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Abstract: The imbalance of power supply and demand is an important problem to solve in power
industry and Non Intrusive Load Monitoring (NILM) is one of the representative technologies for
power demand management. The most critical factor to the NILM is the performance of the classifier
among the last steps of the overall NILM operation, and therefore improving the performance of the
NILM classifier is an important issue. This paper proposes a new architecture based on the RNN
to overcome the limitations of existing classification algorithms and to improve the performance
of the NILM classifier. The proposed model, called Multi-Feature Combination Multi-Layer
Long Short-Term Memory (MFC-ML-LSTM), adapts various feature extraction techniques that are
commonly used for audio signal processing to power signals. It uses Multi-Feature Combination
(MFC) for generating the modified input data for improving the classification performance and
adopts Multi-Layer LSTM (ML-LSTM) network as the classification model for further improvements.
Experimental results show that the proposed method achieves the accuracy and the F1-score for
appliance classification with the ranges of 95–100% and 84–100% that are superior to the existing
methods based on the Gated Recurrent Unit (GRU) or a single-layer LSTM.

Keywords: power signal; time-series; feature extraction; appliance classification; deep learning;
recurrent neural network; multi-feature combination; long short-term memory

1. Introduction

Power consumption in homes and buildings has been dramatically increasing because more and
more appliances are being used, and the number of them is also expected to increase. Due to the limited
power supply and the constraints on building more power plants, the imbalance of power supply
and demand has become an important problem to address. In the past, this issue has been addressed
as supply-oriented management whereas it is addressed as power demand management nowadays.
For power demand management, it is important to monitor power consumption and adjust power
consumption accordingly by notifying the user of any appliances drawing unnecessary power or shift
their usage when the power demand is lower. Non-Intrusive Load Monitoring (NILM) [1,2], which is a
process that infers the power consumption and monitors the appliances being used from analyzing the
aggregated power data without directly measuring through additional hardware, is suitable for this
task. In this regard, it has been investigated by many studies [3–5]. To monitor an appliance, the power
data of each appliance should be classified from the aggregated power data. To do so, the characteristics
of the power data of each appliance should be known a priori to the NILM system. So this problem
becomes a proper subject for machine learning in a supervised way with an appropriate power dataset.

The power signal carries information of inherent physical characteristics of the appliance along
with other characteristics caused by external factors such as environment where the appliance is
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in operation. The physical characteristics are determined by the internal device configurations that can
determine the magnitude, phase, and frequency of the power patterns of the appliance. External factors
that change the power characteristics include the supply voltage, external disturbances and appliance
usage patterns of the users such as use time, frequency, time duration, etc. These characteristics are
important information for appliance classification.

In order to improve the performance of the NILM, it is important to blindly determine which
appliances are in operation using the aggregated power data. This requires classification of multiple
unknown number of appliances, so-called multi-label classification, from the aggregated power
measurement. Because the classifier is typically configured among the last steps of the overall NILM
operation [6], the outcome of the classifier can greatly affect the final result of the system. Therefore,
algorithms for multi-label classification need to analyze the power characteristic pattern of each
appliance effectively and identify the appliances with high accuracy. So, researchers have conducted
many studies to improve the classification performance for power data. Various classification
algorithms such as Support Vector Machine (SVM) [7–11], k-Nearest Neighbor (k-NN) algorithm [9–13]
and Hidden Markov Model (HMM) [11,14–18]—which is a sequential approach—have been proposed
for the NILM classifiers. Such algorithms typically have high classification accuracy for a small number
of appliances. However, they have the limitation in that the performance drops sharply as the number
of appliances increases. In order to overcome this, the use of deep neural networks (DNNs) has recently
been proposed for appliance classification [19]. Such approaches are found to overcome the limitations
of existing algorithms and to achieve higher accuracy regardless of the number of appliances [20–24].

In this paper, a new classification model is proposed for efficient pattern analysis of
power data and accurate appliance identification. The proposed method, called Multi-Feature
Combination Multi-Layer Long-Short Term Memory (MFC-ML-LSTM), adapts various feature
extraction techniques that are commonly used for audio signal processing to power signals and
Multi-feature combination (MFC) is used for generating the input data for improving the classification
performance. For further improvements, it uses the Multi-Layer LSTM (ML-LSTM) network as the
classification model. The effectiveness of the proposed method is first verified with a self-configured
dataset consisting of three-phase, four-wire current and voltage signals sampled at 8 kHz for
single-label multi-class classification, followed by an experiment with publicly available UK-DALE
dataset [25] by mixing the power data of individual appliances sampled at 1/6 Hz for simulating
non-intrusively measured aggregated power data for the task of multi-label multi-class classification.
Experimental results show that it has higher performance than the existing classification algorithms
with the accuracy and F1-score for appliance classification in the ranges of 95–100% and 84–100%
respectively, that are superior to the existing methods based on the Gated Recurrent Unit (GRU) [23]
or a single-layer LSTM [24].

