Effects of the Current Direction on the Energy Production of a Tidal Farm: The Case of Raz Blanchard (France)
Abstract
:1. Introduction
2. Model and Methods
2.1. Model Presentation
2.2. Model Validation: Flow Past a Porous Disk
2.3. Model Configuration: Wake-Field Study
3. Results
3.1. Effect of Layout
3.2. Effect of Flow Obliquity
3.3. Effect of Resistance Coefficient and Ambient Turbulence Level
3.4. Effect of the Tidal Asymmetry
4. Conclusions
- The flow obliquity influences, in a different way, the production of the staggered and the aligned arrays. Whereas it increases the production of the aligned layout, it reduces the production of the staggered layout. Mean energy produced per machine is almost the same for both layouts.
- There is a significant difference between the production during the ebb and the flood tides.
- Increasing turbulent intensity reduces the positive effect of the flow obliquity on the aligned layout production and restricts the negative effect on the staggered layout production.
- The increase of ambient turbulence seems to slightly reduce the energy production of both layouts.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Myers, L.E.; Bahaj, A.S. Simulated electrical power potential harnessed by marine current turbine arrays in the Alderney Race. Renew. Energy 2005, 30, 1713–1731. [Google Scholar] [CrossRef]
- Lo Brutto, O.A.; Barakat, M.; Guillou, S.S.; Thiébot, J.; Gualous, H. Influence of the wake effect on electrical dynamics of commercial tidal farms: Application to the Alderney Race (France), Methodology for estimating the French tidal current energy resource. IEEE Trans. Sustain. Energy 2018, 9, 321–332. [Google Scholar] [CrossRef]
- Segura, E.; Morales, R.; Somolinos, J.A. Cost Assessment Methodology and Economic Viability of Tidal Energy Projects. Energies 2017, 10, 1086. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Guillou, S.S.; Santa Cruz, A.; Thiébot, J. Numerical simulation of a pilot tidal farm using actuator disks, influence of a time-varying current direction. In Proceedings of the Grand Renewable Energy Conference, Tokyo, Japan, 27 July–1 August 2014. [Google Scholar]
- Bahaj, A.S.; Myers, L.E. Analytical estimates of the energy yield potential from the Alderney Race (Channel Islands) using marine current energy converters. Renew. Energy 2004, 29, 1931–1945. [Google Scholar] [CrossRef]
- Thiébot, J.; du Bois, P.B.; Guillou, S. Numerical modeling of the effect of tidal stream turbines on the hydrodynamics and the sediment transport—Application to the Alderney Race (Raz Blanchard), France. Renew. Energy 2015, 75, 356–365. [Google Scholar] [CrossRef]
- Guillou, N.; Chapalain, G. Tidal turbine’s layout in a stream with asymmetry and misalignment. Energies 2017, 10, 1892. [Google Scholar] [CrossRef]
- Guillou, N.; Chapalain, G. Assessing the impact of tidal stream energy extraction on the Lagragian circulation. Appl. Energy 2017, 203, 321–332. [Google Scholar] [CrossRef]
- Neill, S.P.; Hashemi, R.M.; Lewis, M.J. The role of tidal asymmetry in characterizing the tidal energy resource of Orkney. Renew. Energy 2014, 68, 337–350. [Google Scholar] [CrossRef]
- Frost, C.; Evans, P.S.; Harrolds, M.J.; Mason-Jones, A.; O’Doherty, D.M.; O’Doherty, T. The impact of axial flow misalignment on a tidal turbine. Renew. Energy 2017, 113, 1333–1344. [Google Scholar] [CrossRef]
