensure all the individuals satisfy the voltage constraints (0.94 to 1.1 p.u.).



The detailed optimum results of CSS by two different approaches are shown in Table 8. After the decoding process, the best conductor type of each branch in the 69-bus network can be checked on this table.



(3) Summary and discussion



The study results of the 33-bus network and the 69-bus network indicate that the proposed AGA has the capability to provide a more efficient and effective way to solve the new challenge in the CSS problem than the standard GA. In particular, 25% and 29% total costs saving are achieved separately by the proposed approach in two different distribution networks. More importantly, the potential economic conflict between the investment of conductors and the renewable recourses curtailment costs is firstly considered in the CCS problem. On the other hand, the proposed approach employs a comprehensive conductor investment and O&M pricing model to provide precise and practical study results. The simulation times of the proposed AG and the standard GA used in the framework are summarized in Table 9 to identify the efficiency of these two approaches. The results indicate that the calculation time is slightly increased when the proposed AGA is applied. However, the proposed AGA has the capability to provide a better solution to the CSS problem. In addition, the information about our computing platform used to assess the simulation results is listed below.



The computing platform used in this paper:



CPU: i5-8600k (Max Turbo Frequency 4.30 GHz)



Memory: 32 GB (2400 MHz)



Graphic card: Nvidia RTX 2080




4. Conclusions


A hybrid optimization algorithm to deal with the CSS problems in distribution systems with high penetration of DG has been proposed in this paper. An AGA that has a dynamic mutation rate and a dynamic number of mutated genes has been introduced as the main optimization mechanism. The proposed AGA mechanism is responsible for finding the optimal CSS for the chosen network and the objective function is to minimize the sum of the LCC of selected conductors, the total energy procurement costs and energy losses costs. It is noted that the total energy procurement costs and energy losses costs of each individual are provided by the AC-OPF, which is employed as the auxiliary optimization tool in the approach.



The numerical results have demonstrated an ability to provide accurate and feasible solutions for solving the optimal CSS problem and ensured that the results satisfy the network constraints. Different from the majority of earlier research of the CSS problem, this approach comprehensively considers the ED problems of the traditional fossil fuel generator and the renewable resources. Instead of the objective function of minimum energy losses costs, the minimum system level costs are considered as the main target in this approach.



The development of the high capacity electric vehicle charging stations and electrical storage system significantly affect the planning of the distribution networks. The CSS problem is expected to be considered by those technologies. On the other hand, the high penetration of DGs will significantly change the short-circuit currents through the distribution systems. This feature may affect the selection of conductors when the DNOs consider a network upgrading plan. Indeed, several approaches are able to deal with this potential problem when the DNOs design or upgrade their distribution networks such as application of the superconducting fault current limiter (SFCL) or installing the second circuit break (CBs) in the proper place. However, the potential conflict between the costs of a second circuit break or superconducting fault current limiter and the costs of conductors upgrading requires careful investigation. Therefore, the potential problem of increasing short-circuit currents caused by high penetration of DGs will also be incorporated in future research.
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Figure 1. Flow chart of the proposed hybrid conductor size selection (CSS) optimization algorithm. 
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Figure 2. Single line diagram of the 33-bus distribution network. 
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Figure 3. Overall results of the best fitness value and average fitness value (case 33-bus network). 
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Figure 4. Adaptive mutation rate in each iteration (case 33-bus network). 
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Figure 5. Conflict of the life cycle costs of conductors and energy losses costs (case 33-bus network). 
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Figure 6. Wind farm output at each iteration (case 33-bus network). 
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Figure 7. Minimum voltage at each iteration (case 33-bus network). 
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Figure 8. Maximum voltage in each iteration (case 33-bus network). 
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Figure 9. Single line diagram of the IEEE 69-bus distribution network. 
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Figure 10. Overall results of the best fitness value and average fitness value (case 69-bus network). 
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Figure 11. Adaptive mutation rate in each iteration (case 69-bus network). 
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Figure 12. Conflict of the life cycle costs of conductors and energy losses costs (case 69-bus network). 
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Figure 13. Wind farm outputs at each iteration (case 69-bus network). 






