Unsteady RANS Simulations of Flow around a Twin-Box Bridge Girder Cross Section
Abstract
:1. Introduction
2. Mathematical Formulation
2.1. Flow Model
2.2. Numerical Simulation Scheme, Computational Domain and Boundary Conditions
- A uniform flow, , , is set at the inlet boundary; the pressure is specified as zero normal gradient at the inlet boundary. and at the inlet boundary are set equal to:
- Along the outlet boundary, , and are specified as zero normal gradient. The pressure is specified as zero. The zero pressure outlet boundary condition has been widely used to calculate the unsteady flow around bluff bodies [33,34,35]. The distance used in the present study for the downstream 77.2D is considerably longer than the value of 50D previously used by [10]. It is considered that the effect of the outlet boundary condition on the numerical results is negligible.
- On the deck surfaces, no-slip boundary condition is specified (i.e., ). The pressure is set as zero normal gradient. k is fixed at 0 and is calculated as follows [26]:
- For the top and bottom boundaries, the pressure is set as zero normal gradient; k is fixed at 0. is specified as zero normal gradient.
2.3. Grid and Time Resolution Tests
3. Results and Discussion
3.1. Validation of Numerical Model
3.2. Vortex Formation around the Decks in One Vortex Shedding Period
3.3. Flow Characteristics at Different Angles of Attack (AoA)
3.4. Contribution of Each Deck to and
4. Conclusions
- The numerically predicted time-averaged force coefficients , and are in a good agreement with the wind tunnel experiment results. In particular, the drag coefficient has shown a good agreement with the experimental data at different AoA. The lift and moment coefficients show a good agreement with the experimental measurement in the low AoA range. A large reduction of and is observed at AoA = +10.2°. This indicates a premature stalling of the bridge decks simulated by the turbulence model, compared to the experimental observations in this high AoA region. The discrepancy may be due to the three-dimensional effects along the spanwise direction, which cannot be captured using the present 2D numerical model. Such high angles of attack are not expected during the normal bridge operation. Thus, the present 2D simulations are generally able to provide efficient and reliable assessment of the bridge girder aerodynamic performance under normal operating conditions.
- The flow structure shows a different pattern from AoA = +6.3°, as the vortices of the upstream deck become rather steady, while the vortices traveling along the upper surface of the downstream deck begin to merge towards a complete flow separation at even higher angles of attack. The flow pattern variations at AoA = +10.2°, −8.1° and −10.0° also have been discussed.
- Relative contributions of each deck to CD and CL varies with the AoA. This is also a good assessment tool, aiding the understanding of the flow physics and the screening purpose of the bridge design.
Author Contributions
Funding
Conflicts of Interest
References
- Fok, C.H.; Kwok, K.C.S.; Qin, X.R.; Hitchcock, P.A. Sectional pressure tests of a twin-deck bridge: Part 1: Experimental techniques and effects of angle of wind incidence. In Proceedings of the 11 AWES Workshop, Darwin, Australia, 28–29 June 2004. [Google Scholar]
