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Abstract: A DC power flow controller (DCPFC) can help to facilitate power flow routing in the
multi-terminal high-voltage direct current (HVDC) transmission system. Realizing its multi-port
output can effectively improve the device regulate range and capability. Based on analysis of the
traditional multi-port interline DC power flow controller (MI-DCPFC), this paper presents a switches
reduced topology of MI-DCPFC. In addition, for solving the problem of coupling of the port-output
voltage of the traditional MI-DCPFC, a novel control strategy based on carrier phase shifting pulse
width modulation (CPS-PWM) is proposed. It implements the decoupling of the port-output voltage
of MI-DCPFC, which can ensure completely independent tracking of the power flow regulating
commands for different controlled lines. Moreover, key relationships between the system state
variables are also analyzed and detailed in this study. Finally, the performance of the proposed
controller and control strategy are confirmed with the simulation and experiment studies under
different conditions.

Keywords: multi-terminal HVDC transmission system; DC power flow control; multi-port topology;
decoupling; control strategy

PACS: J0101

1. Introduction

Realizing the development and utilization of green and clean energy has become a major trend
to solve problems such as traditional energy shortages and environmental degradation. To ensure
the consumption and efficient use of the large scale new energy, effective transmission technology is
needed as a support [1]. As the multi-terminal high-voltage direct current (HVDC) transmission system
has the advantages of long transmission distance capability, large capacity and a flexible operation
mode, etc., it has therefore become one of the main means to facilitate grid connections of large-scale
renewable energy [2].

Unreasonable distribution of the transmission line currents can introduce unnecessary transmission
line losses, or even an overload of the converter station. In order to facilitate the power flow management
inside the DC transmission network, inspired by the idea of power flow control devices developed in the
AC transmission system, such as a unified power-flow controller (UPFC) and thyristor controlled series
compensator (TCSC), a DC power flow controller (DCPFC) can be introduced in the multi-terminal
HVDC transmission system [3]. However, since the DC system does not have reactive power, reactance
and phase angle, its power flow control can only be realized by adjusting the resistance or DC voltage
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of the transmission line. Therefore, there are two general design approaches for the DCPFC, which are
a resistance control type and a DC voltage control type.

(1) For the resistance control type DCPFC, different implementation schemes have been designed in
reference [4] and reference [5]. This kind of control scheme is simple to implement, but it can
only adjust the equivalent resistance of the line in one direction, which limits its power flow
control ability.

(2) For the DC voltage control type DCPFC, according to the voltage regulation means, it can
be further divided into three main types, which are 1O a DC transformer type [6–10], 2O an
auxiliary voltage source type [11–15] and 3O a capacitor-based interline energy-exchanged
type [3,16–24]. In comparison, the DCPFC of capacitor-based interline energy-exchanged type
has more advantages and better application prospects. For instance, it has fewer power devices;
does not require an external power supply device; and can avoid withstanding the system-level
high voltage and power, which help reduce the stress requirements of the power devices and
system losses. Therefore, it has become a kind of DCPFC which is currently more researched and
heavily focused on [3,20].

The capacitor-based interline energy-exchanged type DCPFC is usually called the interline DCPFC
(IDCPFC). As shown in Figure 1, its main control idea is to exchange the power between different
transmission lines by charging/discharging the capacitor of IDCPFC, thereby achieving the power flow
control of the transmission lines. Based on the concept depicted in Figure 1a, two current flow controller
(CFC) topologies were first proposed in reference [16], however, only the basic conceptualization is
introduced, its working principles and control method are not investigated enough. Focus on one
topology of the CFC, its control strategy and operation principles were discussed in reference [17].
Focus on the control method of another method was designed in references [18,19]. In addition, its
operation states were analyzed, and an average mode which can be used for perform steady-state
analysis was derived in reference [19]. Furthermore, in order to simplify the CFC circuit structure,
an improved CFC topology was proposed in reference [20], and its characteristics were detailed
compared to the traditional CFC topology proposed in reference [16]. Based on the concept depicted in
Figure 1b, by increasing the DC capacitor number and introducing coupled inductors, a novel type of
IDCPFCs with independent connections of the capacitor in two lines were respectively investigated in
references [3,21–23]. In reference [24], the application modular multilevel converter (MMC) device
was also considered, and an MMC-based IDCPFC was proposed. These schemes in reference [3,21–24]
avoided the capacitor switching in the line. However, it should be noted that all the above existing
topologies are characterized by two-port characteristics, which can only assist in regulating the current
on one line. If the power flow control of multiple lines is required at the same time, the corresponding
multi-port topology should be developed, and this problem is also an area that this paper deals with.
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Currently, the research on multi-port IDCPFC (MI-DCPFC) is still in its infancy. Based on the
MMC-based IDCPFC proposed in reference [24], a MI-DCPFC topology based on MMC was developed
in reference [25]. However, it requires multi-winding transformers and needs to connect MMC in each
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control line, which leads to higher system costs. In addition, with the controlled line number being
increased, its circuit topology and control system become relatively complicated. In reference [26],
a MI-DCPFC topology based on identical insulated gate bipolar transistor (IGBT) half-bridge was
proposed. Its system structure is simple, and the cost of the port expansion is low. However, as only a
basic control method is introduced, it can not achieve independent tracking of the current regulation
commands for each transmission line, where the power flow regulating has limited freedom.

Combining the precious work in reference [26], this paper presents a switches reduced topology
of MI-DCPFC. In addition, for solving the problem of coupling of the port-output voltage of the
traditional MI-DCPFC, a novel control strategy based on carrier phase shifting pulse width modulation
(CPS-PWM) is proposed. This strategy achieved the decoupling of the port-output voltage, which can
ensure independent tracking of the power flow regulating commands for different controlled lines.
Moreover, key relationships between the system state variables were also detailed in this study. Finally,
two five-terminal HVDC transmission systems were developed, and the performance of the proposed
controller and control strategy were confirmed with the simulation and experiment studies under
different conditions. The remainder of this paper is organized as follows: the traditional MI-DCPFC
including its topology and control strategy is analyzed in Section 2. The topology and operation
principles of the simplified MI-DCPFC are analyzed in Section 3. The novel control strategy is designed
and the relationships between the system state variables are discussed in Section 4. The simulation
and experiment verifications are respectively carried out in Section 5 and 6. Finally, a conclusion is
given in Section 7.

