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Abstract: A comparative study regarding the performance of real-scale oil-free centrifugal chillers
having the flooded evaporator or falling film evaporator was conducted in this study. The nominal
capacity for the test chillers was around 200~230 USRT (US refrigeration ton) (703~809 kW).
The compressors of the two chillers were identical and R-134a was used as the working fluid.
Both evaporators employed the same enhanced tubes (GEWA-B) to fulfill phase change. Tests were
conducted in full, 75%, 50%, and 25% loading. Test results indicate that both chillers contained
a comparable system performance with an integrated part-load value of around 8.62~8.63. The overall
heat transfer coefficient for the flooded evaporator was appreciably higher (20~40%) than the falling
film evaporator. This is because the falling film flowrate was below the threshold value and the heat
transfer was dominated by evaporation mode. Yet, the heat transfer performance for the falling film
evaporator was further jeopardized due to starvation of the film flowrate (partial dry-out), especially in
the middle or bottom of the tube bundle. This phenomenon became even more pronounced at
partial loading (25%), whereas the flooded evaporator did not reveal such a performance dip at
partial loading.

Keywords: oil-free centrifugal chiller; flooded evaporator; falling film evaporator; heat transfer

1. Introduction

Normally, the designed cooling capacity of a water chiller for air-conditioning applications is
based on the peak load demand. For large buildings, a centrifugal chiller is especially popular for
large cooling capacity requirements. Yet, in subtropical or tropical zones, centrifugal chillers may
work all year round. However, the full-load running period of the chiller is usually shorter than
one month during a whole year operation, meaning that most of the time, chillers are in part-load
operation [1]. Hence, for more effective characterization of a chiller in association with the part-load
operation, implementation of integrated part-load value (IPLV) [2] is adopted as the design concept.
The IPLV is defined as follows

IPLV = 0.01A + 0.42B + 0.45C + 0.12D (1)

where A is the coefficient of performance (COP) at 100% load, B is the COP at 75% load, C is the COP at
50% load, and D is the COP at 25% load. From Equation (1), the proportions of 75% and 50% part-loads
are much higher than full-load or 25% load.

For effective part-load operation as far as cooling of commercial buildings is concerned,
variable speed chillers are increasingly used in central air-conditioning systems, as they can effectively
reduce electricity consumption. For conventional variable speed chillers, lubrication of the moving
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part is essential and oil circuits are used to lubricate the bearings and rotating parts. The problem of
lubrication may even become severe at part-load operation due to loss of oil-return. As a consequence,
appreciable frictional loss at the rotating shafts occurs and limits the high-speed operation. To tailor
this problem, oil-free magnetic bearings that offer a contactless shaft subject to ultrahigh speed rotation
are integrated with the compressors [3]. Yu et al. [4] reported an energy saving of 9.6% in the total
electricity consumption in a shopping arcade by using oil-free chillers with variable speed control.
An optimal control strategy for variable speed centrifugal compressors with magnetic bearings was
developed by [5].

Note that the oil-free design not only contains a superior compressor efficiency under variable
speed control but also can eliminate the heat transfer deterioration in evaporators [6,7]. For a typical
centrifugal water chiller, the evaporator can be either flooded type or falling film type. The major
heat transfer mechanism of flooded evaporator is via nucleate boiling, whereas the falling film
evaporator makes use of both evaporation and nucleate boiling, and both designs incorporate effective
phase-change processes. There were some related studies concerning the heat transfer regrading
flooded evaporator or falling film evaporator; performances regarding single tube and tube bundle were
reported [8–13] and some correlations were developed. Normally, the reported data have shown that
the falling film design not only offers a less refrigerant inventory but also contains a higher heat transfer
coefficient (HTC) when compared with the flooded evaporator [12,14,15]. However, these studies were
based on reduced evaporator size with a much smaller bundle effect. Yet, heat transfer performance is
not reported in a large chiller system. The only reported test results for a falling film evaporator in
a real-scale large chiller were reported by Yang and Wang [16] and Yang et al. [17]. Yang and Wang [16]
conducted heat transfer for falling film evaporators in large compression refrigeration systems via
numerical study. They concluded that the mal distribution by the distributor could severely offset
the performance of the falling film evaporator. Yang et al. [17] extended the numerical simulations to
examine the influence of dry patch on the falling film evaporator and concluded that the heat transfer
performance of falling evaporators can be enhanced by increasing the refrigerant flowrate within
a certain range due to the decreasing dry patch areas on falling film tubes. Once the dry patches decrease
to the minimum value of zero, the evaporators just reach the best thermal performance. Although their
studies were applicable for a real-scale system, their main works focused on the numerical studies.
Up to now, there were no comparative studies in real scale concerning the performance difference
between a falling film evaporator and a flooded evaporator. Hence, the objective of this study is to
provide quantitative comparisons from the perspective of system and heat transfer.

