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Abstract: A hydronic pavement system (HPS) is an alternative method to clear snow and ice, which
avoids the use of salt, sand, and fossil fuel in conventional snow clearance, and minimizes the risk of
accidents. The aim is to analyze the performance of different control strategies for a 35,000 m2 HPS
utilizing heat from a district heating and cooling (DHC) system. The key performance indicators
are (1) energy performance of the HPS, and (2) primary energy use, (3) electricity production and (4)
greenhouse gas (GHG) emissions from the DHC system. The methodology uses a simulation model
of the HPS and an optimization model of the DHC system. Three operational strategies are analyzed:
A reference scenario based on the current control strategy, and scenarios where the HPS is shut
down at temperatures below −10 ◦C and −5 ◦C. The study shows that the DHC return temperature
is suitable for use. By operational strategies, use during peak demand in the DHC system can be
avoided, resulting in reduced use of fossil fuel. Moreover, the energy use of the HPS could be reduced
by 10% and the local GHG emissions by 25%. The study emphasizes that the HPS may have positive
effects on global GHG emissions, as it enables electricity production from renewable resources.

Keywords: hydronic pavement system; district heating; primary energy use; energy system modeling;
greenhouse gas emissions

1. Introduction

In 1976, Sweden established the following definition for the heating of ground surfaces such as
pavement areas: “Ground heat refers to devices for raising the surface temperature in order to avoid
slipping, keeping the surface free of snow and ice or prolonging the vegetation period” [1]. Moreover,
a system of 2000 m2 was installed in downtown Klamath Falls (Oregon, USA) in 1948 [2]. It operated
for 50 years before being replaced due to external corrosion of the iron pipes [3]. The systems of today
make use of electrical, infrared or, most commonly, hydronic techniques [4,5]. A hydronic pavement
system (HPS) is a technique in which heat is transported in pipes embedded in the pavement structure
using circulating water or other liquid heat media.

HPS can utilize different energy sources, such as geothermal energy, district heating or solar, and
in some cases, it is also combined with thermal storage [6]. A review conducted by Lund and Boyd [7]
states that an area of 2,500,000 m2 world-wide is heated by HPS utilizing geothermal energy, with
required power of 130–180 W/m2 [7]. In addition, standalone solutions can be found, particularly in
airports [8–12], and bridge decks [13,14]. In Sweden, there are 400 systems utilizing district heating
as a heat source with annual use of 150–200 GWh [15]. The technique is increasingly common in
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for example Iceland, as Gunnlaugsson et al. [16] mention that systems such as HPS may utilize the
low-grade heat of district heating return water.

Pan et al. [6] state that the technology of HPS is not only suitable for melting snow and ice.
Pavements are exposed to a large amount of solar radiation, causing the pavement to reach temperatures
of 55–75 ◦C [17]. This can impair the performance of the material, as well as causing urban heat
islands [6,18]. A possible solution is to use pavements for energy harvesting [19], with pipes embedded
in the structure channeling away the heat for immediate use elsewhere or for seasonal energy storage,
to be used by a DHC system, for electrical purposes or recharging [6].

When compared to conventional snow clearance, the most common arguments in favor of using
an HPS are the avoidance of sand, of potential material damage from conventional snow clearance, and
of salt with its negative local environmental effects [20–26]. Moreover, conventional snow clearance
contributes to greater greenhouse gas (GHG) emissions than HPS [11,27], since HPS enables the use of
renewable energy, compared with the use of fossil fuel to operate heavy machinery as snow plows.
Furthermore, it is desirable to avoid heavy machinery in crowded areas, which also reduces the risk
of material damage to the pavement structure or its surroundings [1,28,29]. Crowded areas, such as
commercial streets, squares, entrances, stairs or other areas with intensive use, are suitable areas for
HPS [1]. Figure 1 displays such areas, a square and walkway, in the central parts of Linköping, Sweden,
which is the location of this study.
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Figure 1. Pictures from the center of Linköping, Sweden. (a) A square at an outdoor temperature of -
4 °C with an active hydronic pavement system (HPS) in the outer perimeter, plus conventional snow 
clearance and use of sand in the middle. (b) A walkway shortly after precipitation at 0 °C. The 
positioning of the HPSs embedded pipes can be discerned when the surface starts to dry up. 

The most common cause of accidents involving pedestrians, often older people, in Sweden is 
slipping, with 74% caused by snow and ice formation [30]. The accidents tend to occur in central areas 
[31,32] that are suitable for HPS. A study conducted in Sweden by Carlsson et al. [31] indicates that 
80% of slipping accidents could be prevented by HPS. Moreover, studies indicate that the cost of 
injured pedestrians is more than four times higher than the winter maintenance. Accordingly, it has 
been shown to be cost-efficient to invest more in winter maintenance in pedestrian areas from a 
national perspective [32,33]. A study made by Nevalainen Henaes [27] in 2018 in Lund, Sweden, put 
the estimated construction cost of an HPS at 100 EUR/m2, whilst the maintenance cost is the same as 
conventional snow removal at 3 EUR/m2. The case study concludes the annual cost of slipping 
accidents to be 90 EUR/m2.  

A control strategy for the HPS may be used in order to balance performance criteria, 
environmental criteria, and energy use [34]. Other studies have proposed ideas to minimize energy 
use, e.g., by stop heating during cold sub-zero temperatures and, thus, reduce the energy use [34,35]. 
Moreover, there is extensive research done to study strategies by steady-state models, as well as 
transient models, assessing energy use for different specific weather phenomena and locations [34–

Figure 1. Pictures from the center of Linköping, Sweden. (a) A square at an outdoor temperature
of −4 ◦C with an active hydronic pavement system (HPS) in the outer perimeter, plus conventional
snow clearance and use of sand in the middle. (b) A walkway shortly after precipitation at 0 ◦C. The
positioning of the HPSs embedded pipes can be discerned when the surface starts to dry up.