- Guillou, N.; Neill, S.P.; Robins, P.E. Characterising the tidal stream power resource around France using a high-resolution harmonic database. Renew. Energy 2018, 123, 706–718. [Google Scholar] [CrossRef] [Green Version]
- Coles, D.S.; Blunden, L.S.; Bahaj, A.S. Assessment of the energy extraction potential at tidal sites around the Channel Islands. Energy 2017, 124, 171–186. [Google Scholar] [CrossRef]
- Campbell, R.; Martinez, A.; Letetrel, C.; Rio, A. Methodology for estimating the French tidal current energy resource. Int. J. Mar. Energy 2017, 19, 256–271. [Google Scholar] [CrossRef]
- Thiébaut, M.; Sentchev, A. Asymmetry of tidal currents off the W. Brittany coast and assessment of tidal energy resource around the Ushant Island. Renew. Energy 2017, 105, 735–747. [Google Scholar] [CrossRef]
- Lewis, M.; Neill, S.P.; Robins, P.E.; Hashemi, M.R. Resource assessment for future generations of tidal-stream energy arrays. Energy 2015, 83, 403–415. [Google Scholar] [CrossRef] [Green Version]
- Modali, P.K.; Kolekar, N.; Banerjee, A. Performance and wake characteristics of a tidal turbine under yaw. IMEJ 2018, 1, 41–50. [Google Scholar]
- Tian, W.; VanZwieten, J.H.; Pyakurel, P.; Li, Y. Influences of yaw angle and turbulence intensity. Energy 2016, 111, 104–116. [Google Scholar] [CrossRef]
- Gebreslassie, M.G.; Belmont, M.R.; Taylor, G.R. Comparison of Analytical and CFD Modelling of the Wake Interactions of Tidal Turbines. In Proceedings of the 10th EWTEC Conference, Aalborg, Denmark, 2–5 September 2013. [Google Scholar]
- Divett, T.; Vennell, R.; Stevens, C. Optimization of multiple turbine arrays in a channel with tidally reversing flow by numerical modelling with adaptive mesh. Philos. Trans. R. Soc. A 2013, 371, 20120251. [Google Scholar] [CrossRef] [PubMed]
- Bai, G.; Li, J.; Fan, P.; Li, G. Numerical investigations of the effects of different arrays on power extractions of horizontal axis tidal current turbines. Renew. Energy 2013, 53, 180–186. [Google Scholar] [CrossRef]
- Olczak, A.; Stallard, T.; Feng, T.; Stansby, P.K. Comparison of a RANS blade element model for tidal turbine arrays with laboratory scale measurements of wake velocity and rotor thrust. J. Fluids Struct. 2016, 64, 87–106. [Google Scholar] [CrossRef]
- Mycek, P.; Gaurier, B.; Germain, G.; Pinon, G.; Rivoalen, E. Experimental study of the turbulence intensity effects on marine current turbines behaviour. Part II: Two interacting turbines. Renew. Energy 2014, 68, 876–892. [Google Scholar] [CrossRef] [Green Version]
- Malki, R.; Masters, I.; Williams, A.J.; Croft, T.N. Planning tidal stream turbine array layouts using a coupled blade element momentum—Computational fluid dynamics model. Renew. Energy 2014, 63, 46–54. [Google Scholar] [CrossRef]
- Draper, S.; Nishino, T. Centered and staggered arrangements of tidal turbines. J. Fluid Mech. 2014, 739, 72–93. [Google Scholar] [CrossRef]
- Gebreslassie, M.G.; Taylor, G.R.; Belmont, M.R. Investigation of the performance of a staggered configuration of tidal turbines using CFD. Renew. Energy 2015, 80, 690–698. [Google Scholar] [CrossRef] [Green Version]