2. Experimental Setup and Data Reduction for System Performance

2.1. Introduction to the Experimental Setup

The schematic of the test chiller is shown in Figure 1, which shows the oil-free centrifugal
compressor (ITRI model MBC-250, R-134a) with the inverter control (ReymeBus RM6P1-4250E3)—the
revolution is detected by a magnetic bearing sensor, which shows a slip deviation to be less
than 1% against the inverter controller—a shell-and-tube condenser, an electrical expansion valve
(Danfoss ETS-4000), and an evaporator with a shell-and-tube configuration. A level sensor is used to
measure the condensate level within the condenser (PAL PVLS-250, range 0-250 mm, sensing resolution
6 mm). The nominal capacities of the centrifugal chillers are 200 USRT (falling-film type, 703 kW),
and 230 USRT (flooded type, 809 kW), respectively. Both chillers are incorporated with the same
oil-free compressor and R-134a is used as the working fluid. The maximum refrigerant flowrate is
5.46 kg/s. The dimensions of the falling film evaporator and flooded evaporator are shown in Figure 2.
Both evaporators adopt a 2-pass arrangement. The shell diameter for the falling-film evaporator
is 670 mm, and 680 mm for the flooded evaporator. The test tubes are made from Wieland GEWA
B4-enhanced tubes with a nominal outer tube diameter of 19.05 mm (3/4”) and a thickness of 0.63 mm.
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The tube length of each tube for both evaporators is 3 m. The evaporator is insulated carefully and the
heat loss to the ambient is estimated to be less than 0.5% of the nominal capacity.Energies 2017, 10, x FOR PEER REVIEW 3 of 11 

 

 
Figure 1. Schematic of the test facilty. 

  
(a) Falling film evaporator (b) flooded evaoprator 

Figure 2. Tube bundle for the falling-film evaporator and the flooded evaporator (unit: mm). 

2.2. Experimental Apparatus and Measurements 

To ensure the accurate measurements and fair comparisons, tests are conducted following the 
and AHRI standard 551/591(SI) [2]. The refrigerant inventory for the falling-film evaporator and the 
flooded evaporator are 220 kg and 250 kg, respectively. The refrigerant charge is based on the 
nominal rating at full load. Based on the standard requirement, the following test conditions are 
carried out: 

1. Chilled water flowrate at the evaporator: the flowrate at full-load operation for both chillers is 
regulated to achieve a fixed temperature difference of chilled water across the evaporator (5 °C, 
with tolerance being less than 0.3 °C). The required water flowrate is about 10 LPM per USRT 
(2.84 LPM per kW). 

2. Cooling water flowrate at the condenser: the flowrate at full-load operation for both chillers is 
regulated to achieve a fixed temperature difference of cooling water across the condenser (5 °C, 
with tolerance being less than 0.3 °C). The required water flowrate is about 12.5 LPM per USRT 
(3.56 LPM per kW). 

3. Outlet temperature of the chilled water: the temperature is required to be maintained at 7 °C 
with 0.3 °C tolerance. 

Unit: mm  

Figure 1. Schematic of the test facilty.

Energies 2017, 10, x FOR PEER REVIEW 3 of 11 

 

 
Figure 1. Schematic of the test facilty. 

  
(a) Falling film evaporator (b) flooded evaoprator 

Figure 2. Tube bundle for the falling-film evaporator and the flooded evaporator (unit: mm). 

2.2. Experimental Apparatus and Measurements 

To ensure the accurate measurements and fair comparisons, tests are conducted following the 
and AHRI standard 551/591(SI) [2]. The refrigerant inventory for the falling-film evaporator and the 
flooded evaporator are 220 kg and 250 kg, respectively. The refrigerant charge is based on the 
nominal rating at full load. Based on the standard requirement, the following test conditions are 
carried out: 

1. Chilled water flowrate at the evaporator: the flowrate at full-load operation for both chillers is 
regulated to achieve a fixed temperature difference of chilled water across the evaporator (5 °C, 
with tolerance being less than 0.3 °C). The required water flowrate is about 10 LPM per USRT 
(2.84 LPM per kW). 

2. Cooling water flowrate at the condenser: the flowrate at full-load operation for both chillers is 
regulated to achieve a fixed temperature difference of cooling water across the condenser (5 °C, 
with tolerance being less than 0.3 °C). The required water flowrate is about 12.5 LPM per USRT 
(3.56 LPM per kW). 

3. Outlet temperature of the chilled water: the temperature is required to be maintained at 7 °C 
with 0.3 °C tolerance. 

Unit: mm  

Figure 2. Tube bundle for the falling-film evaporator and the flooded evaporator (unit: mm).