The most common cause of accidents involving pedestrians, often older people, in Sweden is
slipping, with 74% caused by snow and ice formation [30]. The accidents tend to occur in central
areas [31,32] that are suitable for HPS. A study conducted in Sweden by Carlsson et al. [31] indicates
that 80% of slipping accidents could be prevented by HPS. Moreover, studies indicate that the cost
of injured pedestrians is more than four times higher than the winter maintenance. Accordingly, it
has been shown to be cost-efficient to invest more in winter maintenance in pedestrian areas from a
national perspective [32,33]. A study made by Nevalainen Henaes [27] in 2018 in Lund, Sweden, put
the estimated construction cost of an HPS at 100 EUR/m2, whilst the maintenance cost is the same
as conventional snow removal at 3 EUR/m2. The case study concludes the annual cost of slipping
accidents to be 90 EUR/m2.

A control strategy for the HPS may be used in order to balance performance criteria, environmental
criteria, and energy use [34]. Other studies have proposed ideas to minimize energy use, e.g., by stop
heating during cold sub-zero temperatures and, thus, reduce the energy use [34,35]. Moreover, there
is extensive research done to study strategies by steady-state models, as well as transient models,
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assessing energy use for different specific weather phenomena and locations [34–36], and many
studies have been done in connection to geothermal heating [5]. However, this research intends to
study a control strategy on an HPS utilizing district heating during a whole heating season using a
transient model.

The national targets of Sweden, originating from the targets of the European Council [37], state
that by 2020 GHG emissions shall be decreased by 40% (relative to 1990) and no net emissions shall
occur by 2045. By 2020, the share of renewable energy shall be 50% of total energy use, and by 2040
electricity production shall be from 100% renewable resources [38,39]. The Swedish government [38]
also stated in 2008 that fossil fuel is not to be used for heating purposes. This has led energy companies
operating DHC system to phase out fossil fuel from their production by 2030 or by 2025, as some
companies have committed to [40]. District heating utilizing the technology of combined heat and
power (CHP) plants is said to provide an opportunity to make use of energy that would otherwise be
wasted [38,39].

Studies emphasize the role of the CHP technique in the energy transition from fossil fuel to
renewable resources [41–44]. Furthermore, considering the work of reducing GHG emissions, the
potential electricity output from European CHP plants could be more than doubled [45]. On a global
level, there is a low utilization and low awareness of the benefits of DHC and there is a potential for
DHC systems to be a viable option of the future energy system [46]. However, studies also point
to the unclear role of a DHC system in a future energy system, where questions regarding surplus
electricity from intermittent sources and future access to conventional fuel as waste and biofuel are
unexplored [47]. Stankeviciute et al. [45] argue that competition regarding biomass between the
transport sector and other sectors will act as a limitation on the potential of CHP. The potential for a
reduction in global GHG emissions highly depends on whether biofuel is seen as a limited or unlimited
resource and on the alternative use of biofuel [48]. Studies also highlight potential issues where
CHP plants are unprofitable in the future Nordic market, with a prevailing trend of heat-only boilers
replacing CHP plants in DHC production [49].

Achieving low return temperatures is an important factor in obtaining an efficient DHC system,
as it may increase the heat recovery from flue gas condensation and electricity generation in the CHP
plants, as well as increasing the potential use of excess heat from industrial processes [50,51]. Moreover,
the economic value of a reduced return temperature varies between 0.05 and 0.5 EUR/MWh, ◦C [52].
The average return temperature in Swedish DHC systems is 47.2 ◦C [50]. In order to have an efficient
system, it is necessary to have as large difference as possible in the supply and return temperature [50],
and in a future fourth generation of DHC systems, the supply temperature will most likely be
reduced [53]. It will, therefore, be even more important to achieve low return temperatures, and in this
work, an HPS utilizing the return temperatures of the DHC system can make a useful contribution.

The aim of this paper is to analyze the consequences of different control strategies for an HPS
in a DHC network. The key performance indicators are (1) energy performance of the HPS, (2) the
resulting primary energy use, (3) electricity production and (4) greenhouse gas emissions from the
DHC system. The study was conducted by using a unique transient model and simulating three
scenarios for operations of the HPS. Thereafter, the results were analyzed in the DHC system settings
using an optimization model.

The main contribution of this work is the study of the environmental effects of an HPS, in terms of
local GHG emissions and the effects on a global level. Also, as a contribution, the unique simulation
model created in ANSYS software utilizing weather data of outdoor temperature, precipitation, wind,
and solar irradiance enables detailed studies on how operational strategies may contribute to more
efficient energy use.

2. Method

A framework including the development of a numerical simulation model and an optimization
model was designed for this study, presented in Figure 2. A transient simulation model of the HPS
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system was created using the software ANSYS®Workbench™ and the patch ANSYS®CFX®Release
18.0 [54]. Three scenarios are analyzed in this setup. Data collection of material and weather properties
plus boundary equations are inputs to the transient simulation model of the HPS. The simulation
results are then scaled up to a larger system area, and the time step is converted into a flexible time
division suitable for larger energy systems by using the software Converter [55]. The scenarios are then
analyzed within the scope of the DHC system using the linear optimization program MODEST [56].
Sections 2.1 and 2.2 present the software tools used in the study, while Sections 3 and 4 describes the
design of the scenario study as well as design and use of the software tools.
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Figure 2. A course illustration of the framework of this study, which includes development of a
transient simulation model of the HPS, upscaling, and use of an optimization model of the district
heating and cooling (DHC) system. A general description of the software tools used is presented in
Sections 2.1 and 2.2. The design of the scenario study, inputs, and use of the software tools are presented
in Sections 3 and 4.

2.1. The Simulation Software ANSYS

The ANSYS software is an engineering simulation platform used to analyze how product designs
will behave in an operative environment. The tool ANSYS CFX used in this study is general purpose
computational fluid dynamics software capable of modeling, e.g., transient flows, heat transfer,
and thermal radiation. The governing equations in ANSYS CFX are the unsteady Navier–Stokes
equations [57] in their conservation form, which describe momentum, heat, and mass transfer. ANSYS
uses the finite element method to reach a numerical solution, by iteratively solving the equations for
each element and in so doing deriving a full picture of the flow in the model [58].