- Fok, C.H.; Kwok, K.C.S.; Qin, X.R.; Hitchcock, P.A. Sectional pressure tests of a twin-deck bridge: Part 2: Effects of gap-width on a twin-deck configuration. In Proceedings of the 11 AWES Workshop, Darwin, Australia, 28–29 June 2004. [Google Scholar]
- Sánchez, R.; Nieto, F.; Kwok, K.C.S.; Hernández, S. CFD analysis of the aerodynamic response of a twin-box deck considering different gap widths. In Proceedings of the Congresso de Métodos Numéricos em Engenharia 2015, Lisboa, Portugal, 29 June–2 July 2015. [Google Scholar]
- Kwok, K.C.S.; Qin, X.R.; Fok, C.H.; Hitchcock, P.A. Wind-induced pressures around a sectional twin-deck bridge model: Effects of gap-width on the aerodynamic forces and vortex shedding mechanisms. J. Wind Eng. Ind. Aerodyn. 2012, 110, 50–61. [Google Scholar] [CrossRef]
- Diana, G.; Fiammenghi, G.; Belloli, M.; Rocchi, D. Wind tunnel tests and numerical approach for long span bridges: The Messina bridge. J. Wind Eng. Ind. Aerodyn. 2013, 122, 38–49. [Google Scholar] [CrossRef]
- Nieto, F.; Zasso, A.; Rocchi, D.; Hernandez, S. CFD verification of aerodynamic devices performance for the Messina Strait bridge. In Proceedings of the Bluff Bodies Aerodynamics and Applications sixth international colloquium, Milano, Italia, 20–24 July 2008. [Google Scholar]
- Nieto, F.; Hernández, S.; Jurado, J.Á.; Baldomir, A. CFD practical application in conceptual design of a 425 m cable-stayed bridge. Wind. Struct. 2010, 13, 309–326. [Google Scholar] [CrossRef]
- Nieto, F.; Kusano, I.; Hernandez, S.; Jurado, J.Á. CFD analysis of the vortex-shedding response of a twin-box deck cable-stayed bridge. In Proceedings of the fourth international symposium on Computational Wind Engineering, Chapel Hill, NC, USA, 23 May 2010. [Google Scholar]
- Nieto, F.; Hernández, S.; Kusano, I.; Jurado, J.Á. CFD aerodynamic assessment of deck alternatives for a cable-stayed bridge. In Proceedings of the bluff Bodies Aerodynamics and Applications seventh international colloquium, Shanghai, China, 2 September 2012. [Google Scholar]
- Fumoto, K.; Watanabe, S. An estimation of aerodynamics of slotted one-box girder section using computational fluid dynamics. In Proceedings of the Fourth International Symposium on Computational Wind Engineering, Yokohama, Japan, 16–19 July 2006. [Google Scholar]
- Maruoka, A.; Takou, M.; Sasaki, H. Detached eddy simulation of flow around a box girder bridge section. In Proceedings of the Fourth International Symposium on Computational Wind Engineering, Yokohama, Japan, 16–19 July 2006. [Google Scholar]
- Larsen, A. Computation of aerodynamic derivatives by various CFD techniques. In Proceedings of the Fourth International Symposium on Computational Wind Engineering, Yokohama, Japan, 16–19 July 2006. [Google Scholar]
- Shirai, S.; Ueda, T. Aerodynamic simulation by CFD on flat box girder of super-long-span suspension bridge. J. Wind Eng. Ind. Aerodyn. 2003, 91, 279–290. [Google Scholar] [CrossRef]
- Bruno, L.; Salvetti, M.V.; Ricciardelli, F. Benchmark on the aerodynamics of a rectangular 5: 1 cylinder: An overview after the first four years of activity. J. Wind Eng. Ind. Aerodyn. 2014, 126, 87–106. [Google Scholar] [CrossRef]
- Mannini, C.; Marra, A.M.; Pigolotti, L.; Bartoli, G. The effects of free-stream turbulence and angle of attack on the aerodynamics of a cylinder with rectangular 5: 1 cross section. J. Wind Eng. Ind. Aerodyn. 2017, 161, 42–58. [Google Scholar] [CrossRef]