2.2. Experimental Apparatus and Measurements

To ensure the accurate measurements and fair comparisons, tests are conducted following the
and AHRI standard 551/591(SI) [2]. The refrigerant inventory for the falling-film evaporator and the
flooded evaporator are 220 kg and 250 kg, respectively. The refrigerant charge is based on the nominal
rating at full load. Based on the standard requirement, the following test conditions are carried out:

1. Chilled water flowrate at the evaporator: the flowrate at full-load operation for both chillers is
regulated to achieve a fixed temperature difference of chilled water across the evaporator (5 ◦C,
with tolerance being less than 0.3 ◦C). The required water flowrate is about 10 LPM per USRT
(2.84 LPM per kW).

2. Cooling water flowrate at the condenser: the flowrate at full-load operation for both chillers is
regulated to achieve a fixed temperature difference of cooling water across the condenser (5 ◦C,
with tolerance being less than 0.3 ◦C). The required water flowrate is about 12.5 LPM per USRT
(3.56 LPM per kW).
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3. Outlet temperature of the chilled water: the temperature is required to be maintained at 7 ◦C
with 0.3 ◦C tolerance.

4. Inlet temperature of the cooling water: tests are conducted in different loading conditions (100%,
75%, 50% and 25%). The corresponding temperatures to arrive at the loading are 30 ◦C, 24.5 ◦C,
19.0 ◦C, and 19.0 ◦C, respectively, with a tolerance of 0.3 ◦C.

A magnetic flowmeter (Yokogawa, model SE220MJ with a resolution of 0.5%) of the chilled water
is installed at the water return, as shown in Figure 1. The inlet and outlet temperatures of the evaporator
and the condenser are measured by calibrated RTD (Resistance Temperature Device, OMEGA Pt100)
with a resolution of 0.1 ◦C. The corresponding evaporation pressure and condensing pressure is
measured by pressure transmitter (WIKA R-1) with a calibrated accuracy of 2%. The consumed power
of the compressor is measured by Yokogawa WT230 power meter, which has an accuracy of 0.5%.

2.3. Data Reduction of the Experimental Measurements

The capacity of the water chiller is calculated by

.
Q =

.
meva,water cp,water ∆Teva,water (2)

where
.

meva,water is the chilled water flowrate, cp,water is the specific heat of chilled water, and ∆Teva,water

is the temperature difference of chilled water at the evaporator. The corresponding coefficient of
performance (COP) is calculated as

COP =

.
Q

Wcomp
(3)

where Wcomp is the power consumption of the compressor. The integrated part load value (IPLV) can
be calculated from Equation (1). The effectiveness of the evaporator is calculated as:

ε ≡

.
Q

.
Qmax

=

.
Q

Cmin(Tin,water − Tsat,eva)
(4)

For the phase change heat exchanger like the present falling film evaporator or flooded evaporator,
Cmin =

.
meva,watercp,water, and the effectiveness is only a function of the number of transfer unit (NTU),

NTU ≡ UA/Cmin (5)

As a result,
ε = 1− e−NTU (6)

Hence, the NTU can be derived from the measurements to obtain the overall heat transfer
conductance (UA) or the overall heat transfer coefficient U. Note that the overall heat transfer coefficient
in this study is based on the outer surface of the tube.

3. Results and Discussion

Table 1 shows the test results for the centrifugal water chillers. Note that these two test chillers
contain the same compressor. Although the compressor is the same for these two chillers, the nominal
capacity for the flooded type is 230 USRT (809 kW), while the falling film evaporator contains a 200 RT
(703 kW) chiller capacity. Both chillers reveal an appreciable drop of capacity and compressor power
when the compressor revolution is reduced. However, the corresponding COP rises when the loading
is reduced and reaches the plateau at 50% part-load with a COP of around 9.9. A further un-loading to
25% leads to a detectable decline of the COP. Basically, the system performance subject to part-load is
similar to the test results for the compressor from the calorimeter. Yet the corresponding IPLV for the
falling film evaporator is 8.627 while it is 8.634. Basically, the system performance for both systems is
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about the same both in full-loading and in partial loading conditions. There is barely any difference as
far as system performance is concerned.

Table 1. Test results for the oil-free centrifugal chiller with a falling evaporator and a flooded evaporator
associated with full and partial loading.