2.2. The Optimization Software MODEST

MODEST, short for “model for optimization of dynamic energy systems with time-dependent
components and boundary conditions”, is a optimization software utilizing linear programming which
was developed at Linköping University [59]. MODEST is structured according to energy flows, starting
with fuel that, via conversion and distribution, serves a demand, making it suitable for analysis of
large energy systems. The model’s objective is to minimize the system cost to supply demand [59].
Hence, the results from MODEST will represent a cost-effective production mix, which will be used to
analyze the key performance of this paper. Other results to analyze are the system’s GHG emissions,
expressed as CO2 equivalents, peak power, and primary energy use in the production mix. The strength
of MODEST is the scope for arbitrary prerequisites regarding geographical, sectoral and temporal
conditions, and energy carrier [60]. MODEST may be used to analyze different energy systems and
components, both on a local and national level. The software was mainly developed for studies
regarding DHC [59,61–63], but other studies using MODEST include the national electricity grid [64],
utilizing waste heat from industries [65,66], introducing large-scale heat pumps in DH [67] and biogas
systems [68].

MODEST has a flexible time division to depict fluctuations. A full year is depicted as several
periods reflecting seasonal, weekly, and daily dependencies [60]. The seasonal climate changes are
represented in the used time division, presented in Table 1. The months of spring, summer and
autumn are divided into periods of night and daytime to cope with the variations. Meanwhile, the
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high-use winter months are analyzed more closely, by selecting the peak power of each time period in
each month.

Table 1. A course description of the time division of a full normal year (8760 h) in model for optimization
of dynamic energy systems with time-dependent components and boundary conditions (MODEST),
with respect to seasonal, weekly, and daily dependencies.

Seasons Months Days and Hours Analyzed Peak Hours

Winter Jan–Mar, Nov–Dec

Mon–Fri 06:00–07:00 Peak day 06:00–07:00
Mon–Fri 07:00–08:00 Peak day 07:00–08:00
Mon–Fri 08:00–16:00 Peak day 08:00–16:00
Mon–Fri 16:00–22:00 Peak day 16:00–22:00
Mon–Fri 22:00–06:00 Peak day 22:00–06:00
Sat, Sun 06:00–22:00
Sat, Sun 22:00–06:00

Spring, summer, and autumn Apr–Oct

Mon–Fri 06:00–22:00
Mon–Fri 22:00–06:00
Sat, Sun 06:00–22:00
Sat, Sun 22:00–06:00

The software Converter is used to convert the data from ANSYS into the MODEST time division
in Table 1. The software was developed at the Division of Energy Systems at Linköping University.

3. The Studied Scenarios

In this study, different scenarios are analyzed with a system perspective approach. The location is
Linköping, Sweden, which has 160,000 residents and is located 200 km southwest of Stockholm. The
aim is to analyze the consequences of different control strategies for an HPS utilizing heat from a DHC
system, as visualized in Figure 3. Key performance indicators are performance and energy use of
the HPS, and the resulting primary energy use, electricity production and the GHG emissions of the
DHC system. Three scenarios for different control strategies for the HPS are analyzed, as presented in
Section 3.
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Figure 3. A visualization of the scenario study with the studied HPS as a subsystem of the DHC system.
The return water of the DHC system can be utilized as a heat source for the HPS, and the hot water as
back up. Three scenarios, called R, 1 and 2, regarding control strategies of the HPS which generate
different power demands and thus energy use, are studied. The effects on the DHC system are analyzed
and the key performance indicators are input of primary energy as fuel and output of electricity and
greenhouse gas (GHG) emissions at local and global levels. Image used courtesy of ANSYS, Inc.
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The DHC system in Linköping is the third largest high-temperature system in Sweden. The
majority of the heat, cooling, and electricity production comes from CHP plants, mainly using the fuels
household waste, biomass, coal, and oil. The demand in a normal year amounts to 1700 GWh heat,
60 GWh cooling, and 400 GWh electricity.

The HPS is concentrated in the central parts of Linkoping and has a total area of 35,000 m2,
divided into nine subsystems. Each subsystem uses heat from the DHC system and is controlled by a
substation. The HPS is active during the months of Jan–Apr and Oct–Dec and is operated when the
outdoor temperature is below 4 ◦C.

Scenarios and Specifics

Three scenarios regarding the HPS system are analyzed. In order to quantify the scenarios, they
are analyzed relative to a situation with no HPS. The scenarios are:

• Scenario R: Reference scenario, business as usual
• Scenario 1: The HPS system shuts down at temperatures lower than −10 ◦C
• Scenario 2: The HPS system shuts down at temperatures lower than −5 ◦C

Scenario R is used as a reference scenario. The control strategy is to keep the temperature of the
ground surface at 2 ◦C during periods of no precipitation and at 5 ◦C in presence of precipitation, which
is done in order to minimize energy use and has previously been studied for this system [69]. This
solution is intended to use weather forecast to function properly. Scenario R is also used to compare
the simulation model to statistical data. The idea of scenarios 1 and 2 is to examine control strategies
which include shutdown periods at sub-zero temperatures, whilst still maintaining the performance
of the HPS in keeping the surface dry and non-slippery. Snowfall is most common at temperatures
around 0 ◦C, with the frequency decreasing as the outdoor temperature falls below −5 ◦C to −10 ◦C,
due to the reduced moisture content in the air as the temperature drops. Consequently, the risk of
slipperiness due to snowfall decreases as the temperature drops. This can potentially be an efficient
way of minimizing the energy needed in an HPS. However, the pickup loads to restore the surface
temperatures after a shutdown period during cold temperatures must be analyzed.

The simulation model uses hourly data on temperature, wind, solar radiation, and precipitation
collected from the Swedish Meteorological and Hydrological Institute’s (SMHI) weather station
Malmslätt in Linköping, Sweden [70]. A course compilation of the data in monthly values is presented
in Table 2.