Figure 13. Wind farm outputs at each iteration (case 69-bus network).



[image: Energies 12 02065 g013]







[image: Energies 12 02065 g014 550]





Figure 14. Minimum voltage at each iteration (case 69-bus network). 
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Figure 15. Maximum voltage in each iteration (case 69-bus network). 
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Table 1. Parameter of adaptive generic algorithm.
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	Parameter
	Value





	Initial population
	100



	Length of chromosome
	32



	Initial elite crossover rate
	3%



	Initial standard crossover rate
	85%



	Initial mutation rate
	5%



	Initial mutation genes
	1



	Auxiliary factor ρ
	6



	Auxiliary factor ε
	0.5



	Auxiliary factor ω
	2.2



	Maximum iterations
	300
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Table 2. Parameter of the standard generic algorithm.
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	Parameter
	Value





	Crossover rate
	80%



	Mutation rate
	5%



	Mutation genes
	1



	Maximum iterations
	300
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Table 3. Specifications of proposed aluminum-conductor steel-reinforced (ACSR) conductors.
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	Conductor Type
	R (Ω/km)
	X (Ω/km)
	Imax (A)
	UP ($/km)





	Mole
	2.718
	0.3740
	70
	90



	Squirrel
	1.376
	0.3896
	115
	170



	Gopher
	1.098
	0.3100
	138
	210



	Weasel
	0.9108
	0.3797
	150
	260



	Ferret
	0.6795
	0.2980
	180
	340



	Rabbit
	0.5441
	0.3973
	208
	420



	Mink
	0.4546
	0.2850
	226
	500



	Beaver
	0.3841
	0.2795
	250
	590



	Raccoon
	0.3675
	0.3579
	260
	630



	Otter
	0.3434
	0.3280
	270
	770
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Table 4. Cost parameters of conductor investment.
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	Parameter
	Value





	Planning operation period
	20 years



	Accessories cost
	450% wire cost



	Design and Installation cost
	100% wire cost



	Inspection cost
	75% wire costs (per year)



	Recondition costs
	8% wire cost (per month)



	Annual operation cost
	5% of total investment
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Table 5. Parameters of the 33-bus network.
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	Parameter
	Value





	Maximum voltage
	1.1 (p.u.)



	Minimum voltage
	0.94 (p.u.)



	Initial total active demand
	3.72 MW



	Initial total reactive demand
	1.16 MVar



	Load growth rate
	5%/year



	Operation year
	20 years



	Total branches
	32



	Maximum available output of wind farm at node 9
	1.2 MW



	Maximum available output of wind farm at node 18
	1.0 MW



	Maximum available output of wind farm at node 26
	0.6 MW










[image: Table]





Table 6. Best CSS for 33-bus distribution network. GA: genetic algorithm; and AGA: adaptive genetic algorithm.
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Branch

	
From Node

	
To Node

	
Initial Demand at Branch Ending Node (kW)