- Churchfield, M.J.; Li, Y.; Moriarty, P.J. A large-eddy simulation study of wake propagation and power production in an array of tidal-current turbines. Philos. Trans. R. Soc. A 2013, 371, 20120421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Myers, L.E.; Bahaj, A.S. An experimental investigation simulating flow effects in first generation marine current energy converter arrays. Renew. Energy 2012, 37, 28–36. [Google Scholar] [CrossRef] [Green Version]
- Belhache, M.; Guillou, S.; Grangeret, P.; Mouaze, D.; Santa Cruz, A. Wake numerical study of a vertical marine current turbine. Houille Blanche 2014, 6, 73–77. [Google Scholar] [CrossRef]
- Wu, B.; Zhang, X.; Chen, J.; Xu, M.; Li, S.; Li, G. Design of high-efficient and universally applicable blades of tidal stream turbine. Energy 2013, 60, 187–194. [Google Scholar] [CrossRef]
- Frost, C.; Morris, C.E.; Mason-Jones, A.; O’Doherty, D.M.; O’Doherty, T. The effect of tidal flow directionality on tidal turbine performance characteristics. Renew. Energy 2015, 78, 609–620. [Google Scholar] [CrossRef] [Green Version]
- Antheaume, S.; Maître, T.; Achard, J.L. Hydraulic Darrieus turbines efficiency for free fluid flow conditions versus power farms conditions. Renew. Energy 2008, 33, 2186–2198. [Google Scholar] [CrossRef]
- Roc, T.; Conley, D.C.; Greaves, D. Methodology for tidal turbine representation in ocean circulation model. Renew. Energy 2013, 51, 448–464. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.H.; Lee, S.H.; Jang, K.; Lee, J.; Hur, N. A numerical study for the optimal arrangement of ocean current turbine generators in the ocean current power parks. Curr. Appl. Phys. 2010, 10, S137–S141. [Google Scholar] [CrossRef]
- Hunter, W.; Nishino, T.; Willden, R.H. Investigation of Tidal Turbine Array Tuning Using 3D Reynolds-Averaged Navier-Stokes Simulations. Int. J. Mar. Energy 2015, 10, 39–51. [Google Scholar] [CrossRef]
- Myers, L.E.; Bahaj, A.S. Experiment analysis of the flow field around horizontal axis tidal turbines by use of scale mesh disk rotor simulators. Ocean Eng. 2010, 37, 218–227. [Google Scholar] [CrossRef]
- Castellani, F.; Vignaroli, F. An application of the actuator disc model for wind turbine wakes calculations. Appl. Energy 2013, 101, 432–440. [Google Scholar] [CrossRef]
- Taylor, G.I. The Scientific Papers of Sir Geoffrey Ingram Taylor; Batchelor, G.K., Ed.; Cambridge University Press: Cambridge, UK, 1963. [Google Scholar]
- Nguyen, V.T.; Guillou, S.S.; Thiébot, J.; Santa Cruz, A. Modelling turbulence with an Actuator Disk representing a tidal turbine. Renew. Energy 2016, 97, 625–635. [Google Scholar] [CrossRef]
- Lewis, M.; Neill, S.P.; Robins, P.E.; Hashemi, M.R.; Waer, S. Characteristics of the velocity profile at tidal-stream energy sites. Renew. Energy 2017, 114, 258–272. [Google Scholar] [CrossRef]
- Harrison, M.E.; Batten, W.M.J.; Myers, L.E.; Bahaj, A.S. Comparison between CFD simulation and experiments for predicting the far wake of horizontal axis tidal turbines. IET Renew. Power Gener. 2010, 4, 613–627. [Google Scholar] [CrossRef]
- Vennell, R.; Funke, S.W.; Draper, S.; Stevens, C.; Divett, T. Designing large arrays of tidal turbines: A synthesis and review. Renew. Sustain. Energy Rev. 2015, 41, 454–472. [Google Scholar] [CrossRef]
- Garrett, C.; Cummins, P. The efficiency of a turbine in a tidal channel. J. Fluid Mech. 2007, 588, 243–251. [Google Scholar] [CrossRef] [Green Version]