Table 2. Weather parameters of temperature and precipitation for the studied year of 2016 and of a
normal year. The analyzed time period is the cold months of January-April and October-December,
a total of 213 days for 2016. The data is collected from Swedish Meteorological and Hydrological
Institute’s (SMHIs) weather station Malmslätt in Linköping, Sweden [70].

Temperature Unit Jan Feb Mar Apr Oct Nov Dec Total

Average temp. ◦C −5 −0.2 2.7 5.7 6.8 1.8 2.0 -
Temperature in a normal year ◦C −2.8 −3.0 0.5 5.2 7.6 2.4 −1.3 -

Hours < 4 ◦C h 652 583 504 217 69 530 486 3041
Hours < 0 ◦C h 494 346 144 51 3 223 230 1491
Precipitation

Amount of precipitation mm 26.7 11.8 20 27.6 70.8 37.7 25.6 220.2
–with temp < 0 ◦C mm 16.7 4.2 2.2 0 0 4.8 5 32.9

Precipitation in a normal year mm 41.0 27.1 33.6 34.2 46.0 52.2 46.8 280.2

4. Computational Setup and Numerical Procedure

The computational work in this study comprises two parts: the simulation model of the HPS and
the optimization model of the DHC system.
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4.1. Parameters and Properties of the HPS Simulation Model

The HPS is simulated as a transient model. A time step of 15 min is used, in order to capture the
fluctuant weather, as well as capturing the response time needed in an HPS to ensure good performance.
Fifteen minutes is also an approximate value of the HPSs cycle time. A residual error of 1.0e−4 (RMS
level) is used in this study. The model includes the parameters:

• Weather properties regarding temperature, precipitation, solar irradiation, and wind.
• Material properties regarding density, thermal conductivity, and specific heat capacity.
• Heat transfer equations regarding conductivity, convection, and radiation.
• Operational parameters.

The construction of the HPS model is illustrated in Table 3 and, along with the material properties
of the layers. Table 3 includes intervals for each value, which have been found in related literature.
The surface layer A consists of the pavement which could be asphalt or, as in this study, paving stone.
Layer B is a layer of rammed sand. The properties of layer C depend on the context of use. If the
surface is regularly exposed to heavy loads of traffic, the normal material would be asphalt, as in this
study. If the area serves as a walkway with minor loads, layer C could consist of rammed sand with
embedded plastic PEX-pipes. Lastly, in layer E, there is a bearing layer of gravel or similar. In this study,
plastic PEX-pipes have a spacing of 0.25 m. As a final note on the construction, Adl-Zarrabi et al. [28]
conclude that the thermal properties of the material and spacing of the pipes have a large influence on
the system’s performance, and the buried depth of the pipes are of less importance.

Table 3. Material properties and model setup of the studied HPS, here visualized as 1 m2. The
construction consists of five layers of different materials, where density, thermal conductivity, and
specific heat capacity are used by the software ANSYS to calculate the internal conduction occurring in
the ground layers. The values in parenthesis are intervals found in the literature. Image used courtesy
of ANSYS, Inc.
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A Pavement 2300 (1906–2450)
[71,72]

2 (0.5–3.2)
[71,73]

840 (767–2000)
[72]

B Sand 1700 (1677–1771)
[74,75]

1 (0.25–3)
[75,76]

1000 (919–1117)
[75]

C Asphalt 2100 (1906–2450)
[77]

0.75 (0.74–2.9)
[71,77]

920 (800–1853)
[77]

D PEX-plastic 925 [78] 0.35 [78] 2300 [78]

E Gravel 2100 (1928–2129)
[75]

1.5 (0.51–1.77)
[75]
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The final simulation model of the HPS is visualized in Figure 4. Symmetry, adiabatic conditions,
and areal conversion equations are used to reduce the model size, which thus requires less computational
power. The unstructured mesh grid used is based on proximity and curvature, containing 3936 elements.
The simulation will predict heat transfer in the X- and Y-direction, as illustrated in Figure 4. Therefore,
the boundary condition of the two surfaces in the Z-direction is set to be adiabatic. Also, symmetry is
used on the surfaces in the X-direction. The bottom boundary condition is set to an average temperature
of 9 ◦C, to reflect lower ground level in the urban area. The depth of the model is generous enough
to not influence the result. The boundary conditions at the top surface of the model are presented in
Equation (1), which includes convection, radiation, solar irradiance, and effects of precipitation. The
heat transfer occurring by conduction is calculated in the model using the properties presented in
Table 3.
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Figure 4. The final simulation model is a slip and cross-sectional part of the ground. Compared to the
illustration in Table 3, this model utilizes symmetry by cutting through the plastic pipes, and between
two pipes at the other end. The surfaces in the Z-direction are adiabatic. Also illustrated are the
boundary conditions on the top surface summarized in Equation (1), and the power applied in the
pipes, expressed as

.
qheat f lux. Image used courtesy of ANSYS, Inc.

The control strategy depends on sensors registering the temperature of the surface, Tsur f ace,
and controlling the power accordingly. As long as the outdoor temperature is below the starting
temperature, the surface temperature, Tsur f ace, is regulated relative to a set point temperature, Tset point.
The set point temperature is either 2 ◦C as a standby mode during no precipitation, or 5 ◦C in an
active mode in presence of precipitation. For example, the outdoor temperature may be −3 ◦C and
precipitation is due in a couple of hours. Then the set point temperature will be set to 5◦C well before
the upcoming precipitation and then melt the snow fall, thus, preventing snow and ice formation on
the pavement. The active mode refers to a preheat period of 4 h before precipitation and to when the
surface is dry again after the precipitation. The control strategy, analyzing the difference between the
surface temperature, Tsur f ace, and the desired set point temperature, Tset point, determines the power
applied by the HPS. The heat transfer occurring between the heat medium and the embedded pipes is
expressed as power levels in the model, seen as

.
qheat f lux in Figure 4. The levels range from 20 W/m2 to

160 W/m2, which corresponds to a range of 11 ◦C to 33 ◦C of the heat medium in the pipes. The control
strategy is illustrated in Figure 5, both for times with no precipitation and in presence of precipitation.
The HPS is only active at outdoor temperatures below 4 ◦C and the operational formula aims at keeping
the temperature of the surface, Tsur f ace, above the set point temperature by a proactive approach to
slow down the temperature drop as it approaches the set point temperature.
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Figure 5. Illustration of the control strategy used in this study. (a) The control strategy of the standby
mode, during periods with no precipitation. (b) The control strategy of the active mode, in the presence
of precipitation. This mode activates four hours before precipitation.