	
Selected Conductor Type Via Standard GA

	
Selected Conductor Type Via AGA




	
P

	
Q






	
1

	
1

	
2

	
100

	
30

	
Rabbit

	
Raccoon




	
2

	
2

	
3

	
90

	
20

	
Mole

	
Mole




	
3

	
3

	
4

	
120

	
30

	
Ferret

	
Ferret




	
4

	
4

	
5

	
60

	
30

	
Mink

	
Raccoon




	
5

	
5

	
6

	
60

	
20

	
Gopher

	
Mole




	
6

	
6

	
7

	
200

	
50

	
Otter

	
Weasel




	
7

	
7

	
8

	
200

	
50

	
Otter

	
Gopher




	
8

	
8

	
9

	
60

	
20

	
Weasel

	
Mole




	
9

	
9

	
10

	
60

	
20

	
Weasel

	
Gopher




	
10

	
10

	
11

	
45

	
30

	
Otter

	
Gopher




	
11

	
11

	
12

	
60

	
35

	
Mole

	
Mole




	
12

	
12

	
13

	
60

	
35

	
Mole

	
Mole




	
13

	
13

	
14

	
120

	
30

	
Ferret

	
Gopher




	
14

	
14

	
15

	
60

	
20

	
Ferret

	
Weasel




	
15

	
15

	
16

	
60

	
20

	
Mole

	
Weasel




	
16

	
16

	
17

	
60

	
20

	
Squirrel

	
Rabbit




	
17

	
17

	
18

	
90

	
40

	
Mole

	
Rabbit




	
18

	
2

	
19

	
90

	
40

	
Mole

	
Mole




	
19

	
19

	
20

	
90

	
40

	
Squirrel

	
Mole




	
20

	
20

	
21

	
90

	
40

	
Gopher

	
Mole




	
21

	
21

	
22

	
90

	
40

	
Weasel

	
Beaver




	
22

	
3

	
23

	
90

	
50

	
Squirrel

	
Ferret




	
23

	
23

	
24

	
420

	
100

	
Mole

	
Mole




	
24

	
24

	
25

	
420

	
100

	
Mole

	
Squirrel




	
25

	
6

	
26

	
60

	
25

	
Mole

	
Mole




	
26

	
26

	
27

	
60

	
25

	
Mink

	
Gopher




	
27

	
27

	
28

	
60

	
20

	
Gopher

	
Gopher




	
28

	
28

	
29

	
200

	
50

	
Beaver

	
Mole




	
29

	
29

	
30

	
200

	
50

	
Mole

	
Mole




	
30

	
30

	
31

	
150

	
50

	
Mole

	
Mole




	
31

	
31

	
32

	
210

	
50

	
Mole

	
Squirrel




	
32

	
32

	
33

	
60

	
20

	
Weasel

	
Mole




	
Total life cycle costs

	
$2,404,475.17

	
$1,804,009.74




	
Net cost saving

	
-

	
$600,465.43




	
Cost saving percentage

	
-

	
25%
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Table 7. Parameters of the 69-bus network.
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	Parameter
	Value





	Maximum voltage
	1.1 (p.u.)



	Minimum voltage
	0.94 (p.u.)



	Initial total active demand
	3.22 MW



	Initial total reactive demand
	1.78 MVar



	Load growth rate
	3%/year



	Operation year
	20 years



	Total branches
	68



	Maximum available output of wind farm at node 6
	1.2 MW



	Maximum available output of wind farm at node 36
	1.0 MW



	Maximum available output of wind farm at node 53
	0.6 MW
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Table 8. Best CSS for 69-bus distribution network.
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Branch