2. Analysis of the Traditional MI-DCPFC

2.1. Multi-Terminal HVDC Transismion System

The following work actually can be applied to any high voltage direct current (HVDC) transmission
system. For this study, in order to facilitate the verification of the three- and four-port multi-port
interline DC power flow controller (MI-DCPFC) in the subsequent simulations and experiments,
a monopole five-terminal HVDC transmission system, as shown in Figure 2, was adopted as an
example to carry out the related analysis. The voltage source converter (VSC) 4 is set as the DC voltage
regulator node, which operates in the constant DC voltage control mode; The VSC1-3 and VSC5 are set
as power regulator nodes, which operate in the constant power control mode.
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2.2. Traditional Topology

The schematic diagram of traditional MI-DCPFC is shown in Figure 3. For a three-port topology,
it consists of six IGBT half-bridges (HBs) and a common capacitor C. Sai (I = 1, 2, 3) and Sbi are the
upper and lower switches of HB0, HB1, HB2, respectively. Sci and Sdi are the upper and lower switches
of HB3, HB4, HB5, respectively. In addition, as depicted in Figure 2, when the MI-DCPFC is accessed
in the transmission system, its terminal T is connected to the bus convergence point of the different
power regulator nodes, that is, the DC bus side of VSC4. Meanwhile, its terminals Pi are respectively
connected to the different transmission lines, that is, the DC bus side of VSC1 to 3.
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2.3. Traditional Control Method

According to different line current directions and different control targets, there are total 12 working
modes of the traditional three-port MI-DCPFC, which are shown in Table 1. Under the traditional
control method, the switches Sai (i = 1, 2, 3) and Sbi are pulsed by the obtained PWM signals under the
forward and reverse direction, respectively. On this basis, all other swtiches remain in the on or off

state, where the specific conduction states of the switches Sci and Sdi are shown in the Table A1 in the
Appendix A. Take the working-modes 1 and 6 as examples to provide further analysis, respectively.

Table 1. Working-modes of the traditional three-port MI-DCPFC.

Mode Direction Reduced Increased
Switching States

Sa1 Sa2 Sa3 Sb1 Sb2 Sb3
1 forward Ip1 Ip2 and Ip3
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Figure 4 shows the conduction diagrams of the traditional MI-DCPFC under working-mode 1. 138 
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8 reverse Ip2 Ip1 and Ip3
9 reverse Ip3 Ip1 and Ip2

10 reverse Ip1 and Ip2 Ip3
11 reverse Ip1 and Ip3 Ip2
12 reverse Ip2 and Ip3 Ip1

Figure 4 shows the conduction diagrams of the traditional MI-DCPFC under working-mode 1.
The shunt branches connected to the terminals P1, P2 and P3 are respectively named line 1, line 2 and
line 3. According to the conduction states of the switches Sai, the working process can be divided into
the following two stages:



Energies 2019, 12, 2480 5 of 28

(i) Stage 1: switches Sai are truned-off. During this period, as shown in Figure 4a, the current Ip1 is
charging the capacitor through the feedback diodes of Sb1 and Sc1, while the currents Ip2 and
Ip3 are flowing out directly through the Sd2, feedback diode of Sb2 and Sd3, feedback diode of
Sb3, respectively.

(ii) Stage 2: switches Sai are truned-on. During this period, as shown in Figure 4b, the current Ip1 is
flowing out directly through the Sa1 and feedback diode of Sc1, while the currents Ip2 and Ip3 are
discharging the capacitor through Sa2, Sd2 and Sa3, Sd3 respectively. The charging and discharging
states are kept interchanging to transfer the power from line 1 to lines 2 and 3. As a result, the the
current Ip1 is reduced, Ip2 and Ip3 are increased.
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Figure 4. Conduction diagrams of the traditional MI-DCPFC under working-mode 1: (a) conduction
diagram during stage 1; (b) conduction diagram during stage 2.

Figure 5 shows the conduction diagrams of the traditional MI-DCPFC under working-mode 6.
According to the conduction states of the switches Sai, the working process can also be divided into
two stages. (i) Stage 1: switches Sai are truned-off. During this period, as shown in Figure 5a, the
current Ip2 and Ip3 is charging the capacitor, while the current Ip1 is flowing out directly. (ii) Stage
2: switches Sai are turned-on. During this period, as shown in Figure 5b, the current Ip2 and Ip3 was
flowing out directly, while the currents Ip1 was discharging the capacitor to transfer the power from
lines 2 and 3 to line 1. As a result, the current Ip1 was increased, while Ip2 and Ip3 were reduced.
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2.4. Summarizing of the Traditional Topology and Control Strategy

Concluding the analysis in the previous section, we found that:
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(1) When completing the conduction states selection for the switches Sci and Sdi in combination with
Table A1, MI-DCPFC can achieve the power flow control by only pulsing the switches Sai or Sbi
under different working-modes. In addition, we can further observe that the switches Sai and Sbi
are always pulsed synchronously in the forward and reverse direction, respectively. Therefore,
the switches Sai and Sbi actually can be simplified as the upper switch and lower switch in one
half-bridge, respectively.

(2) In the working-mode 1, the reduction control of Ip1 can be realized by pulsing the switches Sai
with the obtained PWM signal. However, the lines 2 and 3 are always synchronized to discharge
the capacitor, so the equivalent reverse polarity voltages introduced to the lines 2 and 3 are equal,
which indicates that the specific increased amounts of the currents Ip2 and Ip3 cannot be controlled
separately under the tradition control.

(3) In the working-mode 6, the reduction control of Ip2 and Ip3 can be simultaneously realized by
also pulsing the switches Sai. However, the lines 2 and 3 are always synchronized to charge the
capacitor, so the equivalent forward polarity voltages introduced to the lines 2 and 3 are equal,
which indicates that the specific reduced amounts of the currents Ip2 and Ip3 cannot be controlled
separately under the tradition control.

(4) Generalizing the conclusions (ii) and (iii), it shows that among all the lines connected to MI-DCPFC,
if there are multiple line currents that will be increased, an improved control strategy needs to
be proposed to ensure that their respective increased values can be controlled independently.
Similarly, if there are multiple line currents that will be reduced, the improved control strategy
also needs to guarantee their respective reduced values can be independently controlled.