Equation (1) is the governing boundary condition on the top surface, including convection
radiation, precipitation, and irradiance, as illustrated in Figure 4.

.
qsur f ace(t) =

.
qirradiance −

.
qradiation −

.
qconvection −

.
qprecipitation

[
W/m2

]
, (1)

where the four parameters of the equation are described in more detail in the following Equation (2)–(5).
Equation (2) regards solar irradiance acting on the top surface.

.
qirradiance(t) = α·I(t)

[
W/m2

]
, (2)

where I(t) is the solar irradiance which are collected for Linköping from the data model STRÅNG,
which is a mesoscale model for solar radiation [79]. α is the absorptivity of the surface, which is set to
0.2 in accordance with the literature presenting a range of 0.05 to 0.35 [80].

Equation (3) regards the radiation acting on the surface.

.
qradiation(t) = σ·ε·

(
T4

sur f ace(t) − T4
ambient air(t)

)
, (3)

where σ is the Stefan-Boltzmann constant. ε is the emissivity, which is set to 0.9 in accordance with the
literature of urban surfaces ranging from 0.71 to 0.95 [81]. Tsur f ace, is the temperature of the surface,
which is measured in the simulation model. Tambient air, is assumed to be the outdoor temperature, which
is collected from the SMHIs open data and the weather station Malmslätt in Linköping, Sweden [70].

.
qconvection(t) = h(t)·

(
Tsur f ace(t) − Tambient air(t)

)
, (4)

where h is the heat transfer coefficient including Reynolds and Prandtl numbers and calculated in
accordance with Çengel et al. [82], Holman [83], and Storck et al. [84]. The heat transfer coefficient
is calculated at each time step of the simulation model and is dependent on the wind speed and
temperature measurements collected from SMHIs open data and the weather station Malmslätt in
Linköping, Sweden [70].

Equation (5) regards the precipitation, and if snowfall occurs, the snow’s sensible heat is first
calculated. Secondly, the heat required to melt the snow is calculated and lastly, a calculation is made
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of the latent heat required to keep the ground surface at a constant temperature while the remaining
precipitation is evaporated.

.
qprecipitation(t) = ρw·ns(t)·

(
cp,s·

∣∣∣0 ◦C− Tair(t)
∣∣∣+ cm + (1−ϕ)·ce

)
/t, (5)

where ρw is the density of water, which is set to be 1000 kg/m3 [82], ns is the amount of precipitation
collected from SMHI open data [70], cp,s is the specific heat capacity of snow and ice and set to
2110 J/kgK [82], cm is the melt enthalpy of water and is set to 333,700 J/kg [82], ϕ is the surface runoff

factor and is set to 0.9, which is in range of the literature ranging between 0.7 and 0.95 for urban
surfaces [85]. ce is the evaporation enthalpy of water, which is set to 2,500,000 J/kg [82]. t, is the time
step of the model, which is 900 s (15 min) in this study.

Limitations and Comments on the Model

The model does not regard the choice of heat medium and electricity use of, e.g., pumps, since
construction and use may differ significantly from one system to another. The properties stated
in Table 3 may vary depending on moisture, porosity, potential air voids, and temperature of the
material [76]. If the materials in the ground are at sub-zero temperatures, it can affect the thermal
properties and increase energy use due to moisture transport in the ground, as analyzed by Xu and
Tan [34]. However, as the HPS studied aims at drying the surface after precipitation and thereby
minimize moisture, as well as keeping the ground layers above sub-zero temperatures, these issues are
neglected in this study.

Regarding the boundary condition of the bottom surface, the surrounding ground often contains
nearby infrastructure, such as storm drains, sewers or district heating pipes, which causes the average
temperature of the ground to be higher than in rural areas. In addition to this, the HPS itself is an
influencing factor when it turns on at 4 ◦C in the autumn, whereby normal cooling can never occur.
The inertia of the ground causes the temperature to be higher lower into the ground than at the surface.

Moreover, Equations (1)–(5) represent parameters with the largest impact on HPS performance.
Other parameters, such as dew or moisture on the surface, are neglected since the HPS aims to keep
the surface warmer than the ambient air. Regarding Equation (2), the α-value of the pavement has a
large impact on the affecting solar irradiance. In urban areas the surroundings will disturb irradiance,
causing urban canyons [80] and making it difficult to assign a general α-value. When regarding
radiation in Equation (3), the ambient temperature is considered to be that of the urban environment,
as opposed to the sky temperature commonly used. However, during fully cloudy conditions the
sky temperature may also be considered as the ambient temperature [35]. When snowfall occurs, the
wind in Equation (4) acts on a surface film temperature of 0 ◦C regardless of the outdoor temperature.
Moreover, during rainfall, the film temperature is assumed to be the same as the ambient temperature.
Regarding Equation (5), the ground layers are considered to be impervious as it is desirable to keep the
surface and ground layers dry. Moreover, urban areas often suffer heavy compaction due to demands
for bearing capacity, which results in a reduced infiltration capacity [86]. Also, the temperature of
the precipitation is assumed to be the same as the ambient temperature as it hits the top surface.
The characteristics of snow vary, depending especially on whether the snow is uncompressed or
compressed, with the latter requiring more energy to melt [87]. As the HPS starts to heat the ground
four hours before predicted precipitation and aims to melt the snowflakes as they fall to the ground,
the snow is considered to be uncompressed.