Type of Evaporator Falling Film EVA Flooded EVA

Loading 100% 75% 50% 25% 100% 75% 50% 25%

EEV opening (%) 56 43 33 20 93 60 48 37

Inverter frequency (Hz) 605 517 428 408 625 535 439 417

Rpm 18,150 15,510 12,840 12,240 18,750 16,050 13,170 12,510

Compression ratio 2.49 2.00 1.63 1.56 2.52 2.04 1.64 1.57

Capacity (USRT) 198.7 149.0 101.4 51.0 229.9 169.3 112.2 58.6

Capacity (kW) 698.7 524.0 356.5 179.3 808.5 595.1 394.5 206.1

Suction pressure (bar, gage) 2.62 2.65 2.69 2.69 2.61 2.63 2.67 2.68

Discharge pressure (bar, gage) 8.05 6.3 5.03 4.75 8.12 6.41 5.02 4.77

Chilled water flowrate (LPM) 2018 2018 2018 2018 2322 2322 2322 2322

Inlet temperature
Chilled water (◦C) 12.3 11.0 9.8 8.5 12.1 10.7 9.6 8.3

Outlet temperature
Chilled water (◦C) 7.3 7.3 7.3 7.2 7.2 7.1 7.1 7.1

Cooling water flowrate (LPM) 2551 2551 2551 2551 2796 2796 2796 2796

Inlet temperature
Cooling water (◦C) 29.8 23.9 18.9 18.8 29.8 24.5 19.1 18.9

Outlet temperature
Cooling water (◦C) 34.4 27.2 21.1 19.9 34.4 27.9 21.3 20.1

COP 5.54 7.51 9.94 7.87 5.58 7.35 9.99 8.3

Power (kW) 126.08 69.77 35.86 22.79 144.9 80.97 39.15 24.85

Evaporation pressure (bar, gage) 2.66 2.67 2.70 2.68 2.72 2.70 2.71 2.71

Evaporation Temperature (◦C) 6.4 6.5 6.7 6.7 6.9 6.7 6.8 6.8

Condensing pressure (bar, gage) 7.99 6.19 4.97 4.72 7.81 6.32 5.00 4.77

Condensing Temperature (◦C) 35.2 27.5 21.3 20.0 34.5 28.1 21.5 20.2

Discharge Temperature (◦C) 42.6 33.4 25.9 25.9 42.7 34.1 26.0 26.3

On the other hand, the corresponding overall heat transfer coefficient (based on outer wall surface
area) vs. the heat flux for both the flooded and the falling-film evaporator is shown in Figure 3.
Apparently, the overall heat transfer coefficient increases with the rise of loading. Normally, the overall
heat transfer coefficient for the flooded type evaporator is about 30~40% higher than the falling film
evaporator. Notice that the mean temperature and the chilled water flowrate in the tube side for
both evaporators remains the same for both evaporators. Yet the tube pass is the same and the tube
number in each pass for the flooded evaporator is about the same as that of the falling evaporator.
A quick estimate shows that the dominant thermal resistance is on the shell side (about 60–75%).
Hence, the thermal resistance on the tube side for the flooded evaporator is roughly the same as that of
the falling film evaporator, indicating that the difference in overall heat transfer performance is due to
the difference in the heat transfer coefficient on the shell side rather than on the tube side. Note that
some prior studies indicated that the falling evaporation contains a better heat transfer performance
than the pure nucleate boiling mode (e.g., [12,13,18]). Hence, it is expected that the falling evaporator
should yield a higher overall heat transfer performance, since heat transfer mode for both evaporation
and nucleate boiling take place in the tube bundle. Yet, as explained by Christians and Thome [19],
the presence of the falling film on the enhanced tubes could result in a low-pressure zone that entrains
the bubble more efficiently from the pores, thereby revealing superior heat transfer performance
for the falling film evaporator when compared with the flooded evaporator. However, surprisingly,
in this study, the flooded evaporator outperforms the falling evaporator as far as overall heat transfer
coefficient is concerned, as shown in Figure 3. Yet the difference in overall heat transfer coefficient
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between the flooded evaporator and the falling film becomes even more pronounced when the loading
is increased. In the practical falling film evaporator, the falling film can be made available either by
spraying or trickling to distribute liquid refrigerant on the bundles [16]. The falling film evaporators
with spraying distribution usually require refrigerant pumps to fulfill the sprayed liquid cycle and
the amount of recirculated refrigerant normally exceeds the evaporated mass among the bundles.
Hence, most falling film evaporators incorporate trickling design for easier maintenance [16]. Note that
the present enhanced surface is the Wieland GEWA B tubing, and the surface reveals a different heat
transfer behavior against heat flux for a nucleate boiling condition. For a heat flux below 20 kW/m2,
the corresponding heat transfer coefficient increases with the rise of heat flux. Conversely, a detectable
decline is seen when the heat flux surpasses the threshold value [20]. In the present tests, the maximum
heat flux is around 20 kW/m2 at full-load and ranges around 5~15 kW/m2 at partial load. This suggests
a positive influence of heat flux upon HTCs in the present flooded evaporator. Notice that the overall
thermal resistance is related to in-tube water side resistance, wall resistance, and shell side resistance
in the following:

1
Uo

=
1
ho

+
ln

(
Do
Di

)
2πkwL

+
Ao

hiAi
(7)

where Uo is the overall heat transfer coefficient, and hi and ho are the heat transfer coefficient in the
tube side and shell side, respectively. kw is the thermal conductivity of the tube material, and Ao

and Ai represent the surface area in the shell and tube side, respectively. L is the length of the test
tube. The test is conducted at identical water flowrate for all loadings and the variation in chilled
water temperature is also small, thereby suggesting a nearly constant HTC at the chilled water side
throughout the tests. This is applicable both in full loading and partial loading. Yet the wall resistance
remains unchanged during the tests. As a consequence,