3. Topology and Operation Principles of the Simplified MI-DCPFC

3.1. Topology

According to the analysis in conclusions (1) in Section 2.4, a simplified MI-DCPFC topology is
presented in this study. Its specific circuit diagram is shown in Figure 6. For an n-port MI-DCPFC,
it consists of n + 1 identical IGBT half-bridges and a DC capacitor C. Sa and Sb are the upper and
lower switches of HB0, respectively. Tia and Tib (i = 1, 2... n) are the upper and lower switches of
HBi, respectively. Terminal T is taken from HB0, and terminals Pi are taken out from HB1 to HBn,
respectively, the terminal T and Pi respectively compose n different output ports TPi of the MI-DCPFC.
IPi are the DC currents flowing into MI-DCPFC through the different transmission lines; IT is the DC
current flowing out of MI-DCPFC.
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When the simplified MI-DCPFC is connected to a multi-terminal HVDC transmission system, the
diagram can also be depicted as Figure 2. It should be noted that the adopted five-terminal HVDC
transmission system is unipolar, so it is only necessary to consider adding the DCPFC to the positive
pole or negative pole of the system. However, for the bipolar system, in order to ensure the symmetry of
the system, DCPFC needs to be simultaneously added to the positive and negative pole of the system.

In addition, compared with the traditional MI-DCPFC, in order to achieve independent control of
the current of all controlled lines, the new working principle of the simplified MI-DCPFC needs to be
considered, which is detailed in the next section.

3.2. Operation Principles

For easy analysis, a three-port simplified MI-DCPFC was adopted as an example, and the
shunt branches connected to the terminals P1, P2 and P3 were also respectively named line 1, line
2 and line 3. Similar to the traditional MI-DCPFC, the three-port simplified MI-DCPFC has the
same 12 working-modes, as shown in Table 1. In order to facilitate comparison with the traditional
MI-DCPFC, we also chose working modes 1 (where control Ip1 reduced; Ip2 and Ip3 increased) and 6
(where control Ip1 increased; Ip2 and Ip3 reduced) to carry out detailed analysis.

3.2.1. Working-Mode 1

In this working-mode, according to the different conduction states of the switches in each
half bridge, the working process of the MI-DCPFC can be divided into the following four stages.
The conduction diagrams of the MI-DCPFC under this working-mode are depicted in Figure 7.
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(i) Stage 1: turn on T2b and T3b. During this period, as shown in Figure 7a, the current Ip1 is charging
the capacitor through the feedback diodes of T1a and Sb, while the currents Ip2 and Ip3 are flowing
out of the terminal T directly.

(ii) Stage 2: keep T2b and T3b turned-on and turn on Sa. During this period, as shown in Figure 7b, the
current Ip1 is flowing out of the terminal T directly, while the currents Ip2 and Ip3 are discharging
the capacitor through T2b, Sa and T3b, Sa respectively.

(iii) Stage 3: only keep T3b and Sa turned-on. During this period, as shown in Figure 7c, the currents
Ip1 and Ip2 are directly flowing out of the terminal T, while the current Ip3 continues to discharge
the capacitor through T3b and Sa.

(iv) Stage 4: only keep T3b turned-on. During this period, as shown in Figure 7d, the currents Ip1 and
Ip2 are charging the capacitor through the feedback diode of T1a, Sb and feedback diode of T2a, Sb

respectively, while the current Ip3 is flowing out of the terminal T directly.

With charging and discharging by the line currents, we assumed that the capacitor voltage of
MI-DCPFC is balanced at Uc. Concluding the analysis of the above, we can obtain the DC voltage
introduced to the transmission line through the MI-DCPFC at various stages, as shown in Table 2.

Table 2. The DC voltage introduced to each line under working-mode 1.

Line Stage 1 Stage 2 Stage 3 Stage 4

1 Uc 0 0 Uc
2 0 -Uc 0 Uc
3 0 -Uc -Uc 0

It can be observed that compared to the traditional MI-DCPFC, the stages 3 and 4 are added
by auxiliary pulsing the lower switch of HB2. Based on this, the equivalent reverse polarity voltage
introduced to the line 2 can be independently regulated, which indicates that the specific increased
amounts of the currents Ip2 and Ip3 can be controlled individually at this time.

3.2.2. Working-Mode 6

In this working-mode, according to the different conduction states of the switches in each half
bridge, the working process of the MI-DCPFC can also be divided into the following four stages.
(i) Stage 1: only turn on T1b; (ii) Stage 2: keep T1b turned-on and turn on T3b; (iii) Stage 3: keep T1b and
T3b turned-on and turn on Sa; (iv) Stage 4: only keep T1b and Sa turned-on. The conduction diagrams
during stages 1 to 4 are shown in Figure 8a–d, respectively.

Referring the previous analysis method, we can obtain the DC voltage introduced into the
transmission line at various stages under this working-mode, which are shown in Table 3. It can be
found that with auxiliary controlling the lower switch of HB3 in the simplified MI-DCPFC, the stages 2
and 3 are added to the operating process compared to the traditional MI-DCPFC. Based on this, the
equivalent forward polarity voltages introduced to the lines 2 and 3 can be independently regulated,
which indicates that the specific reduced amounts of the currents Ip2 and Ip3 can be controlled separately.
In addition, according to the symmetry, when auxiliary pulsing the HB2 lower transistor, we can also
achieve the control of the Ip1 that was increased and the Ip2 and Ip3 that were reduced.

Table 3. The DC voltage introduced to each line under working-mode 6.

Line Stage 1 Stage 2 Stage 3 Stage 4

1 0 0 -Uc -Uc
2 Uc Uc 0 0
3 Uc 0 -Uc 0
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3.2.3. Other Working-Modes

As shown in Table 1, there are four other working-modes including 2, 3, 4 and 5 besides the
above two analyzed working-modes. Similarly, when the current direction is reversed, six other
working-modes are also derived. However, their working principles are similar to the analyzed
working-modes 1 and 6. The corresponding switching state of each transistor under different
working-modes can be analyzed in a similar way. However, it is worth noting that since this type
of MI-DCPFC cannot realize the reverse control of line current, when it is actually applied to a
multi-terminal HVDC transmission system, it is relatively more suitable for the "multi-to-one" (such as
multiple green and new energy are aggregated) or "one-to-many" (such as powering multiple zones)
type of interconnected transmission structure.

Furthermore, when the MI-DCPFC is extended to the other ports number, its main working
principle is similar to that of the three-port MI-DCPFC, which is reasonable to use to charge/discharge
the capacitor on the different transmission lines. We will summarize the general control method of an
arbitrary port MI-DCPFC in Section 4.3.