According to [1] the HPS should be designed to be able to keep the ground surface temperature at
+5 ◦C when the air temperature is 5 ◦C higher than the design outdoor temperature, which is −16.6 ◦C
for Linköping, Sweden [88]. Statistically, this means that a temporary snow cover will remain for no
longer than two hours on five different occasions over a ten-year period. Statistically, snowfall of such
intensity that snow cover will remain for more than eight hours occurs once every ten years.
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4.2. Parameters and Properties of the DHC System’s Optimization Model

The DHC production in Linköping is based on the incineration plants: The Gärstad waste-fueled
CHP plant, located in the northern part of Linköping, and a mixed-fueled CHP plant located in the
central part. The system is complemented with a biomass-fueled CHP plant and a heat-only boiler
(HOB) using biomass in the nearby town of Mjölby. As a backup, there are also heat-only boilers
using oil and electricity to cover peak demand. The model of the studied DHC system is visualized
in Figure 6, and the basic input data for the utilities is presented in Table 4. The DHC system and
optimization model has been studied previously by Blomqvist et al. [89].
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Figure 6. Schematic view of the optimization model created in MODEST representing the studied
DHC system. The model consists of fuel that is converted using combined heat and power (CHP) and
heat-only boilers (HOBs) to serve a demand of district heat, cooling, and electricity. The production
units are based on the plants Gärstad, Central and Mjölby, and standalone HOBs. Table 4 presents
technical data of the production units. The district cooling is produced by an absorption plant of 12 MW
and a compression plant of 6 MW.

The Gärstad CHP plant consists of three waste incineration boilers, illustrated as CHP 1–3, 4, and
5 in Figure 6. They are hybrid systems, with flue gas condensing and steam turbine through a gas
turbine heat recovery steam generator. CHP 1–3 has a maximum capacity of 75 MW heat, with an
additional 15 MW heat from flue gas condensing and 10 MW electricity. CHP 4 has a steam turbine
capacity of 68 MW heat, and an additional 15 MW heat from flue gas condensing and 19 MW electricity.
CHP 5 has a steam turbine capacity of 84 MW, and an additional 12 MW heat from flue gas condensing
and 21 MW electricity. The central CHP plant consists of three boilers and three steam turbines, where
two are backpressure turbines, and one combined condensing and backpressure turbine. The first
boiler is fueled with coal, with fractions of rubber. The second boiler uses heating oil. The third boiler,
with flue gas condensing, is fueled with biomass made from wood products and fractions of plastics.
The central plant can produce electricity and heat or use a direct condenser for the sole production
of heat. Cooling of the condensing turbine is achieved using water from the nearby river Stångån,
resulting in 50 GWh heat potentially being wasted in Stångån annually. The technical input data may
be seen in Table 4.
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Table 4. Production capacity and fuel use of the units in the DHC system presented in Figure 6,
including fuel, heat, and power production capacity, as well as the capacity of the flue gas condensation.

Unit Fuel Heat 1

(MW)
Power
(MW)

Heat from Flue Gas
Condensation (MW)

Gärstad
CHP 1–3 Household waste 2 75 10 15
CHP 4 Household waste 2 68 19 15
CHP 5 Household waste 2 84 21 12

Central
CHP 1 Coal 3 83 31 -
CHP 2 Oil 154 41 -
CHP 3 Wood 4 78 32 or 22 5 20

Standalone
HOB 1 Oil 144 - -
HOB 2 Electricity 25 - -

Mjölby CHP Wood 33 10 -
HOB Wood 32.5 - -

1 Heat from steam production. 2 The annual use of household waste is limited to 1781 GWh. 3 Fuel also
contains fractions of rubber. 4 Fuel also contains fractions of plastics. 5 22 MW back-pressure power or 32 MW
condensing power.

The district cooling in the system is produced in an absorption plant with a capacity of 12 MW
cooling using heat from the DHC system and an electricity-powered compression-cooling plant with a
capacity of 6 MW cooling.

In order to calculate the local GHG emissions, the factors presented in Table 5 are used. The
locally emitted GHG is a result of the fuel use in the DHC system. The biomass consists of primary and
secondary wood fuels. The majority of household waste is organic and comes from the surrounding
region. The subsequent effects on the global GHG emissions are calculated and analyzed by using
three different factors, also presented in Table 5. The factors are of Swedish electricity mix, Nordic
electricity mix, and electricity produced by coal condensing plants. The effects on the global GHG
emissions are caused by the local changes in electricity production from the CHP plants and the use of
biomass, which is seen as a scarce resource in this study.

Table 5. Local GHG emission factors for the fuel used in the model of the DHC system. The factors
include incineration, production, and transportation. Also presented is the global GHG emission
factors used to analyze the global effects generated by changes in the local DHC system.

Local Emission GHG Emission Factor
[90] (g CO2eq/kWh) Global Emission GHG Emission Factor

[91] (g CO2eq/kWh)

Household waste 143 Swedish electricity mix 36.4
Wood 1 14.5 Nordic electricity mix 97.3

Oil 297 Coal condensing production 968.6
Coal 1 340

Electricity (internal) 0
Flue gas cond. 0

1 Emission factors are weighted in order to reflect a fuel mixture used in the central plant CHP 1 (coal with fractions
of rubber) and CHP 3 (primary and secondary wood fuels with fractions of plastics).