2. Background and Related Work

2.1. Power Pattern of Appliance

The physical characteristics of the power signal, such as magnitude, phase and frequency,
are fundamental components of the power pattern of an appliance. The pattern of these physical
characteristics vary depending on the current type, among which various patterns are generated by
alternating current (AC) whose direction is periodically changing usually with a periodicity of 50 Hz
or 60 Hz in the form of a sine wave. The AC is supplied differently depending on the environment
where the appliance is used. In general, household appliances use single-phase AC, and products
or plants that use motors use three-phase AC. The current and voltage signals containing these
physical characteristics can be analyzed by using data sampled at high sampling rate. In addition to
these signals, AC power signals can indicate various patterns according to the usage patterns such as
the frequency, time and method of use. Figure 1 shows an example of an AC power pattern.



Energies 2019, 12, 2804 3 of 24

Figure 1. An example of alternating current (AC) power pattern.

In the power pattern in Figure 1, it can be seen that the signals of various sine waves of different
sizes have the form of synthesized harmonics. Since the periods of different sine waves are not
constant, the power signal has various phase and frequency characteristics. These characteristics
contain necessary information for appliance classification because they are inherent characteristics of
the appliance when there exist no external factors. In addition, if the power data of a specific appliance
is collected for a long period of time (from minutes to years, depending on the data characteristics), it is
possible not only to acquire the signal specific characteristics of the appliance, but also to get its power
consumption pattern information. So, appliances can be classified more accurately by using them
together. Figure 2 shows the daily power consumption pattern of household appliances used in general
households. The power input to a household is single-phase AC, but since the power consumption is
measured once in a certain period, it becomes a different pattern at a lower sampling rate, where the
physical characteristics of the appliances from the AC components may vanish.

Figure 2. Daily power consumption patterns of home appliances in general households.

In Figure 2, the power consumption pattern can be divided into four types. First, momentary
short-time use appliances, such as hair dryers and toasters, have the patterns of pulsing power
consumption at the moment of use. Second, appliances that are momentary but constantly used for
a period of time, such as televisions and ovens, have a rectangular pattern of power consumption.
Thirdly, although they are used continuously, for appliances like a refrigerator, the power consumption
pattern varies depending on the driving stage. However, there is a constant power consumption
pattern within a certain period. Finally, there is a random power consumption pattern depending
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on the workload of the program being used, such as the desktop. Since the consumption patterns
of the respective appliances may be similar or different from each other according to the appliance
usage environment, it may be applied as an approximate classification standard according to the
degree of similarity in the appliance classification process. In the classification process, it is possible to
roughly classify through the usage pattern of the appliance, and more detailed appliance classification
is possible within the roughly classified criteria through the appliance’s inherent power pattern.

2.2. Machine Learning Algorithms for Appliance Classification

In general, the above-mentioned power patterns are used as information to classify appliances.
The conventional classification techniques used for NILM are mainly based on the supervised learning.
Typical algorithms are: SVM, k-NN algorithm and HMM [9–11,14–18,26]. These machine learning
techniques have limitations to be applied to the NILM. For example, in the case of SVM, its major
problem is that linear SVM is generally limited to two classes. Although it can be extended to more
than two classes by using a nonlinear SVM, it has limitations in that nonlinear SVM is difficult to
train for larger dataset because it has a training complexity between O(D2) and O(D3) where D is
the number of training data. Furthermore, hyper-parameters should be carefully chosen and it is
difficult to find the right kernel function [27]. In the case of k-NN algorithm, the performance decreases
sharply and the operation takes a long time when the number of classes is large [28,29], which is a
significant drawback because the NILM needs to classify unknown number of appliances in typical
situations. Finally, in the case of HMM, it has a limitation in that it requires a relatively large number
of parameters even for a simple model structure, and it is difficult to learn with a large amount of
data [30].

2.3. Deep Learning-Based Approaches

Various studies have been conducted to overcome the limitations of existing classification
algorithms for NILM and mainly have been developed based on the use of deep neural networks
(DNNs), so-called deep learning, which can analyze the power data more accurately in general [19–24].
It has best-in-class performance on problems that significantly outperforms other solutions in multiple
different domains including speech recognition, speech synthesis, natural language processing,
computer vision, computer games, and so forth, with a significant margin. Also, it has the advantage of
not requiring feature engineering and having fixed complexity regardless of amount of the data used
for training. However, the main disadvantage of deep learning-based algorithms is that it requires
a huge amount of data. Otherwise, it may result in a worse performance than traditional machine
learning algorithms. So, a sufficiently large dataset and proper network structure are required for the
deep learning-based approaches to be effective.