4. Novel Control Strategy and Relationship Analysis of the System State Variables

4.1. CPS-PWM Control Strategy

As analyzed in the Section 2.4, in order to achieve simultaneous tracking of the different current
regulation commands for multiple transmission lines, the normal operation of MI-DCPFC needs to
meet two regulation requirements: (i) When multiple line currents are increased, achieve independent
amplification control of each line current (control-mode 1); (ii) When multiple line currents are reduced,
achieve independent reduction control of each line current (control-mode 2).
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To solve this problem, a control strategy that is easier to implement based on the CPS-PWM control
was designed. Firstly, we describe the specific implementation of the two control-modes detailed in
combination with the three-port MI-DCPFC.

4.1.1. Control-Mode 1

Combined with the previous analysis in Section 3.2.1, it can be seen that when MI-DCPFC is
operating in working-mode 1, it is necessary to coordinate the amplification control of Ip2 and Ip3 by
using the control-mode 1. Taking tracking the power flow regulating command of Ip2 as an example,
the control block diagram is shown in Figure 9. Ip1* is the regulation command of the current of line 1.
It subtracts the sampling current Ip1, where the error is sent to a PI regulator. Its output is compared
with the triangular carrier, thereby obtaining the driving pulse of transistor Sa. Meanwhile, the next
step involves tracking the error between the regulation command Ip2* and sample current Ip2 of line 2
with a PI regulator, and then scaling it by the coefficient k1 (k1 = −Ts/2, where Ts is the carrier period)
to obtain the phase-shifted value of the original carrier. Finally, when comparing the phase-shifted
carrier with the duty D of pulse signal of Sa, the driving pulse of transistor T2b can be obtained by
NXORing the result with the pulse signal of Sa.
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Figure 9. Block diagram of the control-mode 1 of the MI-DCPFC.

4.1.2. Control-Mode 2

When the MI-DCPFC is operating in working-mode 6, it needs to achieve the reduction control of
IP3 synchronized with the IP2 reduction control by the control-mode 2. The control block diagram is
shown in Figure 10.
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Similarly, we used the PI regulator tracking the correction current on line 2 and then comparing
with the triangular carrier to obtain the drive pulse of the switch Sa. Also, we used the PI regulator
tracking the correction current on line 3 and scaling it by the coefficient k2 (k2 = Ts/2) to obtain the
phase-shifted value. Finally, the phase-shifted pulse signal XORs with the pulse signal of Sa can obtain
the T3b drive pulse.

4.2. Relationship of the System State Variable

According to Figure 9, the timing chart diagram of the driving pulses under control-mode 1 can
be obtained as Figure 11a.
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Assuming that the phase-shifted time is t1, T3b and Sa will be in the on-state during 0–t1, which
corresponds to the stage 3 of working-mode 1. Further, the following equations can be established by
combining Figure 7c:

V = −R1iP1 − L1
diP1

dt
+ V1 (1)

V = −R2iP2 − L2
diP2

dt
+ V2 (2)

V = −R3iP3 − L3
diP3

dt
+ uc + V3 (3)

iP3 = −C
duc

dt
(4)

where V is DC side voltage of the converter node to which the terminal T is connected. V1, V2, and V3

are the DC side voltages of the converter nodes to which the terminal P1, P2 and P3 are connected,
respectively. R1, R2, R3 and L1, L2, L3 are the equivalent resistance and inductance values of the
transmission lines 1 to 3, respectively. iP1, iP2, iP3 are the instantaneous current of the transmission
lines 1 to 3, respectively. uc is the capacitor voltage of the MI-DCPFC.

By defining xT = [iP1, iP2, iP3, uc] as the state variable of the system, the Equations (1)–(4) can be
rewritten to a matrix form, as shown in Equation (5).

Z×
d
dt


iP1

iP2

iP3

uc

 =

−R1 0 0 0

0 −R2 0 0
0 0 −R3 1
0 0 −1 0




iP1

iP2

iP3

uc

+E×


V
V1

V2

V3

 (5)

where:

Z =


L1 0 0 0
0 L2 0 0
0 0 L3 0
0 0 0 C

, E =


−1 1 0 0
−1 0 1 0
−1 0 0 1
0 0 0 0

 (6)

Besides, it is easy to observe that the time periods t1–t2, t2–t3 and t3–Ts in Figure 11a correspond to
stage 2, stage 4 and stage 1 in the working-mode 1, respectively. Therefore, the system matrix equations
in each time period can be written as Equations (7)–(9) in the same way, respectively.
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Z×
d
dt


iP1

iP2

iP3

uc

 =

−R1 0 0 0

0 −R2 0 1
0 0 −R3 1
0 −1 −1 0




iP1

iP2

iP3

uc

+E×


V
V1

V2

V3

 (7)

Z×
d
dt


iP1

iP2

iP3

uc

 =

−R1 0 0 −1

0 −R2 0 −1
0 0 −R3 0
1 1 0 0




iP1

iP2

iP3

uc

+E×


V
V1

V2

V3

 (8)

Z×
d
dt


iP1

iP2

iP3

uc

 =

−R1 0 0 −1

0 −R2 0 0
0 0 −R3 0
1 0 0 0




iP1

iP2

iP3

uc

+E×


V
V1

V2

V3

 (9)

In order to facilitate the subsequent analysis, the coefficient λ is introduced to establish the
quantitative relationship between the phase-shifted time t1 and the duty ratio D of Sa drive pulse:

λ =
t1

DTs
(10)

Combining Equation (10) and Figure 11a, we further obtained:

t2 − t1

Ts
= (1− λ)D (11)

t3 − t2

Ts
= λD (12)

Ts − t3

Ts
= 1− (1 + λ)D (13)

Concluding Equations (5)–(13), the system state equation of MI-DCPFC in one control period Ts

can be integrated as:

Z×
d
dt


iP1

iP2

iP3

uc

 =

−R1 0 0 −1 + D

0 −R2 0 (1− 2λ)D
0 0 −R3 D

1−D −(1− 2λ)D −D 0




iP1

iP2

iP3

uc

+E×


V
V1

V2

V3

 (14)

When the system is operating stable, the change of the state variable can be ignored, and the
Equation (14) can be further written as:

−R1 0 0 −1 + D
0 −R2 0 (1− 2λ)D
0 0 −R3 D

1−D −(1− 2λ)D −D 0




IP1

IP2

IP3

Uc

+ E×


V
V1

V2

V3

 = 0 (15)

Solving the matrix equation shown in Equation (15), we can obtain the average capacitor voltage
expression of the MI-DCPFC as:

Uc =
(1−D)(V1 −V) −DR1

[
(1−2λ)(V2−V)

R2
+

(V3−V)
R3

]
(1−D)2 + D2R1

[
(1−2λ)2

R2
+ 1

R3

] (16)
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In the same way, we can obtain the timing chart diagram of the driving pulses under control-mode
2 firstly, as shown in Figure 11b. Then, the coefficient µ characterizing the phase-shifted time in this
control-mode is introduced, where µ = (t2 − t1)/DTs. Finally, the average capacitor voltage expression
of MI-DCPFC under this case can be obtained as:

Uc =
(1−D)(V2 −V) −DR2

[
(1/D−1−2µ)(V2−V)

R3
+

(V1−V)
R1

]
(1−D)2 + D2R2

[
(1/D−1−2µ)2

R3
+ 1

R1

] (17)

Concluding Equations (16) and (17), it can be observed that when MI-DCPFC participates in
the system power flow regulation, its capacitor voltage is related to the voltage drop and the rated
parameters of the DC transmission line. This conclusion is also similar to the analysis results of the
traditional CFC in reference [26]. In addition, it should be noted that as this type of MI-DCPFC cannot
realize the reverse control of line current, the most extreme power regulation condition it faces is when
all line currents are increased at the line with the largest line resistance. In other words, we can think
that for the controlled lines, the capacitor voltage provided by DCPFC is the largest voltage under this
condition. In this way, we can estimate the capacity design requirements of the MI-DCPFC, so as to
ensure that it will not be damaged by the capacitor overvoltage when it is inserted into the system
under normal operation. Furthermore, since this capacitor voltage is also the voltage level that the
MI-DCPFC switches need to withstand, it can help to select the suitable switching devices.

4.3. Control Method Extension of an Arbitrary Port MI-DCPFC

In previous analysis, we take a three-port MI-DCPFC as the example, its basic working principle
and implementation of control method are analyzed in detail. To make the results more general, we
extend for an arbitrary port MI-DCPFC in this section.

Assuming that n shunt lines are connected to the MI-DCPFC, and m line currents need to control
reduced, the other n − m lines currents that need to be controlled increased. This result can follow the
following main control principles during the implementation process:

(1) Selection of controlled lines: all lines that currents need to be reduced and n – m + 1 lines that
currents need to be increased are under an active-controlled state. In this way, by tracking
the current regulation commands of n − 1 branches, the overall control of n line currents can
be realized;

(2) Generation of HB0 drive pulse: to appropriately balance the carrier phase-shifted margin between
both of the control-modes, the branch that he current reduced was centered among the m branches
can be selected as a reference, and then generated the drive pulse of HB0;

(3) Generation of HBi drive pulse: on this basis of step (2), the remaining n − 2 active-controlled
branches are tracking the current reduced and increased regulation commands through the
control-mode 1 and -mode 2, respectively. Then generate the corresponding driving pulses of
HBi, respectively. In addition, the upper and lower switches of the only one branch that remained
are kept turned-off and turned-on, respectively.

According to the above ideas, it should be assumed that the branches 1 to m are current reduced
lines, and the branches m + 1 to n are current increased lines. Taking the forward current direction as
the example, Figure 12 shows the overall control block diagram of the MI-DCPFC when the branch 1 is
adopted as the reference branch.
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5. Simulation Results

To confirm the proposed MI-DCPFC topology and control strategy, the related verification was
carried out in MATLAB/SIMULINK. The five-terminal HVDC transmission system as shown in Figure 1
(repainting it as Figure 13a) and a more complicated five-terminal HVDC transmission system with
four-port MI-DCPFC as shown in Figure 13b were developed, respectively.Energies 2016, 9, x FOR PEER REVIEW 15 of 28 
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Figure 13. Schematic diagrams of the tested five-terminal DC transmission system: (a) topology with
the three-port MI-DCPFC; (b) topology with the four-port MI-DCPFC.

The converter node VSC4 controls the systems DC bus voltage at 200 kV. The converter nodes
VSC1 to VSC3 and the converter node VSC5 respectively inject P1 = 80 MW, P2 = 100 MW, P3 = 60 MW
and P5 = 80 MW active power into the system. The main parameters of each transmission line are
shown in Table 4.
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Table 4. Line parameters of the five-terminal HVDC transmission systems.

Transmission Line Length/km Resitance/Ω Inductance/mH Capacitance/uF

line.14 200 2.0 80 240
line.24 100 1.0 40 120
line.34 300 3.0 120 360
line.45 150 1.5 60 180
line.12 120 1.2 48 144
line.23 100 1.0 40 120
line.35 100 1.0 40 120

5.1. Three-Port MI-DCPFC Verified Results

5.1.1. Case 1

The working-mode 1 (I14 is reduced; I24 and I34 are increased) was verified in this case. In addition,
to make it easy to compare and analyze each one, the simplified MI-DCPFC with the traditional and
novel control methods were both tested, respectively.

The performance of the MI-DCPFC with the traditional control method in this case is shown in
Figure 14a–c. The MI-DCPFC is accessed into the system at 0.2 s, and with the command controlling
line.14 current reduces to I14 = 0.1 kA. It can be seen that before adjusting the line currents, the system
is operating at a stable rate, and the values of each line current are about I14 = 0.35 kA; I24 = 0.62 kA;
I34 = 0.23 kA; I45 = 0.40 kA; I12 = 0.06 kA; I23 = −0.07 kA, respectively. When the MI-DCPFC is inserted
to the system at 0.2 s, the controlled line current I14 quickly respond to the command value and
maintain stable operation, as shown in Figure 14a. In addition, as shown in Figure 14b,c, the voltage
VTP1 introduced in the line 14 is stably switched between 0 and Uc; while the voltages introduced in
line 24 and line 34 are synchronized to switch between 0 and −Uc, so I24 and I34 automatically respond
to I24 = 0.82 kA and I34 = 0.28 kA, respectively. We found that the specific increased amounts of the
currents I24 and I34 cannot be controlled separately at this time, which is consistent with the theoretical
analysis in the previous section.