5. Results

The results in the paper include three sections, (1) where the two models of the HPS and DHC
system will be compared to actual system performance from 2016, and (2) where the overall performance
of the HPS will be analyzed. In the third (3) section the impact of the HPS on the DHC system will
be analyzed.
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5.1. Comparing Models of the HPS and DHC System to Actual System Performance

Simulation of the HPS model is compared to annual and monthly statistical data for the winter
months, Jan–Apr and Oct–Dec 2016. In Figure 7, the result of the reference Scenario R is presented
together with the statistical data. The simulation model generates an annual difference of 2%, and a
monthly maximum difference of 10%, except during the low use months of April and October. Moreover,
the operational hours of the reference scenario are 3055 h, compared with 3041 h at temperatures below
the starting temperature of 4 ◦C, as presented in Table 2. The small difference is due to modeling issues.
The model time step of 15 min has a higher resolution than the hourly statistical data and causes parts
of an hour to count when the outdoor temperature fluctuates around the starting temperature of 4 ◦C.
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The fuel use of reference Scenario R from the optimization model in MODEST is compared to
statistics as visualized in Figure 8. The total annual fuel use differs by 5%, with the optimization model
resulting in energy use of 2440 GWh and the statistics showing 2323 GWh.
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5.2. Performance of the HPS and Energy Use of the Studied Scenarios

Figure 9 shows the performance of the HPS in the studied scenarios during January and February
of 2016. The temperature of the top surface in the scenarios is displayed along with outdoor temperature
and precipitation. A rapid decrease in the surface temperature indicates precipitation, as the surface in
the simulation receives large negative power, in accordance with boundary Equation (5).
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Figure 9. Performance, in terms of temperature at the top surface, of the HPS and the simulated
scenarios R, 1, and 2 during January and February. The outdoor temperature is presented in gray
background, and the precipitation is visualized at the secondary axis.

The energy use of scenarios R, 1 and 2 is presented in Figure 10. The annual energy use of
the studied scenarios amounts to 6.3 GWh for Scenario R, 5.6 GWh for Scenario 1, and 4.5 GWh for
Scenario 2, generating a potential energy saving of 28%. Moreover, the results correspond to an average
annual use 180 kWh/m2 for Scenario R, 161 kWh/m2 for Scenario 1, and 129 kWh/m2 for Scenario 2.
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Figure 10. Results presenting the total energy use in 2016 of the HPS simulation for scenarios R, 1,
and 2. The annual values of each scenario are presented to the left and the active months of Jan–Apr
and Oct–Dec follow. The largest changes are seen in January and February.

A duration diagram of the HPS is presented in Figure 11. Savings are made in all the power steps,
and the average energy use ranges from 57.5 W/m2 to 49.7 W/m2, corresponding to a potential energy
saving of 14% between the scenarios. The operational hours of the scenarios differ by 500 h, ranging
from 3055 h to 2525 h.
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Figure 11. Duration diagram of the simulated scenarios R, 1, and 2. The HPS is active for 3055 h in
Scenario R with average energy use of 57.5 W/m2, 2890 h with average energy use of 54.5 W/m2 for
Scenario 1, and 2525 h, with average energy use of 49.7 W/m2 for Scenario 2.

5.3. Evaluation of the Impact the HPS Has on the DHC System

The primary energy use of the DHC system is presented in Figure 12. Household waste is the
main source, followed by biomass. Coal is needed in the peak 1000 h, and at a production level of
375 MW the HOB using biomass is needed, while oil is required once the production level exceeds
400 MW.
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Figure 12. Duration diagram of the fuel use for production in Linköping’s DHC system, reference
Scenario R. Results of the optimization model in MODEST showing the fuel use of the DHC system
with household waste as a base, biomass, and peak fuels of coal and use of the HOBs using biomass
and oil to cover the final peak hours. Image used courtesy of MODEST.

Figure 13 shows the time of operation of the HPS and how it coincides with the demand in the
DHC system. For the reference Scenario R, the time of operation coincides with the peak demand in
the DHC system. Scenario 1 is excluded from the top days of the peak demand, approximately 50 h.
Furthermore, Scenario 2 is excluded from the top weeks, approximately 300 h.
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Figure 13. Duration diagram of the heat demand in Linköping during the studied time period of 5112 h
in Jan-Apr and Oct-Dec, with the demand of the HPS, visualized for scenarios R, 1, and 2. Scenario 1 is
excluded from the peak 50 h, and scenario 2 from the peak 300 h. Please note that the Y-axis is truncated
and starts at 150 MW.

Figure 14a presents the primary energy savings of each scenario, while Figure 14b shows the
increase in electricity production due to increased production at the CHP plants. It is worth noting
that mostly renewable resources such as biomass are used for the HPS and that electricity production
increases as the use of HPS increases.
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Figure 14. (a) Results showing the fuel use of the DHC system productions units in order to satisfy the
demand of the HPS for each scenario. Results are presented relative to a scenario were no HPS are
used and conventional snow clearance must be used. (b) Results showing the increase in electricity
production at the CHP plants for each scenario.

Figure 15 presents the increase in local emissions and decrease in global emissions. The local
emissions increase in all scenarios, as a result of increased production in the DHC system. The local
emissions amount to 34 kgCO2, eq/m2 for Scenario R, 25 kgCO2, eq/m2 for Scenario 1, and 13 kgCO2, eq/m2

for Scenario 2. Including the operational hours of the studied system, the value could be expressed as
11 gCO2, eq/m2, h for Scenario R, 9 gCO2, eq/m2, h for Scenario 1, and 5 gCO2, eq/m2, h for Scenario 2.
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As presented in Figure 15, global emissions are reduced in all scenarios, mostly due to the increased
production of electricity in the CHP plants, as presented in Figure 14b. Moreover, reduced use of the
scarce resource of biomass has a positive impact on global GHG emissions.
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Figure 15. Results for scenarios R, 1, and 2 showing the increase in local GHG emissions due to increased
production in the DHC systems production units, as presented in Figure 14a. Also presented, is the
positive effect and decrease of global GHG emissions, mostly due to increased electricity production in
the CHP plants, as presented in Figure 14b. The three emission factors used are presented in Table 5.
Results are presented relative to a scenario where no HPS is used and conventional snow clearance
must be used.

6. Discussion

6.1. The Scenarios and Modeling of the HPS

For scenarios 1 and 2, the heat medium should have freeze protection, or the HPS should have
an idling mode where the medium is kept above freezing and circulating in the pipes. The model is
constrained to a maximum power of 160 W/m2, which is lower than the theoretical design power for
the geographical location stated in 1976 [1], but in line with other more recent literature [7,78]. The
maximum power corresponds to 33 ◦C, which enables the use of the return water in the DHC system.
Besides being able to operate an HPS, the opportunity to decrease the return temperature can result
in a more efficient DHC system, as it increases the output of the flue gas condensation, as argued in
the introduction.