- Mannini, C.; Soda, A.; Schewe, G. Numerical investigation on the three-dimensional unsteady flow past a 5: 1 rectangular cylinder. J. Wind Eng. Ind. Aerodyn. 2011, 99, 469–482. [Google Scholar] [CrossRef]
- Ong, M.C. Unsteady rans simulation of flow around a 5: 1 rectangular cylinder at high reynolds numbers. In Proceedings of the ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering, American Society of Mechanical Engineers, Rio de Janeiro, Brazil, 1–6 July 2012; pp. 841–846. [Google Scholar]
- Patruno, L.; Ricci, M.; de Miranda, S.; Ubertini, F. Numerical simulation of a 5: 1 rectangular cylinder at non-null angles of attack. J. Wind Eng. Ind. Aerodyn. 2016, 151, 146–157. [Google Scholar] [CrossRef]
- Schewe, G. Influence of the Reynolds-number on flow-induced vibrations of generic bridge sections. In Proceedings of the International Conference on Bridges, Dubrovnik, Croatia, 21–24 May 2006; pp. 351–358. [Google Scholar]
- Schewe, G. Reynolds-number-effects in flow around a rectangular cylinder with aspect ratio 1:5. J. Fluids Struct. 2013, 39, 15–26. [Google Scholar] [CrossRef]
- Menter, F.R. Two-equation eddy-viscosity turbulence models for engineering applications. Am. Insti. Aero. Astro. J. 1994, 32, 1598–1605. [Google Scholar] [CrossRef] [Green Version]
- Laima, S.; Li, H. Effects of gap width on flow motions around twin-box girders and vortex-induced vibrations. J. Wind Eng. Ind. Aerodyn. 2015, 139, 37–49. [Google Scholar] [CrossRef]
- Laima, S.; Jiang, C.; Li, H.; Chen, W.; Ou, J.A. numerical investigation of Reynolds number sensitivity of flow characteristics around a twin-box girder. J. Wind Eng. Ind. Aerodyn. 2018, 172, 298–316. [Google Scholar] [CrossRef]
- Miranda, S.; Patruno, L.; Ricci, M.; Ubertini, F. Numerical study of a twin box bridge deck with increasing gap ratio by using RANS and LES approaches. Eng. Struct. 2015, 99, 546–558. [Google Scholar] [CrossRef]
- Hansen, S.O.; Srouji, R.G.; Rasmussen, J.T. Julsundet and Halsafjorden Bridges Part II: Suspension Bridge Crossing Halsafjorden, Flutter and Vortex-Induced Vibrations of a Sharp-Edged Cross Section; Project Report; Kvisvik, Norway, 2016. [Google Scholar]
- Menter, F.R.; Kuntz, M.; Langtry, R. Ten years of industrial experience with the SST turbulence model. Turbulence Heat. Mass. Transf. 2003, 4, 625–632. [Google Scholar]
- Wilcox, D.C. Turbulence Modeling for CFD, 2nd ed.; DCW Ind., Inc.: La Canada, California, USA, 1998. [Google Scholar]
- Launder, B.; Spalding, D. The numerical computation of turbulent flows. Comput. Methods Appl. Mech. Eng. 1974, 3, 269–289. [Google Scholar] [CrossRef]
- OpenFoam. The Open Source CFD Toolbox, Programmer’s Guide; Version 3.0.1.; OpenCFD Limited: Bracknell, UK, 2009. [Google Scholar]
- Tian, X.; Ong, M.C.; Yang, J.; Myrhaug, D. Unsteady RANS simulations of flow around rectangular cylinder with different aspect ratios. J. Ocean Eng. 2013, 58, 208–216. [Google Scholar] [CrossRef]
- Rahman, M.M.; Karim, M.M.; Alim, M.A. Numerical investigation of unsteady flow past a circular cylinder using 2-D finite volume method. J. Naval. Arch. Marine. Eng. 2007, 4, 27–42. [Google Scholar] [CrossRef]
- Gao, Y.; Chow, W.K. Numerical studies on air flow around a cube. J. Wind Eng. Ind. Aerodyn. 2005, 93, 115–135. [Google Scholar] [CrossRef]