	
From

	
To

	
Selected Conductor Type via Standard GA

	
Selected Conductor Type via AGA

	
Branch

	
From

	
To

	
Selected Conductor Type via Standard GA

	
Selected Conductor Type via AGA






	
1

	
1

	
2

	
Gopher

	
Mink

	
35

	
3

	
36

	
Squirrel

	
Squirrel




	
2

	
2

	
3

	
Weasel

	
Ferret

	
36

	
36

	
37

	
Squirrel

	
Otter




	
3

	
3

	
4

	
Mole

	
Otter

	
37

	
37

	
38

	
Gopher

	
Ferret




	
4

	
4

	
5

	
Ferret

	
Otter

	
38

	
38

	
39

	
Mole

	
Gopher




	
5

	
5

	
6

	
Gopher

	
Ferret

	
39

	
39

	
40

	
Beaver

	
Raccoon




	
6

	
6

	
7

	
Mole

	
Beaver

	
40

	
40

	
41

	
Gopher

	
Mole




	
7

	
7

	
8

	
Rabbit

	
Beaver

	
41

	
41

	
42

	
Squirrel

	
Ferret




	
8

	
8

	
9

	
Gopher

	
Otter

	
42

	
42

	
43

	
Ferret

	
Rabbit




	
9

	
9

	
10

	
Weasel

	
Mink

	
43

	
43

	
44

	
Rabbit

	
Mink




	
10

	
10

	
11

	
Mink

	
Otter

	
44

	
44

	
45

	
Gopher

	
Weasel




	
11

	
11

	
12

	
Gopher

	
Rabbit

	
45

	
45

	
46

	
Mink

	
Gopher




	
12

	
12

	
13

	
Mole

	
Beaver

	
46

	
4

	
47

	
Ferret

	
Ferret




	
13

	
13

	
14

	
Rabbit

	
Rabbit

	
47

	
47

	
48

	
Rabbit

	
Beaver




	
14

	
14

	
15

	
Squirrel

	
Mink

	
48

	
48

	
49

	
Weasel

	
Mink




	
15

	
15

	
16

	
Gopher

	
Beaver

	
49

	
49

	
50

	
Gopher

	
Gopher




	
16

	
16

	
17

	
Mole

	
Raccoon

	
50

	
8

	
81

	
Gopher

	
Rabbit




	
17

	
17

	
18

	
Gopher

	
Rabbit

	
51

	
51

	
52

	
Beaver

	
Squirrel




	
18

	
18

	
19

	
Squirrel

	
Mole

	
52

	
9

	
53

	
Gopher

	
Raccoon




	
19

	
19

	
20

	
Squirrel

	
Squirrel

	
53

	
53

	
54

	
Mink

	
Beaver




	
20

	
20

	
21

	
Squirrel

	
Weasel

	
54

	
54

	
55

	
Mole

	
Mink




	
21

	
21

	
22

	
Mink

	
Raccoon

	
55

	
55

	
56

	
Squirrel

	
Raccoon




	
22

	
22

	
23

	
Mole

	
Mink

	
56

	
56

	
57

	
Mole

	
Beaver




	
23

	
23

	
24

	
Gopher

	
Weasel

	
57

	
57

	
58

	
Rabbit

	
Otter




	
24

	
24

	
25

	
Beaver

	
Mole

	
58

	
58

	
59

	
Mole

	
Otter




	
25

	
25

	
26

	
Rabbit

	
Squirrel

	
59

	
59

	
60

	
Rabbit

	
Raccoon




	
26

	
26

	
27

	
Weasel

	
Weasel

	
60

	
60

	
61

	
Weasel

	
Otter




	
27

	
3

	
28

	
Weasel

	
Mole

	
61

	
61

	
62

	
Mole

	
Ferret




	
28

	
28

	
29

	
Beaver

	
Ferret

	
62

	
62

	
63

	
Weasel

	
Otter




	
29

	
29

	
30

	
Mole

	
Rabbit

	
63

	
63

	
64

	
Gopher

	
Otter




	
30

	
30

	
31

	
Ferret

	
Ferret

	
64

	
64

	
53

	
Mole

	
Rabbit




	
31

	
31

	
32

	
Mole

	
Mole

	
65

	
53

	
54

	
Squirrel

	
Gopher




	
32

	
32

	
33

	
Otter

	
Squirrel

	
66

	
66

	
67

	
Gopher

	
Squirrel




	
33

	
33

	
34

	
Weasel

	
Squirrel

	
67

	
12

	
68

	
Mole

	
Mole




	
34

	
34

	
35

	
Mole

	
Weasel

	
68

	
68

	
69

	
Mole

	
Squirrel




	
Total life-cycle costs of two approaches

	
Standard GA

	
$39,054,123.9




	
Proposed AGA

	
$27,617,228.5




	
Net cost saving

	
-

	
$11,436,895.4




	
Cost saving percentage

	
-

	
29%
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Table 9. Simulation times of standard GA and proposed AGA.






Table 9. Simulation times of standard GA and proposed AGA.





	Simulation Times
	Standard GA
	Proposed AGA





	Case 33-bus network
	669.42 s
	720.35 s



	Case 69-bus network
	1548.76 s
	2078.81 s
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