- Nishino, T.; Willden, R.H.J. Effect of 3-D channel blockage and turbulent wake mixing on the limit of power extraction by tidal turbines. Int. J. Heat Fluid Flow 2012, 37, 123–135. [Google Scholar] [CrossRef]
- Nishino, T.; Willden, R.H.J. The efficiency of an array of tidal turbines partially blocking a wide channel. J. Fluid Mech. 2012, 708, 596–606. [Google Scholar] [CrossRef]
- Nishino, T.; Willden, R.H.J. Two-scale dynamics of flow past a partial cross-stream array of tidal turbines. J. Fluid Mech. 2013, 730, 220–244. [Google Scholar] [CrossRef] [Green Version]
- Hervouet, J.M. Hydrodynamics of Free Surface Flows: Modelling with the Finite-Element Method; John Wiley & Sons Ltd.: West Sussex, UK, 2007; p. 340. [Google Scholar]
- du Bois, P.B.; Dumas, F.; Solier, L.; Voiseux, C. In-Situ database toolbox for short-term dispersion model validation in macro-tidal seas, application for 2D-model. Cont. Shelf Res. 2012, 36, 63–82. [Google Scholar] [CrossRef]
- Palm, M.; Huijsmans, R.; Pourquie, M. The Applicability of Semi-Empirical Wake Models for Tidal Farms. In Proceedings of the 9th European Wave and Tidal Energy Conference, Southampton, UK, 5–9 September 2011. [Google Scholar]
- Bai, L.; Spence, R.R.G.; Dudzak, G. Investigation of the Influence of Array Arrangement and Spacing on Tidal Energy Converter (TEC) performance using a 3-Dimensional CFD Model. In Proceedings of the 8th European Wave and Tidal Energy Conference, Uppsala, Sweden, 7–10 September 2009; pp. 654–660. [Google Scholar]
- Galloway, P.; Myers, L.E.; Bahaj, A.S. Experimental and numerical results of rotor power and thrust of a tidal turbine operating at yaw and in waves. In Proceedings of the World Renewable Energy Congress, Linkoping, Sweden, 8–13 May 2011. [Google Scholar]
- Bourgoin, A.; Guillou, S.S.; Ata, R.; Thiébot, J.; Benhamadouche, S.T. Currents characterization with Large Eddy Simulation. In Proceedings of the 3th Asian Waves and Tides Energy Conference, Taipei, Taiwan, 9–12 September 2018. [Google Scholar]
- Lewis, M.J.; Neill, S.P.; Hashemi, M.R.; Reza, M. Realistic wave conditions and their influence on quantifying the tidal stream energy resource. Appl. Energy 2014, 136, 495–508. [Google Scholar] [CrossRef] [Green Version]
The Present Numerical Simulations | Experimental Conditions | ||
---|---|---|---|
K | Ct | Cp | Ct |
1 | 0.64 | 0.51 | 0.61 |
2 | 00.89 | 0.59 | 0.86 |
3 | 0.98 | 0.56 | 0.94 |
Number of the Simulation | Time (h) | Uin (m/s) | Angle (deg) | Incidence (deg) | |
---|---|---|---|---|---|
1 | 0 | 2.2 | R1 | 8.9 | 8.9 |
2 | 0.6 | 1.9 | 15.1 | 15.1 | |
3 | 1.22 | 1.6 | 23.2 | 23.2 | |
4 | 1.82 | 0.9 | 35.9 | 35.9 | |
5 | 2.88 | 0.9 | Regime 2 (R2) | 161.4 | 18.6 |
6 | 3.43 | 1.8 | 162.3 | 17.7 | |
7 | 4 | 2.3 | 174.0 | 6.0 | |
8 | 4.55 | 2.3 | 177.6 | 2.4 | |
9 | 5.12 | 2.4 | 175.8 | 4.2 | |
10 | 5.67 | 2.5 | 175.2 | 4.8 | |
11 | 6.22 | 2.5 | 175.1 | 4.8 | |
12 | 6.78 | 2.3 | 175.3 | 4.7 | |
13 | 7.33 | 2.0 | 175.6 | 4.4 | |
14 | 7.9 | 1.6 | 176.0 | 4.0 | |
15 | 8.45 | 0.9 | 176.2 | 3.8 | |
16 | 9.73 | 0.9 | Regime 1 (R1) | 358.5 | 1.5 |
17 | 10.37 | 1.8 | 0.0 | 0.0 | |
18 | 10.98 | 2.3 | 2.7 | 2.7 | |
19 | 11.62 | 2.5 | 6.7 | 6.9 | |
20 | 12.25 | 2.4 | 12.5 | 12.5 |
I (%) | K | Layout | Scenario | R (m) |