- Shimada, K.; Ishihara, T. Application of a modified k − ε model to the prediction of aerodynamic characteristics of rectangular cross-section cylinders. J. Fluid. Struct. 2002, 16, 465–485. [Google Scholar] [CrossRef]
- Sandham, N.D.; Yao, Y.F.; Lawal, A.A. Large-eddy simulation of transonic turbulent flow over a bump. Int. J. Heat. Fluid. Flow. 2003, 24, 584–595. [Google Scholar] [CrossRef] [Green Version]
- Narasimhamurthy, V.D.; Andersson, H.I.; Pettersen, B.R. Cellular vortex shedding in the wake of a tapered plate. J. Fluid. Mech. 2010, 617, 355–379. [Google Scholar] [CrossRef]
- Hirano, H.; Watanabe, S.; Maruoka, A.; Ikenouchi, M. Aerodynamic characteristics of rectangular cylinders. Int. J. Comp. Fluid. Dyn. 1999, 12, 151–163. [Google Scholar] [CrossRef]
Case | Elements | Δt (s) | St | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0.1 | M1 | 138,354 | 5.00 × 10−5 | 1.164 | −0.154 | 0.077 | 0.224 | - | - | - | - |
0.1 | M2 | 198,834 | 5.00 × 10−5 | 1.129 | −0.176 | 0.078 | 0.216 | −3.0 | −14.0 | 1.3 | −3.7 |
0.1 | M3 * | 288,034 | 5.00 × 10−5 | 1.125 | −0.178 | 0.075 | 0.216 | −0.3 | −1.7 | −2.8 | 0.0 |
0.1 | M3T1 | 288,034 | 2.50 × 10−5 | 1.142 | −0.180 | 0.082 | 0.225 | 1.5 | −0.6 | 8.2 | 4.3 |
1.5 | M1 | 138,354 | 5.00 × 10−5 | 1.088 | −0.051 | 0.127 | 0.203 | - | - | - | - |
1.5 | M2 | 198,834 | 5.00 × 10−5 | 1.096 | −0.057 | 0.125 | 0.201 | 0.7 | −12.3 | −1.8 | −0.7 |
1.5 | M3 * | 288,034 | 5.00 × 10−5 | 1.099 | −0.057 | 0.123 | 0.205 | 0.2 | −0.7 | −1.8 | 2.0 |
1.5 | M3T1 | 288,034 | 2.50 × 10−5 | 1.114 | −0.047 | 0.126 | 0.196 | 1.4 | 18.2 | 2.2 | −4.4 |
3.2 | M1 | 138,354 | 5.00 × 10−5 | 1.080 | 0.141 | 0.182 | 0.201 | - | - | - | - |
3.2 | M2 | 198,834 | 5.00 × 10−5 | 1.087 | 0.160 | 0.181 | 0.191 | 0.7 | 14.0 | −0.5 | −5.1 |
3.2 | M3 * | 288,034 | 5.00 × 10−5 | 1.091 | 0.154 | 0.180 | 0.192 | 0.3 | −3.8 | −0.8 | 0.4 |
3.2 | M3T1 | 288,034 | 2.50 × 10−5 | 1.101 | 0.147 | 0.180 | 0.200 | 1.0 | −5.0 | −0.2 | 4.4 |
4.4 | M1 | 138,354 | 5.00 × 10−5 | 1.106 | 0.245 | 0.218 | 0.186 | - | - | - | - |
4.4 | M2 * | 288,034 | 5.00 × 10−5 | 1.106 | 0.228 | 0.210 | 0.192 | 0.0 | −6.8 | −3.8 | 3.4 |
4.4 | M3 | 545,954 | 5.00 × 10−5 | 1.083 | 0.238 | 0.211 | 0.200 | −2.1 | 4.1 | 0.7 | 4.0 |
4.4 | M2T1 | 545,954 | 2.50 × 10−5 | 1.112 | 0.241 | 0.211 | 0.196 | 2.7 | 1.5 | −0.1 | −2.2 |
6.3 | M1 | 138,354 | 2.50 × 10−5 | 1.429 | 0.260 | 0.177 | 0.261 | - | - | - | - |
6.3 | M2 * | 288,034 | 2.50 × 10−5 | 1.111 | 0.313 | 0.235 | 0.250 | −22.3 | 20.4 | 32.7 | −4.1 |
6.3 | M3 | 545,954 | 2.50 × 10−5 | 1.096 | 0.313 | 0.239 | 0.240 | −1.4 | 0.0 | 1.5 | −3.9 |
6.3 | M2T1 | 545,954 | 1.25 × 10− | 1.107 | 0.325 | 0.240 | 0.244 | 1.0 | 3.7 | 0.5 | 1.6 |
8.1 | M1 | 138,354 | 2.50 × 10−5 | 1.820 | 0.338 | 0.207 | 0.126 | - | - | - | - |
8.1 | M2 | 198,834 | 2.50 × 10−5 | 1.654 | 0.371 | 0.202 | 0.136 | −9.1 | 9.8 | −2.4 | 8.5 |
8.1 | M3 * | 288,034 | 2.50 × 10−5 | 1.628 | 0.387 | 0.206 | 0.142 | −1.6 | 4.4 | 2.0 | 4.2 |
8.1 | M3T1 | 288,034 | 1.25 × 10− | 1.636 | 0.395 | 0.207 | 0.137 | 0.5 | 2.0 | 0.7 | −3.3 |
10.2 | M1 | 198,834 | 2.50 × 10−5 | 2.045 | 0.263 | 0.148 | 0.125 | - | - | - | - |
10.2 | M2 | 272,914 | 2.50 × 10−5 | 2.037 | 0.210 | 0.141 | 0.107 | −0.4 | −20.1 | −5.0 | −14.6 |
10.2 | M3 * | 362,514 | 2.50 × 10−5 | 2.039 | 0.208 | 0.132 | 0.110 | 0.1 | −1.0 | −5.8 | 2.8 |
