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Abstract: This paper presents a piezoelectric vibration energy harvester (PVEH) with resonance
frequencies shifted down by elastically supported masses. The added elastic supporters can diminish
the equivalent stiffness of the whole structure, leading to an evident decline in the resonance frequency
of the cantilever body. Meantime, a new resonant peak is generated in the lower frequency range.
The resonant frequency of the proposed PVEH can be easily adjusted by replacing the rubber band of
the elastic support. The constructed configuration is theoretically investigated and experimentally
verified. Compared with the conventional cantilever, the proposed device achieved a 46% decrease in
resonance frequency and 87% enhancement in output power.

Keywords: piezoelectric; vibration energy harvester; elastically supported masses; resonance
frequencies shifted down

1. Introduction

Conventional piezoelectric vibration energy harvesters are usually constructed by a cantilever
beam with a piezoelectric plate at the root and a mass at the free end [1–3]. The structural resonant
frequency is often optimized as the key parameter to approach the frequency of target ambient
vibrations, which is not very convenient for cantilever type piezoelectric vibration energy harvesters
(PVEHs) [4]. Therefore, methods for improving energy harvesting performance of cantilever-based
PVEHs have been extensively investigated and implemented. Nonlinearity works well in broadening
the device frequency band, which is often realized by structural nonlinearity [5,6] and magnetic
coupling force [7]; frequency up-conversion transmits the energy of low-frequency vibrations to
the piezoelectric beam and stimulate it to vibrate at its resonant point, and this phenomenon can
be achieved by both contact [8] and contactless [9] ways; then, the multi-unit array approach uses
several PVEH elements to adapt different target vibrations and can be regarded as a combination
of several basic harvesters [10,11]. Different from abovementioned methods, the dynamic magnifier
(DM) scheme utilizes a hierarchical spring–mass architecture to achieve multiple resonant modes
at discrete frequencies and enhance the device efficiency [12,13]. Adding a secondary unit into
the basic cantilever is the most common way to realize the DM scheme [14]. The T-shaped [15],
L-shaped [16] or U-shaped [17] beam-mass structures have been utilized in establishing PVEHs with
DM, and the introduction of flexible body and spring-based connecters also helps a lot in enhancing
the device performance.

Inspired by the excellent performance of the DM scheme, this paper proposes a PVEH with
a piezoelectric cantilever beam and two elastically supported masses, which features a down-shifted
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resonant frequency deriving from the cantilever beam and an additional peak in the lower frequency
band. Compared with the common harvester with DM, the frequency of proposed PVEH can be easily
tuned by only replacing the elastic supporter, which is facilitated by the utilization of common office
rubber bands and the simple connection between the elastic supporter and cantilever.

2. Theory and Design

Figure 1 illustrates a schematic of the proposed PVEH. The device was remodeled from
a conventional fiberglass cantilever, which constituted main structure stiffness of the device. A U-shaped
bracket, made of aluminum alloy (Grade 6050), was mounted at the cantilever free end, whose two
protrusive arms acted as the base for the elastically supporting masses. Considering the deformation
of cantilever beam, the elastic range of rubber bands and the weight of proof masses, the number of
elastic supports was set to two. Two uniform Fe proof masses (Grade Q235A) were attached to the
middle of the rubber bands, and then tightened to the bracket with the distances of 5 mm and 25 mm
from the end of protrusive arms. Each Fe proof mass weighed 10 g. A series of office rubber bands
(3215, Deli, China) with different lengths but a similar section diameter of about 1.5 mm were selected
to tune the device working frequency. A PZT-5A piezoelectric plate was bonded onto the cantilever
end with a 90 µm-thick adhesive layer. The main dimensions of each component are shown in Table 1,
and the distance between the two bracket arms was set at 100 mm.

Table 1. Main dimensions of each component.