It should be noted that, overall, the studied year was warmer than a normal year. However,
January of 2016 was colder, as were October and November. For 3041 h during the studied months, the
temperature dropped below 4◦C, which is the temperature at which the HPS becomes active. In terms
of precipitation, the studied year was dryer than the normalized year. October is the only month when
the precipitation was above normal. The cold month of January, in particular, had less precipitation
than the normalized data. This is in line with the ideas of the scenario, with shutdown periods at lower
temperatures, since the air’s saturation level decreases at lower temperatures, which, in turn, reduces
the occurrence of precipitation.

The simulation model of the HPS shows good agreement with measurements. The difference
between the annual averaged model prediction and the actual performance was 2%, and the monthly
difference was below 10% for the cold winter months. A higher relative average was only found for
April and October when the system was only scarcely used. The comparison was applied to an HPS
area of 33,000m2, due to imperfect data from one subsystem at the time of the study. This is the reason
why Figure 7 shows lower energy use than reference Scenario R in Figure 10. The optimization model
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of the DHC system in MODEST resulted in an annual difference of 5% and good agreement in terms of
allocation of the primary energy sources.

6.2. Performance of the HPS

In order to analyze the performance of the HPS, it is stated that the HPS should be designed
to keep the surface temperature at +5 ◦C when the air temperature is 5 ◦C higher than the design
outdoor temperature [1]. In Figure 9, reference Scenario R indicates that it is possible to achieve this,
as the surface temperature is above 0 ◦C when the outdoor temperature is −11 ◦C. The temperature
set point in the model is 2 ◦C, but as the model includes cooling effects from wind, radiation, and
precipitation, it is possible to keep a lower temperature setting than 5 ◦C. Moreover, the air is dry at
these low temperatures and in combination with the surface temperature always being higher than the
that of the air, the risk of a slippery surface is minimized. It comes down to a choice between keeping
the surface above freezing at all times or settling for minimizing the risk of slipping, in relation to
efficient energy use.

In Figure 9, which presents the performance of the HPS, a rapid decrease in the surface temperature
indicates precipitation, as the surface in the simulation receives negative power derived from
Equation (5). The temperature increases quickly as an indication of the HPS reacting to the precipitation.
Looking more closely at Scenario 2 in January, one can see a large drop in temperature. The drop is
explained by that the system is turned off and prolonged precipitation, in the form of snow, falls when
the outdoor temperature increases from low levels. This indicates that the snow will remain on the
surface, whereas the snow will be melted in Scenario 1, as the temperature climbs above 0 ◦C. This
poses a design question of how many hours the HPS is allowed to fail and still be seen as acceptable,
which can be decided upon the desired function of the system and location. Moreover, during late
February, the large temperature variation is explained by the spring sun.

6.3. The impact of the HPS on the DHC System

The largest change in energy use between the scenarios is seen in the cold month of January, as
shown in Figure 10. In connection to the duration diagram in Figure 11, where the operational hours
of the peak power 160 W/m2 are decreasing, it is concluded that the pickup loads after shutdown
periods in scenarios 1 and 2 do not result in the HPS demanding more peak power than the reference
Scenario R. However, as presented in Figure 9, on the days around 10 January, the performance of the
scenario may enable snowfall to remain on the surface, resulting in poor performance of the HPS in
Scenario 2. This indicates that an HPS that shuts down at a temperature of −5 ◦C or lower performs
poorly but presents good energy performance values. However, Scenario 1, when the HPS shuts down
at a temperature of −10 ◦C or lower, presents good performance and also reduced the energy use of
3 W/m2 (5%) for average use or 640 MWh (10%) for annual energy use, compared to the reference
Scenario R. Moreover, Scenario 1 is excluded from the top 50 h regarding peak demand in the DHC
system, as presented in Figure 13, which in turn reduces the use of fossil fuel, as seen in Figure 14a. In
addition, Scenario 1 reduces local GHG emissions by 25% relative to the reference Scenario R. However,
Scenario 1 also results in less electricity generated at the CHP plants relative to Scenario R, leading
to less available electricity on the market. This, in turn, leads to a reduced positive effect on global
GHG emissions.

The local emissions in this study only include the use of HPS and not the alternative use of
conventional snow clearance using heavy machinery. However, the literature points to the HPS being
the more GHG efficient alternative, indicating reduced local emissions if a comparison were to be
made. The HPS generates a low value of 11 gCO2, eq/m2, h for the reference Scenario R. In a future
fossil-free DHC system, the local GHG emissions from the HPS will decrease even more.

The factor to analyze at implementation is the time it takes for the HPS to produce a sufficient
temperature at the surface to minimize the risk of slipperiness, at times when the temperature rises
from below −10 ◦C in conjunction with precipitation shortly thereafter.
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7. Conclusions

• The study indicates that the HPS is suitable for the use of return temperatures in a DHC system.
An HPS could further decrease the return temperature, thereby potentially increasing the efficiency
of the DHC system. Furthermore, in a future DHC system with lower supply temperatures, it is
also desirable to achieve lower return temperatures to maintain an efficient DHC system.

• A control strategy that shuts down the HPS at temperatures below −10 ◦C results in a 10% energy
saving, avoidance of use during the top 50 h of peak demand in the DHC system, reduced use of
fossil fuel and a 25% reduction in local GHG emissions, whilst maintaining sufficient performance
of the HPS.

• Utilizing HPS connected to a DHC system which has CHP can potentially result in increased
electricity production. This generates a positive effect and reduction on the global GHG emissions
if a coal condensing power plant is regarded as the marginal production unit in the European
electricity market. In a future fossil-free production of DHC, the generated electricity will fully
derive from renewable resources. This will improve the impact an HPS has on the GHG emissions
even further.
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