1
Uo

=
1
ho

+ C0 (8)

where C0 =
ln

(
Do
Di

)
2πkwL + Ao

hiAi
. In the meantime, ho~C1qn for the HTC in the shell side is subject to nucleate

boiling as long as the heat transfer is below the threshold heat flux [8]. Hence,

1
Uo

=
1

C1
q−n + C0 = C2X + C0 (9)



Energies 2019, 12, 2548 7 of 11

Energies 2017, 10, x FOR PEER REVIEW 7 of 11 

 

0.972. In this regard, the corresponding HTC of the tube bundle can be obtained by manipulating the 
reciprocal of Equation (9): 

0

1
1o

o

h
C

U

=
−

 
(10) 

q (kW/m2)

2 4 6 8 10 12 14 16 18 20 22

U
o (

W
/m

2 ‧
K

)

4

6

8

10

12

14

Flooded EVA
Falling Film EVA

 
Figure 3. The overall heat transfer coefficient U vs. heat flux for the falling film evaporator and the 
flooded evaporator. 

Based on the foregoing analysis, the corresponding HTC for the flooded evaporator at full, 75%, 
50%, and 25% loading are 14.1, 13.3, 11.2, and 8.9 kW/m2⋅K, respectively. On the other hand, as 
depicted in Figure 3, the overall heat transfer coefficient for the falling film evaporator is appreciably 
lower than that of the flooded evaporator. There are two reasons for the worse performance of the 
present falling film evaporator when compared with the flooded evaporator. Note that the falling 
film evaporator contains two heat transfer modes, namely the evaporation at the liquid/vapor 
interface and the nucleate boiling at the tube wall surface. Commonly, the contribution of nucleate 
boiling surpasses the evaporation. A typical HTC distribution associated with tube location (from the 
first tube to the ninth tube) for the enhanced tube bundle vs. the film Reynolds number by Roques 
and Thome is shown in Figure 4a [8]. Notice that their test is conducted via GEWA-B enhanced tubes, 
which are the same as the present test tubes. Apparently, the HTC is strongly related to the film 
Reynolds number. Note that the Reynolds number is defined as: 

4Re
μ
Γ=  (11) 

where Γ is the liquid flowrate on one side of the tube per unit length. When the film Reynolds number 
is below a certain threshold value (around 200), the HTC increases with the rise of the film Reynolds 
number, and the HTC remains barely unchanged with the heat flux. This phenomenon prevails for 
all the tube locations. The results suggest that evaporation is in control. Analogously, Zhao et al. [12] 
also performed tests on an enhanced tube bundle using R-134a as the working fluid. Their results, 
shown in Figure 4b, also indicated that the HTC increases with the film flowrate before a threshold 
film flowrate of around 0.02 kg/m⋅s, and that the HTC is relatively independent of heat flux. On the 
other hand, once the film flowrate or Reynolds number exceeds the threshold value, the HTC remains 
roughly unchanged with the film flowrate. Although the HTC is quite independent of the film 
flowrate after the threshold value, it is appreciably increased with the rise of heat flux when passing 
the threshold value. The results indicate that the nucleate boiling plays an essential role when the 
film flowrate is above the threshold value. Note that in this study, the corresponding average 

Figure 3. The overall heat transfer coefficient U vs. heat flux for the falling film evaporator and the
flooded evaporator.

A simple linear regression analysis indicates that n~0.45 for the present flooded evaporator while
the intercept C0 is equal to 0.028 m2

·K/kW. Note that the corresponding R2 value for the regression is
0.972. In this regard, the corresponding HTC of the tube bundle can be obtained by manipulating the
reciprocal of Equation (9):

ho =
1

1
Uo
−C0

(10)

Based on the foregoing analysis, the corresponding HTC for the flooded evaporator at full,
75%, 50%, and 25% loading are 14.1, 13.3, 11.2, and 8.9 kW/m2

·K, respectively. On the other hand,
as depicted in Figure 3, the overall heat transfer coefficient for the falling film evaporator is appreciably
lower than that of the flooded evaporator. There are two reasons for the worse performance of the
present falling film evaporator when compared with the flooded evaporator. Note that the falling film
evaporator contains two heat transfer modes, namely the evaporation at the liquid/vapor interface and
the nucleate boiling at the tube wall surface. Commonly, the contribution of nucleate boiling surpasses
the evaporation. A typical HTC distribution associated with tube location (from the first tube to the
ninth tube) for the enhanced tube bundle vs. the film Reynolds number by Roques and Thome is
shown in Figure 4a [8]. Notice that their test is conducted via GEWA-B enhanced tubes, which are the
same as the present test tubes. Apparently, the HTC is strongly related to the film Reynolds number.
Note that the Reynolds number is defined as:

Re =
4Γ
µ

(11)

where Γ is the liquid flowrate on one side of the tube per unit length. When the film Reynolds number
is below a certain threshold value (around 200), the HTC increases with the rise of the film Reynolds
number, and the HTC remains barely unchanged with the heat flux. This phenomenon prevails for all
the tube locations. The results suggest that evaporation is in control. Analogously, Zhao et al. [12] also
performed tests on an enhanced tube bundle using R-134a as the working fluid. Their results, shown in
Figure 4b, also indicated that the HTC increases with the film flowrate before a threshold film flowrate
of around 0.02 kg/m·s, and that the HTC is relatively independent of heat flux. On the other hand,
once the film flowrate or Reynolds number exceeds the threshold value, the HTC remains roughly
unchanged with the film flowrate. Although the HTC is quite independent of the film flowrate after
the threshold value, it is appreciably increased with the rise of heat flux when passing the threshold
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value. The results indicate that the nucleate boiling plays an essential role when the film flowrate is
above the threshold value. Note that in this study, the corresponding average Reynolds number for the
falling film evaporator in the first row spans at around 70~285 and the maximum film flowrate ranges
from 0.004~0.015 kg/m·s. The results are close to or below the threshold value of the film Reynolds
number and the film flowrate, thereby indicating the dominance of evaporation. In the meantime,
as depicted in Figure 2a regarding the layout of the falling film evaporator, which contains a 15 tube
row, the effective mean film flowrate in the middle or bottom part of the falling film evaporator may
show a much lower liquid film flowrate than the upper portion. Thus, the loss of film flowrate in the
middle and bottom part of the tube bundle may bring out dry patches on the tube and deteriorate the
heat transfer accordingly. Note that the dry-out patch and the very thin liquid film on the enhanced
tube may jeopardized the nucleate boiling mode considerably. In essence, the effective decline of
the film flowrate from the top tube toward the bottom part of the falling film evaporator renders an
appreciably lower overall HTC when compared with the flooded evaporator. The onset of dry-out of
the falling evaporator was also investigated in prior studies. For example, Christians and Thome [21]
reported the onset of dry-out Reynolds numbers for the falling film evaporator with enhanced tubes
(Turbo B5 and GEWA B5) subject to R-134a and R-236fa. Christians and Thome [19] developed an
empirical correlation for the onset of dry-out of falling film, i.e.,

Reonset = 20.721
(

qo

hlvµre f

)1.04

G0.175
t−s (12)

where Gt-s is the tube specific number, which is 0.1777 for the GEWA B tube. hlv is the latent heat of
evaporation. Based on the calculations from this formula, the onset of the dry-out Reynolds number
ranges from 34 (25% loading) to 137 (full loading). The results imply that the onset of dry-out can easily
occur when the row number is in the middle or bottom portion of the tube bundle. Basically, the present
data for the falling film evaporator are expected to contain certain dry-out patches according to their
onset of dry-out diagram. It is likely that the local HTC in the upper part of the falling evaporator
may still be higher than the corresponding flooded evaporator, but the middle and bottom part of the
falling film evaporator may suffer a much lower HTC due to dry patches, thereby resulting in a much
lower overall HTC, even at full loading operation. To make the operation even worse, the overall
HTC for the falling film evaporator shows an appreciable dip at a partial loading (25%), as seen in
Figure 3, compared to the flooded evaporator. In fact, the film flowrate in the bottom row may even fall
below 0.001 kg/m·s, indicating a considerable starvation of the liquid film flowrate on the enhanced
tubes. Note that the flooded evaporator does not reveal such a dramatic decline in the overall HTC
since the refrigerant level is always above the top tube. The results are in line with the numerical
simulation regarding the influence of dry patch on the falling film evaporator by Yang et al. [17],
who concluded that the heat transfer performance of falling evaporators can be enhanced by increasing
the refrigerant flowrate within a certain range due to the decreasing dry patch areas on falling film
tubes, and the evaporators reach the best thermal performance when no dry patches appear on the
tube. Yet, the deterioration can be further accentuated with mal distribution from the distributor,
as addressed by Yang et al. [17]. In summary of the foregoing discussion, it is quite likely that the
present falling film evaporator may contain superfluous tubes. The overall performance may still be
the same by removing some tubes located in the middle and the bottom part of the tube bundle.
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4. Conclusions

The present study compares the performance of real-scale oil-free centrifugal chillers with a flooded
evaporator and a falling film evaporator. The nominal capacity for the test chillers is around 200~220 RT.
The compressors of the two chillers are identical. Both evaporators make use of GEWA-B-enhanced
tubes and R-134a is used as the working fluid. Tests were conducted in full, 75%, 50%, and 25% loading.
Based on the forgoing discussions, the following conclusions are derived:

1. Both chillers reveal an appreciable drop of capacity and compressor power when the compressor
revolution is reduced but the corresponding COP rises when the loading is reduced, and it reaches
the plateau at 50% part-load with a COP of around 9.9. A further un-loading to 25% leads to
a detectable decline of COP.