The performance of the MI-DCPFC with the novel control method is shown in Figure 14d–g.
The MI-DCPFC is inserted to the system at 0.2 s, and with the command in control, I14 reduces
to I14 = 0.1 kA and I24 remains unchanged. When operating to 1.2 s, the regulation command is
re-changed, where with controlling I14 reduced to 0.1 kA, but control I24 increases to 0.7 kA. It can be
observed that when the MI-DCPFC is accessed in the system, the controlled line current I14 can also
quickly respond to I14 = 0.1 kA and maintain stable operation, as shown in Figure 14d. What is more,
it can be found that unlike with the traditional control method, as the voltage VTP2 introduced in the
line24 can be controlled and stably switched between Uc, 0 and −Uc, so the increased amounts of the
current I24 can be controlled freely at the same time.

The above simulation results show that the simplified MI-DCPFC with the novel control strategy
can achieve the power flow control quickly and stably under the working-mode 1. Furthermore, when
compared to the traditional control strategy, on the basis of the reducing control of the line current, the
increased value of other line currents can be also controlled freely at the same time. In addition, the
capacitor voltage fluctuation is small, and the voltage state introduced in the connection line by the
output port is consistent with the theoretical analysis.
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Figure 14. Simulation results of three-port MI-DCPFC under Case 1: (a) line currents with the traditional
control method; (b) capacitor and port-output voltages with the traditional control method; (c) enlarged
view of Figure 14b among 0.5–0.51 s; (d) line currents with the novel control method; (e) capacitor and
port-output voltages with the novel control method; (f) enlarged view of Figure 14e among 1–1.01s;
(g) enlarged view of Figure 14e among 1.6–1.61 s.
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5.1.2. Case 2

The working-mode 6 (I24 and I34 are reduced; I14 is increased) was verified in this case. Similarly,
to make it easy to compare and analyze the simplified MI-DCPFC with the traditional and novel
control methods were tested, respectively.

The performance of the MI-DCPFC with the traditional control method in this case is shown in
Figure 15a–c. The MI-DCPFC is accessed into the system at 0.2 s, and with the command controlling
line 34, the current reduces to I34 = 0.15 kA. It can be observed that the controlled line current I34 quickly
responds to the command value and maintains stable operation when the MI-DCPFC is accessed in the
system at 0.2 s, as shown in Figure 15a. However, as shown in Figure 15b,c, since the voltage VTP2

introduced in the line 24 and voltage VTP3 introduced in line 34 are synchronized to switch between 0
and Uc, although the I34 is also reduced, its specific reduced amounts cannot be controlled separately
at this time.Energies 2016, 9, x FOR PEER REVIEW 18 of 28 
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The performance of the MI-DCPFC with the novel control method is shown in Figure 15d–g.
The MI-DCPFC is accessed in the system at 0.2 s, and with the command in control, I24 and I34 are
reduced to I24 = 0.5 kA and I34 = 0.15 kA, respectively. When operating to t4, the power flow control
command is re-changed, where with controlling occurring, I34 was reduced to 0.15 kA, but control
I24 further reduces to 0.4 kA. It can be observed that when the MI-DCPFC is accessed in the system,
the controlled line current I34 quickly responded to I34 = 0.15 kA and maintained stable operation,
as shown in Figure 15d. What is more, the reduced amounts of the current I24 can simultaneously be
controlled freely with the reducing control of I34. Correspondingly, the voltage VTP2 introduced in the
line 24 is controlled and stably switched between Uc, 0 and −Uc, as shown in Figure 15e–g.

The simulation results in this case show that the simplified MI-DCPFC with the novel control
strategy can achieve the power flow regulation quickly and stably under the working-mode 6.
Furthermore, compared to the traditional control strategy, independent reduction control of each line
current can be achieved when multiple line currents are reduced. Meanwhile, the capacitor voltage
fluctuation is small, and the voltage state introduced in the connection line by the output port is
consistent with the theoretical analysis.

5.2. Four-Port MI-DCPFC Verified Results

In order to further test the performance of the MI-DCPFC, the verification of a four-port MI-DCPFC
was carried out. When the system starts up normally, it is tested with the following three different
conditions, and the performance of the MI-DCPFC is shown in Figure 16; the measurement values of
each line current under different test conditions are shown in Table 5.

(1) At 0.2 s, control I14 reduces to 0.05 kA, and control I24 and I45 increase to 0.7 kA and
0.5 kA, respectively;

(2) At 0.2 s, control I14 and I45 reduce to 0.2 kA and 0.3 kA, respectively; and control I24 increases to
0.7 kA;

(3) At 0.2 s, control I14, I45 and I24 reduce to 0.2 kA, 0.3 kA and 0.4 kA, respectively.
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Figure 16. Simulation results of four-port MI-DCPFC: (a) line currents under condition 1; (b) capacitor
and port-output voltages under condition 1; (c) line currents under condition 2; (d) capacitor and
port-output voltages under condition 2; (e) line currents under condition 3; (f) capacitor and port-output
voltages under condition 3.
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Table 5. The measurement values of each line current under different test conditions.

Line Current/kA No Command/kA Condition 1/kA Condition 2/kA Condition 3/kA

I14 0.33 0.05 0.20 0.20
I45 0.43 0.50 0.30 0.30
I24 0.62 0.70 0.70 0.40
I34 0.21 0.35 0.40 0.70
I23 −0.06 0.15 0 0.30
I12 0.07 0.35 0.20 0.20
I35 0.03 0.10 −0.10 −0.10

It can be observed that under the different control conditions, the controlled lines can all
quickly track the corresponding power flow control commands, and then maintain stable operation.
In addition, we can note that in the test conditions 1 and 3, MI-DCPFC only operates in control-mode 1
and control-mode 2, respectively; in test condition 2, control-mode 1 and -mode 2 participate in the
regulation work simultaneously.

Concluding all previous simulation studies in this section, it can be seen that with the CPS-PWM
control strategy proposed in this paper, the simplified MI-DCPFC can achieve effective power flow
control under different power flow regulation requirements and its response speed is faster.

6. Experiments

To verify the proposed MI-DCPFC topology and control strategy, the five-terminal HVDC
transmission system consistent with the simulation was built in the laboratory. Figure 17 shows
the photograph of the platform. Each module in the Units 1 to 3 has half-bridge and full-bridge as
two different topology modes that could be selected. Different MI-DCPFC topologies can be formed
by an appropriate selection and combination, as shown in Table 6. VSC1–VSC5 adopts a ITECH
programmable digital power IT series, where VSC4 controls the systems DC bus voltage at 80 V;
VSC1 to 3 and VSC5 respectively inject I1 = 8 A, I2 = 10 A, I3 = 6 A and I5 = 8 A into the system.
The transmission line parameters are shown in Table 7. In addition, in order to facilitate the comparison
and verification of the simulation results, the verified cases in the experiment are the same as for
the simulation.
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Figure 17. Photograph of the MI-DCPFC platform: (a) MI-DCPFC prototype; (b) VSC4; (c) VSC1-3 and
5; (d) line impedance module.
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Table 6. Implementation of the MI-DCPFC topology in the experiment.