Name Length (mm) Width (mm) Thickness (mm)

PZT 20 19.5 0.2
Cantilever beam 80 40 0.5

Bracket 40 100 0.8
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The proposed PVEH was modeled by the lumped parameter method [18,19], and the device was
equivalent to a mass–spring-damping system shown in Figure 2. Let u0, u1, u2, u3 be displacements of
the exciter base and masses under external excitation, respectively. The primary system was composed
of the primary effective mass m1, an effective spring k1, and a damper c1, and each secondary system
consisted of a separate effective mass (m2, m3), a spring (k2, k3) and a damper (c2, c3). The primary
mass m1 can be considered as the sum of all secondary masses (m2 + m3) concentrated at the free end of
primary beam [20]. Then, the relative displacement between the exciter, primary mass and secondary
mass can be expressed as,

x = u1 − u0, y1 = u2 − u1, y2 = u3 − u1.
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Thus, the motion governing equations of proposed PVEH can be written as:

∑3
p=1 mp
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.
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..
yp−1 +
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..
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..
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−θ
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.
V + V

Rl
= 0

(1)

where Cp and θ are the capacitance and electromechanical coupling coefficient of the piezoelectric plate,
and V is the voltage generated by the piezoelectric plate at the load resistor Rl [21]. Let µ = m2/m1,
and m2 = m3, in the proposed structure. Then, the generated dimensionless voltage across Rl can be
obtained by solving Equation (1) as [22]:

∣∣∣Ṽ∣∣∣ =
∣∣∣∣∣∣∣∣∣∣∣∣

(1 + 2µ + µΩ2( 1
α2

1−Ω2+ j2ζ2α1Ω
+ 1

α2
2−Ω2+ j2ζ3α2Ω

))(
1− (1 + 2µ)Ω2 + j2ζ1Ω − µΩ4( 1

α2
1−Ω2+ j2ζ2α1Ω

+ 1
α2

2−Ω2+ j2ζ3α2Ω
)

)
jrΩ+1
jrk2

e Ω
+ 1

∣∣∣∣∣∣∣∣∣∣∣∣ (2)

where the dimensionless parameters are,

α1 =
ω2

ω1
, α2 =

ω3

ω1
, Ω =

ω
ω1

, r = ω1CpRl, k2
e =

θ2

Cpk1
. (3)

Here, α1 and α2 are the frequency ratio between the primary system and the secondary system, Ω is
the normalized frequency. ω is the excitation frequency, ω1–ω3 are the natural frequency of each
system, ζ1–ζ3 are the damping ratio, r is the dimensionless time constant, and ke is the alternative
electromechanical coupling coefficient.
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Assuming a loaded resistor of 500 kΩ, the dimensionless voltage versus frequency curve is
obtained with empirically determined variables [23]. It can be seen from the curve in Figure 3 that the
proposed PVEH featured two distinct peaks in the frequency range of 0–20 Hz, and the second peak,
originating from the primary cantilever, produced a higher output voltage.
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Further investigation on the effect of the stiffness of elastic supporters was conducted by changing
the values of k1 and k2 (k1 = k2 = k for the proposed scheme) in Equation (2), and the results are shown
in Table 2. A longer rubber band processed a smaller k, and then slightly lowered the corresponding
output voltage, which is indicated by the obtained trend in Table 2.

Table 2. Corresponding relationship between the dimensionless voltage and the effective spring, k.

k (N/m) 6 10 14 18 22

dimensionless voltage 1.8 1.9 2.2 2.6 3.3

3. Results and Discussion

The experimental setup for evaluating the device characteristics is shown in Figure 4, and the
enlarged inset presents the prototype of the proposed PVEH. In the tests, the PVEH was installed onto
the exciter, which was driven by a series of sinusoidal signals generated by the function generator and
amplified by the power amplifier. The accelerometer was used to monitor the applied acceleration,
and the outputs of the proposed PVEH and accelerometer were recorded by the oscilloscope. All tests
were conducted indoors at room temperature of about 25 °C.
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In order to verify the effect of the elastic supporters used, several rubber bands with varied lengths,
inducing different supporting stiffness coefficient, were selected, and their parameters are presents in
Table 3. Moreover, a metal supporter (supporter 4 in Table 3) and a conventional cantilever PVEH
were also tested to more comprehensively evaluate the promoted structure. The physical prototype
of supporter 4 is shown in Figure 5. The conventional cantilever PVEH had a length of 105 mm and
a width of 40 mm. Figure 6 shows the comparison of experimental results under an exciting acceleration
of 1 g (g = 9.8 m/s2). As can be seen from Figure 6, the devices with elastically supported masses
featured evident promotion in resonance frequency, whose value turned from 16.5 Hz in traditional
beam to 8.9 Hz in device with supporter 3, exhibiting a decline of 46%. Moreover, the generated
peak voltage also receives a 1.47× increase, from 19.6 V to 28.8 V. Meantime, an additional resonance
peak was generated near 5 Hz with an open-circuit voltage above 9.6 V, which was induced by the
resonance of elastically supporting masses. The obtained promotion obviously depended on the
utilized supporter. The short band (supporter 1), processing higher stiffness, caused less of an effect
in the frequency than the softer bands, which can be further verified by the comparison between
the metal and elastic supporters. The resonant frequency of support 3 changed 57.3% compared to
support 4, which proves that replacing rubber band could easily adjust the resonant frequency of the
structure. It can be inferred that the proposed structure can resonate at any point between 8.9–14 Hz
by controlling the length of the rubber band.