2. The system performance in terms of IPLV for the falling film evaporator is 8.627 and it is 8.634 for
the flooded evaporator, implying a comparable performance between the falling film evaporator
and the flooded evaporator.

3. The overall heat transfer coefficient for the flooded evaporator is appreciably higher than the
falling film evaporator by up to 40%. The results do not agree with typical test results on falling
film evaporators and flooded evaporators. This is because the falling film flowrate is below the
threshold value and the heat transfer is dominated by the evaporation mode. Yet, the heat transfer
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performance for the falling film evaporator can be further jeopardized due to starvation of the
film flowrate (partial dry-out), since the present film flowrate may fall below the threshold critical
film flowrate, especially in the middle or bottom of the tube bundle. This phenomenon becomes
even more pronounced at partial loading (25%), while the flooded evaporator did not reveal such
performance dip at partial loading.
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Nomenclature

A, B, C, D

A is coefficient of performance (COP) at 100% load, B is the COP at 75%
load, C is the COP at 50% load, and D is the COP at 25% load. From
Equation (1), the proportions of 75% and 50% part-loads are much
higher than full load or 25% load.

Ai inner surface area of the enhanced tube (m2)
Ao outer surface area of the enhanced tube (m2)
C0, C1, C2 correlation constant in Equation (9)
Cmin

.
meva,watercp,water (kW/K)

COP coefficient of performance
cp,water specific heat of chilled water (kJ/kg·K)
Di inner tube diameter (m)
Do outer tube diameter (m)
Gt-s tube specific number
hi tube side heat transfer coefficient (W/m2

·K)
ho shell side heat transfer coefficient (W/m2

·K)
hlv latent heat of evaporation (kJ/kg)
k thermal conductivity (W/m·K)
L tube length (m)
.

meva,water chilled water mass flowrate at the evaporator (kg/s)
NTU number of transfer unit
q heat flux (kW/m2)
.

Q heat transfer rate at the evaporator (kW)
.

Qmax maximum heat transfer rate at the evaporator (kW)
Re Reynolds number
Tin,water inlet water temperature of the chilled water (K)
Tsat,eva saturation temperature at the evaporator (K)
U overall heat transfer coefficient (W/m2

·K)
Wcomp compressor power (kW)
∆Teva,water temperature difference of chilled water across evaporator (K)
ε effectiveness of the heat exchanger
Γ liquid flow rate on one side of the tube per unit length (kg/m·s)
µ viscosity (Pa·s)

References

1. Hung, K.-S.; Chung, J.-C.; Liu, C.-C.; Huang, J.-M. A study of off-design performance improvement for
a centrifugal refrigerant compressor. Adv. Mech. Eng. 2017, 9. [CrossRef]

2. Air-Conditioning, Heating, and Refrigeration Institute (AHRI). Performance Rating of Water-chilling and
Heat Pump Water-heating Packages Using the Vapor Compression Cycle. In ANSI/AHRI STANDARD 551/591
(SI)-2018; AHRI: Arlington, VA, USA, 2018.

http://dx.doi.org/10.1177/1687814017696224


Energies 2019, 12, 2548 11 of 11

3. Yu, F.W.; Chan, K.T.; Sit, R.K.Y. Analysis of centrifugal chillers with oil-free magnetic bearings for enhancing
building energy performance. Sci. Technol. Built Environ. 2017, 23, 334–344. [CrossRef]

4. Yu, F.W.; Chan, K.T.; Sit, R.K.Y.; Yang, J. Performance Evaluation of Oil-free Chillers for Building Energy
Performance Improvement. Procedia Eng. 2015, 121, 975–983. [CrossRef]

5. Lissandrin, M.; Rampazzo, M.; Cecchinato, L.; Beghi, A. Optimal operational efficiency of chillers using
oil-free centrifugal compressors. Int. J. Refrig. 2017, 82, 83–96. [CrossRef]

6. Wang, C.-C.; Hafner, A.; Kuo, C.-S.; Hsieh, W.-D. An overview of the effect of lubricant on the heat transfer performance
on conventional refrigerants and natural refrigerant R-744. Renew. Sustain. Energy Rev. 2012, 16, 5071–5086. [CrossRef]

7. Wang, C.-C.; Hafner, A.; Kuo, C.-S.; Hsieh, W.-D. Influence of Lubricant on the Nucleate Boiling Heat Transfer
Performance of Refrigerant—A Review. Heat Transf. Eng. 2014, 35, 651–663. [CrossRef]