Topology Selected Module Topology Used Modules

Traditional three-port MI-DCPFC Full-bridge 1-1; 2-1 to -2
Proposed three-port MI-DCPFC Half-bridge 1-1; 2-1 to -3
Proposed four-port MI-DCPFC Half-bridge 1-1; 2-1 to -4

Table 7. Line parameters in the experiment.

Transmission Line Resitance/Ω Inductance/mH

line.14 2.0 4.0
line.24 1.0 3.0
line.34 3.0 5.0
line.45 1.5 4.0
line.12 1.2 3.0
line.23 1.0 3.0
line.35 1.0 3.0

6.1. Three-Port MI-DCPFC Verified Results

6.1.1. System Test

With the topology of the transmission system shown in Figure 13a, Figure 18 shows the line
currents of the transmission system with no MI-DCPFC accessed under the normal operation. It can be
observed that the system operates in a stable manner when it starts up. The measured values of each
line current are about I14 = 7 A; I24 = 12.8 A; I34 = 4.8 A; I45 = 4 A; I12 = 1.2 A; I23 = −1.4 A, respectively.
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6.1.2. Case 1

The working-mode 1 (I14 is reduced; I24 and I34 are increased) was confirmed in this case.
The performance of the MI-DCPFC with the traditional control method in this case is shown in
Figure 19a–c. The MI-DCPFC is accessed into the system at t1, and with the command controlling I14

reduces to I14 = 2 A. It can be seen that before adjusting the line currents, the system is operating in
a stable manner. When the MI-DCPFC is inserted to the system at t1, the controlled line current I14

quickly responded to the command value and maintained stable operation, as shown in Figure 19a.
In addition, as shown in Figure 19b,c, the voltage VTP1 introduced in line 14 stably switched between 0
and Uc; the voltages introduced in line 24 and line 34 were synchronized to switch between 0 and −Uc,
so I24 and I34 automatically responded to I24 = 16.8 A and I34 = 6 A respectively, where the specific
increased amounts of the currents I24 and I34 cannot be controlled separately at this time.
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Figure 19. Experiment results of three-port MI-DCPFC under Case 1: (a) line currents with the
traditional control method; (b) capacitor and port-output voltages with the traditional control method;
(c) enlarged view of Figure 19b; (d) line currents with the novel control method; (e) capacitor and
port-output voltages with the novel control method; (f) enlarged view 1 of Figure 19e; (g) enlarged
view 2 of Figure 19e.

The performance of the MI-DCPFC with the novel control method is shown in Figure 19d–g.
The MI-DCPFC is inserted to the system at t2, and with the command in control, I14 reduces to I14 = 2 A
and I24 remains unchanged. When operating to t3, the regulation command is re-changed, where
with controlling I14 reduced to 2 A, but control increased I24 to 15 A. It can be observed that when the
MI-DCPFC is accessed into the system, the controlled line current I14 also quickly responded to 2 A
and maintained stable operation, as shown in Figure 19d. What is more, unlike with the traditional
control method, since the voltage VTP2 introduced in line 24 can be controlled stably switched between
Uc, 0 and −Uc, the increased amounts of the current I24 can also be controlled freely at the same time.
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6.1.3. Case 2

The working-mode 6 (I24 and I34 are reduced; I14 is increased) was confirmed in this case.
The performance of the MI-DCPFC with the traditional control method in this case is shown in
Figure 20a–c. The MI-DCPFC is accessed into the system at t4, and with the command controlling I34

reduces to I34 = 3 A.
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Figure 20. Experiment results of three-port MI-DCPFC under Case 2: (a) line currents with the
traditional control method; (b) capacitor and port-output voltages with the traditional control method;
(c) enlarged view of Figure 20a; (d) line currents with the novel control method; (e) capacitor and
port-output voltages with the novel control method; (f) enlarged view 1 of Figure 20e; (g) enlarged
view 2 of Figure 20e.
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It can be observed that the controlled line current I34 quickly responded to the command value
when the MI-DCPFC was inserted to the system at t4, as shown in Figure 20a. However, as shown in
Figure 20b,c, as the voltage VTP2 introduced in line 24 and voltage VTP3 introduced in line 34 were
synchronized to switch between 0 and Uc, although the I34 is also reduced, its specific reduced amounts
could not be controlled separately at this time.

The performance of the MI-DCPFC with the novel control method is shown in Figure 20d–g.
The MI-DCPFC is accessed into the system at t5, and with the command controlling I24 and I34 are
reduced to I24 = 3 A and I34 = 10 A, respectively. When operating to t6, the power flow control
command is changed again, where with controlling, I34 reduced to 3 A, but control further reduces
I24 to 8A. It can be observed that when the MI-DCPFC is accessed into the system, the controlled
line current I34 also quickly responded to 3 A, as shown in Figure 20d. What is more, the reduced
amounts of the current I24 can simultaneously be controlled freely with the reducing control of I34.
Correspondingly, the voltage VTP2 introduced in line 24 is controlled and stably switched between Uc,
0 and −Uc, as shown in Figure 20e–g.

6.2. Four-Port MI-DCPFC Verified Results

6.2.1. System Test

With the topology of the transmission system shown in Figure 13b, Figure 21 shows the line
currents of the transmission system with no MI-DCPFC accessed under the normal operation. It can be
observed that the system operates stable when it starts up. The measured values of each line current are
about I14 = 6.8 A; I24 = 12.5 A; I34 = 4.8 A; I45 = 8.6 A; I12 = 1.2 A; I23 = −1.2 A; I35 = 0.6 A, respectively.