10.2 | M3T1 | 362,514 | 1.25 × 10−5 | 2.057 | 0.200 | 0.130 | 0.101 | 0.9 | −4.0 | −1.8 | −7.9 |
AoA (°) | Case | Elements | Δt (s) | St | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
−1.4 | M1 | 138,354 | 5.00 × 10−5 | 1.277 | −0.190 | 0.024 | 0.228 | - | - | - | - |
−1.4 | M2 | 198,834 | 5.00 × 10−5 | 1.230 | −0.208 | 0.020 | 0.214 | −3.7 | −9.2 | 13.6 | −6.3 |
−1.4 | M3 * | 288,034 | 5.00 × 10−5 | 1.230 | −0.209 | 0.019 | 0.217 | 0.0 | −0.7 | 4.9 | 1.5 |
−1.4 | M3T1 | 288,034 | 2.50 × 10−5 | 1.205 | −0.210 | 0.024 | 0.211 | −2.0 | −0.3 | −22.2 | −2.7 |
−2.9 | M1 | 138,354 | 5.00 × 10−5 | 1.345 | −0.208 | −0.053 | 0.226 | - | - | - | - |
−2.9 | M2 | 198,834 | 5.00 × 10−5 | 1.339 | −0.207 | −0.038 | 0.218 | −0.5 | 0.0 | 27.2 | −3.8 |
−2.9 | M3 * | 288,034 | 5.00 × 10−5 | 1.340 | −0.200 | −0.038 | 0.220 | 0.1 | 3.7 | 1.0 | 1.0 |
−2.9 | M3T1 | 288,034 | 2.50 × 10−5 | 1.318 | −0.191 | −0.039 | 0.226 | −1.6 | 4.6 | −2.6 | 2.6 |
−4.0 | M1 | 138,354 | 5.00 × 10−5 | 1.512 | −0.251 | −0.080 | 0.212 | - | - | - | - |
−4.0 | M2 | 198,834 | 5.00 × 10−5 | 1.482 | −0.219 | −0.066 | 0.215 | −2.0 | 12.9 | 17.2 | 1.3 |
−4.0 | M3 * | 288,034 | 5.00 × 10−5 | 1.487 | −0.217 | −0.066 | 0.212 | 0.4 | 0.9 | 0.6 | −1.5 |
−4.0 | M3T1 | 288,034 | 2.50 × 10−5 | 1.485 | −0.216 | −0.065 | 0.213 | −0.1 | 0.2 | 0.9 | 0.4 |
−6.2 | M1 | 138,354 | 5.00 × 10−5 | 1.512 | −0.354 | −0.165 | 0.203 | - | - | - | - |
−6.2 | M2 | 198,834 | 5.00 × 10−5 | 1.517 | −0.362 | −0.163 | 0.196 | 0.3 | −2.3 | −1.5 | −3.6 |
−6.2 | M3 * | 288,034 | 5.00 × 10−5 | 1.519 | −0.364 | −0.163 | 0.198 | 0.1 | −0.6 | 0.1 | 1.2 |
−6.2 | M3T1 | 288,034 | 2.50 × 10−5 | 1.512 | −0.381 | −0.161 | 0.203 | −0.5 | −4.6 | −0.8 | 2.1 |
−8.1 | M1 | 138,354 | 1.25 × 10−5 | 2.094 | −0.681 | −0.181 | 0.160 | - | - | - | - |
−8.1 | M2 | 198,834 | 1.25 × 10−5 | 1.963 | −0.653 | −0.188 | 0.180 | −6.3 | 4.2 | 3.5 | 12.8 |
−8.1 | M3 * | 288,034 | 1.25 × 10−5 | 2.023 | −0.664 | −0.182 | 0.182 | 3.1 | −1.8 | −3.3 | 1.1 |
−8.1 | M3T1 | 288,034 | 6.25 × 10−6 | 2.064 | −0.649 | −0.191 | 0.176 | 2.0 | 2.2 | 5.3 | −3.2 |
−10.0 | M1 | 138,354 | 2.50 × 10−5 | 2.567 | −0.793 | −0.135 | 0.182 | - | - | - | - |
−10.0 | M2 | 198,834 | 2.50 × 10−5 | 2.473 | −0.733 | −0.185 | 0.100 | 3.6 | 7.6 | 37.1 | −45.1 |
−10.0 | M3 * | 288,034 | 2.50 × 10−5 | 2.526 | −0.733 | −0.176 | 0.104 | −2.2 | −0.1 | −5.1 | 4.0 |
−10.0 | M3T1 | 288,034 | 1.25 × 10−5 | 2.507 | −0.727 | −0.173 | 0.095 | 0.7 | 0.9 | −1.8 | −8.9 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, W.; Liu, S.; Bogunovic Jakobsen, J.; Ong, M.C. Unsteady RANS Simulations of Flow around a Twin-Box Bridge Girder Cross Section. Energies 2019, 12, 2670. https://doi.org/10.3390/en12142670
Jeong W, Liu S, Bogunovic Jakobsen J, Ong MC. Unsteady RANS Simulations of Flow around a Twin-Box Bridge Girder Cross Section. Energies. 2019; 12(14):2670. https://doi.org/10.3390/en12142670
Chicago/Turabian StyleJeong, Wonmin, Shengnan Liu, Jasna Bogunovic Jakobsen, and Muk Chen Ong. 2019. "Unsteady RANS Simulations of Flow around a Twin-Box Bridge Girder Cross Section" Energies 12, no. 14: 2670. https://doi.org/10.3390/en12142670
APA StyleJeong, W., Liu, S., Bogunovic Jakobsen, J., & Ong, M. C. (2019). Unsteady RANS Simulations of Flow around a Twin-Box Bridge Girder Cross Section. Energies, 12(14), 2670. https://doi.org/10.3390/en12142670