8. Roques, J.F.; Thome, J.R. Falling Films on Arrays of Horizontal Tubes with R-134a, Part I: Boiling Heat
Transfer Results for Four Types of Tubes. Heat Transf. Eng. 2007, 28, 398–414. [CrossRef]

9. Roques, J.F.; Thome, J.R. Falling Films on Arrays of Horizontal Tubes with R-134a, Part II: Flow Visualization,
Onset of Dryout, and Heat Transfer Predictions. Heat Transf. Eng. 2007, 28, 415–434. [CrossRef]

10. Habert, M.; Thome, J.R. Falling-Film Evaporation on Tube Bundle with Plain and Enhanced Tubes—Part I:
Experimental Results. Exp. Heat Transf. 2010, 23, 259–280. [CrossRef]

11. Habert, M.; Thome, J.R. Falling-Film Evaporation on Tube Bundle with Plain and Enhanced Tubes—Part II:
New Prediction Methods. Exp. Heat Transf. 2010, 23, 281–297. [CrossRef]

12. Zhao, C.-Y.; Jin, P.-H.; Ji, W.-T.; He, Y.-L.; Tao, W.-Q. Experimental investigations of R134a and R123 falling
film evaporation on enhanced horizontal tubes. Int. J. Refrig. 2017, 75, 190–203. [CrossRef]

13. Jin, P.-H.; Zhao, C.-Y.; Ji, W.-T.; Tao, W.-Q. Experimental investigation of R410A and R32 falling film
evaporation on horizontal enhanced tubes. Appl. Therm. Eng. 2018, 137, 739–748. [CrossRef]

14. Ji, W.-T.; Zhao, C.-Y.; Zhang, D.-C.; Yoshioka, S.; He, Y.-L.; Tao, W.-Q. Effect of vapor flow on the falling
film evaporation of R134a outside a horizontal tube bundle. Int. J. Heat Mass Transf. 2016, 92, 1171–1181.
[CrossRef]

15. Van Rooyen, E.; Thome, J.R. Flow boiling data and prediction method for enhanced boiling tubes and tube bundles
with R-134a and R-236fa including a comparison with falling film evaporation. Int. J. Refrig. 2014, 41, 60–71. [CrossRef]

16. Yang, L.; Wang, W. The heat transfer performance of horizontal tube bundles in large falling film evaporators.
Int. J. Refrig. 2011, 34, 303–316. [CrossRef]

17. Yang, L.; Song, X.; Xie, Y. Effect of the Dryout in Tube Bundles on the Heat Transfer Performance of Falling
Film Evaporators. Procedia Eng. 2017, 205, 2176–2183. [CrossRef]

18. Ribatski, G.; Jacobi, A.M. Falling-film evaporation on horizontal tubes—A critical review. Int. J. Refrig.
2005, 28, 635–653. [CrossRef]

19. Christians, M.; Thome, J.R. Falling film evaporation on enhanced tubes, part 2: Prediction methods and
visualization. Int. J. Refrig. 2012, 35, 313–324. [CrossRef]

20. Van Rooyen, E.; Thome, J.R. Pool boiling data and prediction method for enhanced boiling tubes with R-134a,
R-236fa and R-1234ze(E). Int. J. Refrig. 2013, 36, 447–455. [CrossRef]

21. Christians, M.; Thome, J.R. Falling film evaporation on enhanced tubes, part 1: Experimental results for pool
boiling, onset-of-dryout and falling film evaporation. Int. J. Refrig. 2012, 35, 300–312. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1080/23744731.2016.1232112
http://dx.doi.org/10.1016/j.proeng.2015.09.065
http://dx.doi.org/10.1016/j.ijrefrig.2017.05.019
http://dx.doi.org/10.1016/j.rser.2012.04.054
http://dx.doi.org/10.1080/01457632.2013.837704
http://dx.doi.org/10.1080/01457630601163629
http://dx.doi.org/10.1080/01457630601163736
http://dx.doi.org/10.1080/08916152.2010.502045
http://dx.doi.org/10.1080/08916152.2010.502046
http://dx.doi.org/10.1016/j.ijrefrig.2016.12.013
http://dx.doi.org/10.1016/j.applthermaleng.2018.03.060
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.09.023
http://dx.doi.org/10.1016/j.ijrefrig.2013.03.016
http://dx.doi.org/10.1016/j.ijrefrig.2010.07.011
http://dx.doi.org/10.1016/j.proeng.2017.10.041
http://dx.doi.org/10.1016/j.ijrefrig.2004.12.002
http://dx.doi.org/10.1016/j.ijrefrig.2011.10.019
http://dx.doi.org/10.1016/j.ijrefrig.2012.11.023
http://dx.doi.org/10.1016/j.ijrefrig.2011.10.020
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Experimental Setup and Data Reduction for System Performance 
	Introduction to the Experimental Setup 
	Experimental Apparatus and Measurements 
	Data Reduction of the Experimental Measurements 

	Results and Discussion 
	Conclusions 
	References