Energies 2016, 9, x FOR PEER REVIEW 24 of 28 

 

It can be observed that the controlled line current I34 quickly responded to the command value 555 
when the MI-DCPFC was inserted to the system at t4, as shown in Figure 20a. However, as shown 556 
in Figure 20b,c, as the voltage VTP2 introduced in line 24 and voltage VTP3 introduced in line 34 were 557 
synchronized to switch between 0 and Uc, although the I34 is also reduced, its specific reduced 558 
amounts could not be controlled separately at this time. 559 

The performance of the MI-DCPFC with the novel control method is shown in Figure 20d–g. 560 
The MI-DCPFC is accessed into the system at t5, and with the command controlling I24 and I34 are 561 
reduced to I24 = 3 A and I34 = 10 A, respectively. When operating to t6, the power flow control 562 
command is changed again, where with controlling, I34 reduced to 3A, but control further reduces 563 
I24 to 8A. It can be observed that when the MI-DCPFC is accessed into the system, the controlled line 564 
current I34 also quickly responded to 3A, as shown in Figure 20d. What is more, the reduced 565 
amounts of the current I24 can simultaneously be controlled freely with the reducing control of I34. 566 
Correspondingly, the voltage VTP2 introduced in line 24 is controlled and stably switched between Uc, 567 
0 and −Uc, as shown in Figure 20e–g. 568 

6.2. Four-port MI-DCPFC Verified Results 569 

6.2.1. System Test 570 

With the topology of the transmission system shown in Figure 13b, Figure 21 shows the line 571 
currents of the transmission system with no MI-DCPFC accessed under the normal operation. It can 572 
be observed that the system operates stable when it starts up. The measured values of each line 573 
current are about I14 = 6.8 A; I24 = 12.5 A; I34 = 4.8 A; I45 = 8.6 A; I12 = 1.2 A; I23 = −1.2 A; I35 = 0.6 A, 574 
respectively. 575 

 576 

Figure 21. Experiment results under normal operation: (a) line currents part 1; (b) line currents part 2. 577 

6.2.2. Case studies 578 

The four-port MI-DCPFC is confirmed in this section. Same as the simulation, the following 579 
three different cases are respectively confirmed when the system starts up normally.  580 

1) At t1, control I14 reduces to 1 A, and control I24 and I45 increase to 14 A and 10 A, respectively; 581 
2) At t2, control I14 and I45 reduce to 4 A and 6 A, respectively; and control I24 increases to 14 A;  582 
3) At t3, control I14, I45 and I24 reduce to 4 A, 6 A and 8 A, respectively. 583 

The main experiment results are shown in Figure 22; the measurement values of each line 584 
current under different test conditions are shown in Table 8. It can be observed that under the 585 
different control conditions, the controlled lines can all quickly track the corresponding power flow 586 
control commands, and then maintain stable operation. In addition, the capacitor voltage 587 
fluctuation is small, and the voltage state introduced in the connection line by the output port is 588 
stable. 589 

Concluding all previous experiment studies in this section, it can be seen that the performances 590 
of the MI-DCPFC under different conditions are consistent with the results in the simulation. This 591 
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6.2.2. Case Studies

The four-port MI-DCPFC is confirmed in this section. Same as the simulation, the following three
different cases are respectively confirmed when the system starts up normally.

(1) At t1, control I14 reduces to 1 A, and control I24 and I45 increase to 14 A and 10 A, respectively;
(2) At t2, control I14 and I45 reduce to 4 A and 6 A, respectively; and control I24 increases to 14 A;
(3) At t3, control I14, I45 and I24 reduce to 4 A, 6 A and 8 A, respectively.

The main experiment results are shown in Figure 22; the measurement values of each line current
under different test conditions are shown in Table 8. It can be observed that under the different control
conditions, the controlled lines can all quickly track the corresponding power flow control commands,
and then maintain stable operation. In addition, the capacitor voltage fluctuation is small, and the
voltage state introduced in the connection line by the output port is stable.
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Table 8. The measurement values of each line current under different test conditions in the experiment.

Line Current/kA No Command /A Case 1/A Case 2/A Case 3/A

I14 6.8 1 4 4
I45 8.6 10 6 6
I24 12.5 14 14 8
I34 4.8 7 8 14
I23 -1.2 3 0 6
I12 1.2 7 4 4
I35 0.6 2 −2 −2

Concluding all previous experiment studies in this section, it can be seen that the performances of
the MI-DCPFC under different conditions are consistent with the results in the simulation. This shows
that the simplified MI-DCPFC can achieve effective power flow control under different power flow
regulation requirements.

7. Conclusions

The dc power flow control issue in multi-terminal HVDC transmission system was investigated
in this paper. The main works and contributions can be summarized as:
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(1) Under the background of a interline dc power flow controller, the topology and operation
principles of the traditional MI-DCPFC were analyzed. The analysis revealed that the upper
and lower switches of the left half-bridge of the MI-DCPFC are always pulsed synchronously
during the operating process, respectively. Based on this, this paper presents a switches reduced
topology of MI-DCPFC.

(2) To solve the problem of coupling of the port-output voltage of the MI-DCPFC, a novel general
control strategy based on CPS-PWM was proposed in this paper. It can help with realizing the
decoupling of the port-output voltage of MI-DCPFC, which ensures completely independent
tracking of the power flow regulating commands for different controlled transmission lines.
In addition, key relationships between the system state variables were derived and analyzed in
this study, and the relevant expression of the capacitor voltage of MI-DCPFC under steady state
was obtained.

(3) Two five-terminal HVDC transmission systems were developed in the MATLAB/SIMULINK
environment and experiment platform. Taking the three-port and four-port topology as examples,
the performance of the power flow controller and related control strategy were verified under
various test conditions. The results show that the transmission system with proposed MI-DCPFC
can operate in a stable manner, and the controller can quickly and efficiently track the power flow
regulation commands.

(4) The simplified topology and capacitor voltage decoupling control strategy of the traditional
MI-DCPFC were studied in this paper. However, the question of how to further improve the
controller and realize the self-control of the capacitor voltage and the line current reversal is the
next research area to investigate.
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Appendix A

Table A1. Conduction states of the traditional three-port MI-DCPFC.

Mode Direction Reduced Increased
Switching States

Sc1 Sc2 Sc3 Sd1 Sd2 Sd3
1 forward Ip1 Ip2 and Ip3

off

off on on
2 forward Ip2 Ip1 and Ip3 on off on
3 forward Ip3 Ip1 and Ip2 on on off

4 forward Ip1 and Ip2 Ip3 off off on
5 forward Ip1 and Ip3 Ip2 off on off

6 forward Ip2 and Ip3 Ip1 on off off

7 reverse Ip1 Ip2 and Ip3 on off off

off

8 reverse Ip2 Ip1 and Ip3 off on off

9 reverse Ip3 Ip1 and Ip2 off off on
10 reverse Ip1 and Ip2 Ip3 on on off

11 reverse Ip1 and Ip3 Ip2 on off on
12 reverse Ip2 and Ip3 Ip1 off on on
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