Then, a further experiment was conducted to investigate the influence from excitation amplitude.
Too large a deformation may cause nonlinearity to the behavior of rubber band, which will change the
structural stiffness coefficient and ultimately affect the device frequency. Four different excitations with
the acceleration amplitudes of 0.5 g, 1 g, 1.5 g and 2 g were applied to the PVEH, and the supporter
1 was chosen to construct the first test, who used the shortest band and had been greatly tensioned
before excitation. The maximum acceleration was determined by considering the acceleration levels
from everyday applications [24]. It can be seen from the results shown in Figure 7 that the device
maintained its resonant frequency under the varied excitation with a maximum frequency drift of
0.3 Hz. Thus, the proposed PVEH features favorable performance stability and deals with the daily
vibrations well.

Table 3. Support parameters.

Type Material of Support Length

supporter 1 rubber band 90 mm
supporter 2 rubber band 130 mm
supporter 3 rubber band 170 mm
supporter 4 Al alloy of 6050 100 mm
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Then, the output power of the proposed PVEH with supporter 1 and metal supporter was tested
under a 1 g excitation. Since the second resonant peak possessed most of the harvested energy,
the power investigation targeted at the second resonant point. Different resistors were connected to
the device to find the best matching resistance corresponding to the vibration frequency. As it can
be seen from Figure 8, the elastically supported scheme had a maximum output power of 1.417 mW
with an optimized load of 410 kΩ, while the metal supported one produced a power of 0.758 mW
with a load of 380 kΩ. Benefiting from the introduction of the elastic supporter, the proposed PVEH
significantly improved the generated power by more than 87%.



Energies 2019, 12, 2207 7 of 8

Energies 2019, 12, x FOR PEER REVIEW 7 of 8 

 

Then, the output power of the proposed PVEH with supporter 1 and metal supporter was tested 
under a 1 g excitation. Since the second resonant peak possessed most of the harvested energy, the 
power investigation targeted at the second resonant point. Different resistors were connected to the 
device to find the best matching resistance corresponding to the vibration frequency. As it can be 
seen from Figure 8, the elastically supported scheme had a maximum output power of 1.417 mW 
with an optimized load of 410 kΩ, while the metal supported one produced a power of 0.758 mW 
with a load of 380 kΩ. Benefiting from the introduction of the elastic supporter, the proposed PVEH 
significantly improved the generated power by more than 87%. 

 

Figure 8. Output voltages and powers of the elastic support and rigid support. 

4. Conclusions 

In this study, two elastically supported masses were introduced into the cantilever-based 
piezoelectric vibration energy harvester to improve the harvesting efficiency, making it suitable for 
the low frequency vibrations in daily activities. The proposed prototype evidently declines the 
resonant frequency originating from the conventional cantilever configuration, and achieves two 
resonant peaks above 9.6 V in the range of 0–20 Hz. The utilization of common office elastic bands 
makes it very convenient to tune and control the device dynamic characteristic. We achieved a 
maximum resonance frequency adjustment of 57.3% in the experiment, and it is possible to get better 
results by continuing to adjust the length of the rubber band. 

Author Contributions: M.Z., H.W. and B.L. conceived and designed the experiments; H.Q. performed the 
experiments; Y.L., B.L. and W.Z. analyzed the data; H.W. and M.Z. contributed analysis tools; and Y.L. and B.L. 
wrote the paper. 

Funding: This research was supported by the National Natural Science Foundation of China (No.61801357, No. 
51505358). 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Alameh, A.H.; Gratuze, M.; Elsayed, M.Y.; Nabki, F. Effects of proof mass geometry on piezoelectric 
vibration energy harvesters. Sensors 2018, 18, 1584. 

2. Kubba, A.E.; Jiang, K. Efficiency enhancement of a cantilever-based vibration energy harvester. Sensors 
2013, 14, 188–211. 

Figure 8. Output voltages and powers of the elastic support and rigid support.

4. Conclusions
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