---|---|---|---|---|
5 | 1 | S and A | RWOI and RWI | - |
5 | 2 | S and A | RWOI and RWI | - |
5 | 3 | S and A | RWOI and RWI | - |
10 | 2 | S and A | RWOI and RWI | 2 |
15 | 2 | S and A | RWOI and RWI | 5 |
K | I% | Layout | Regime | Line 1 | Line 2 | Line 3 |
---|---|---|---|---|---|---|
1 | 5% | A | 1 | 0.88 | 1.08 | 1.14 |
2 | 1.24 | 1.17 | 0.97 | |||
S | 1 | 0.88 | 0.79 | 0.89 | ||
2 | 1.03 | 0.89 | 0.97 | |||
2 | 5% | A | 1 | 0.90 | 1.17 | 1.22 |
2 | 1.28 | 1.22 | 0.97 | |||
S | 1 | 0.90 | 0.79 | 0.91 | ||
2 | 1.01 | 0.86 | 0.97 | |||
3 | 5% | A | 1 | 0.90 | 1.19 | 1.23 |
2 | 1.32 | 1.23 | 0.97 | |||
S | 1 | 0.90 | 0.77 | 0.91 | ||
2 | 1.01 | 0.83 | 0.97 | |||
2 | 10% | A | 1 | 0.88 | 1.05 | 1.10 |
2 | 1.17 | 1.13 | 0.95 | |||
S | 1 | 0.89 | 0.79 | 0.84 | ||
2 | 0.90 | 0.84 | 0.96 | |||
2 | 15% | A | 1 | 0.89 | 1.02 | 1.06 |
2 | 1.12 | 1.10 | 0.96 | |||
S | 1 | 0.89 | 0.80 | 0.83 | ||
2 | 0.87 | 0.85 | 0.96 |
K | I% | Layout | Scenario | Line 1 | Line 2 | Line 3 | Farm | Farm/N |
---|---|---|---|---|---|---|---|---|
1 | 5% | A | RWOI | 19.11 | 16.87 | 21.13 | 57.12 | 6.35 |
RWI | 21.20 | 20.17 | 22.34 | 63.71 | 7.08 | |||
S | RWOI | 22.86 | 33.34 | 22.88 | 78.07 | 7.81 | ||
RWI | 21.82 | 28.98 | 22.09 | 72.89 | 7.29 | |||
2 | 5% | A | RWOI | 25.82 | 22.88 | 29.03 | 77.73 | 8.64 |
RWI | 28.54 | 27.21 | 30.80 | 86.54 | 9.62 | |||
S | RWOI | 29.16 | 45.65 | 30.92 | 105.72 | 10.57 | ||
RWI | 28.57 | 38.38 | 29.78 | 96.73 | 9.67 | |||
A (*) | RWOI | 26.43 | 23.38 | 29.74 | 79.54 | 8.84 | ||
RWI | 30.81 | 29.42 | 33.06 | 93.30 | 10.37 | |||
3 | 5% | A | RWOI | 26.78 | 22.11 | 30.83 | 79.72 | 8.86 |
RWI | 30.50 | 28.29 | 33.11 | 91.90 | 10.21 | |||
S | RWOI | 31.44 | 50.84 | 33.75 | 116.03 | 11.60 | ||
RWI | 30.74 | 41.28 | 32.47 | 104.49 | 10.45 | |||
2 | 10% | A | RWOI | 24.48 | 22.02 | 27.40 | 73.90 | 8.21 |
RWI | 26.33 | 25.53 | 28.32 | 80.19 | 8.91 | |||
S | RWOI | 28.4 | 42.91 | 29.82 | 101.12 | 10.11 | ||
RWI | 25.99 | 35.54 | 27.75 | 89.28 | 8.93 | |||
2 | 15% | A | RWOI | 23.74 | 21.66 | 26.37 | 71.78 | 7.98 |
RWI | 25.16 | 24.58 | 27.06 | 76.80 | 8.53 | |||
S | RWOI | 27.34 | 40.57 | 28.60 | 96.51 | 9.65 | ||
RWI | 24.58 | 33.95 | 26.56 | 85.27 | 8.53 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, V.T.; Santa Cruz, A.; Guillou, S.S.; Shiekh Elsouk, M.N.; Thiébot, J. Effects of the Current Direction on the Energy Production of a Tidal Farm: The Case of Raz Blanchard (France). Energies 2019, 12, 2478. https://doi.org/10.3390/en12132478
Nguyen VT, Santa Cruz A, Guillou SS, Shiekh Elsouk MN, Thiébot J. Effects of the Current Direction on the Energy Production of a Tidal Farm: The Case of Raz Blanchard (France). Energies. 2019; 12(13):2478. https://doi.org/10.3390/en12132478
Chicago/Turabian StyleNguyen, Van Thinh, Alina Santa Cruz, Sylvain S. Guillou, Mohamad N. Shiekh Elsouk, and Jérôme Thiébot. 2019. "Effects of the Current Direction on the Energy Production of a Tidal Farm: The Case of Raz Blanchard (France)" Energies 12, no. 13: 2478. https://doi.org/10.3390/en12132478
APA StyleNguyen, V. T., Santa Cruz, A., Guillou, S. S., Shiekh Elsouk, M. N., & Thiébot, J. (2019). Effects of the Current Direction on the Energy Production of a Tidal Farm: The Case of Raz Blanchard (France). Energies, 12(13), 2478. https://doi.org/10.3390/en12132478