2.3.1. Recurrent Neural Network

When the power data, temporal data whose values change with time, is input to the most
commonly used DNN models such as Convolution Neural Network (CNN) which is specialized in
spatial data classification such as images [31], there exist some drawbacks. That is because the most
important temporal information from the time series data can not be effectively utilized with a DNN
model where data pattern is represented as a whole rather than by time. Therefore, Recurrent Neural
Network (RNN) models that efficiently use temporal information for the sequence analysis of input
data is applied for classification [32–34], because they utilize the past information as well as the current
input information for the output of the current state. Figure 3 shows the architecture of a typical
RNN model.

In RNN, parameters are learned using Back-Propagation Through Time (BPTT) [35], an extension
of the back-propagation algorithm. Essentially BPTT is the same as the basic back-propagation except
it carries back-propagation back in time because the RNN structure is linked over time. When the
error represented as the cross entropy between the output value and the labeled value, the error for the
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entire sequence is the total sum of each time step error, and the parameter is updated by calculating the
gradient of the error for each parameter in the direction that they are minimized. Here, cross entropy
with softmax is used for single-label multi-class classification, and cross entropy with sigmoid is used
for multi-label multi-class classification.

Figure 3. The architecture of a typical RNN model.

2.3.2. Long-Short Term Memory

Typical RNN models have limitations in processing long sequences, that is, if we go through in
the order of several steps, the network will no longer retain the previous information. This problem is
called long-term dependency problem due to vanishing gradient [36]. As the RNN model becomes
deeper, this problem causes fatal errors for the model to learn. So the Long Short-Term Memory
(LSTM) was proposed to solve this problem in 1997 by Sepp Hochreiter and Juergen Schmidhuber [37].
LSTM helps the error gradient to flow well back in time by utilizing gates and memory cell. By doing so,
the error value is better maintained in the back-propagation step and it remembers its states much
longer [38]. The structure of the LSTM consists of one memory cell and three gates: an input gate,
a forget gate and an output gate. The input gate controls the range for the new value input to the
LSTM and transfers it to the memory cell, and the forget gate controls the memory cell to keep or
remove the information. Finally, the output gate controls the range of the output of the current state
so that only the desired value can be reflected to the memory cell in the next step, thereby acting
role as a long or short memory. The overall operating structure of the LSTM can be expressed by the
following equations:

it = σg(Wixt + Uiht−1 + bi) (1)

ft = σg(W f xt + U f ht−1 + b f ) (2)

ot = σg(Woxt + Uoht−1 + bo) (3)

ct = ft ∗ ct−1 + it ∗ σc(Wcxt + Ucht−1 + bc) (4)

ht = ot ∗ σh(ct) (5)
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In the above equations, it, ft, ot, ct and ht represent the output of each step at time t and σ

represents the activation function that operates at each step. W, U and b are weight matrices and bias
vector parameters which are updated by training. Figure 4 shows the architecture of LSTM.

Figure 4. The architecture of LSTM.

Since the power consumption data to be analyzed by NILM process includes signals that have
various patterns over various periods, it is necessary to analyze long-term data information in order
to analyze them. Therefore, the RNN model is a suitable deep learning model for the classifier of
NILM. Based on this, Kim et al. [23,24] proposed a method using RNN to improve the classification
performance of NILM. In Reference [23], they used a simple GRU [39] in the appliance classification
that showed higher performance than existing classification algorithms such as SVM and HMM.
Figure 5 shows the network structure of the GRU. Table 1 shows the performance comparison with the
existing classification algorithm as presented in Reference [23].

Figure 5. Network structure of GRU.

Table 1. Performance comparison between GRU and other existing algorithms [23].

Classifier Algorithm Accuracy (%) F-measure (%)

Bayes 80–92 -
SVM [26] 75–92 -

HMM [14,15] 75–87 -
FHMM [17] - 80–90

FHMM variants [15] - 69–98
FHMM using MAP algorithm [14] 71 -

RNN [23] 88–98 77–98
GRU [23] 89–98 81–98
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In Reference [24], additional pre-processing to the data is applied before learning the data in the
LSTM. In pre-processing, the stronger characteristics of the original signal are enhanced by using
the reflectance obtained through the transformed signal of the raw data. These enhanced features
are used as a learning guide for data learning. It also shows higher performance than other existing
classification algorithms. Figure 6 shows the network structure of the Feature Enhancement Single
Layer LSTM (FESL-LSTM) [24].

Figure 6. Network structure of the FESL-LSTM.

References [23,24] presented a higher performance than the existing classification algorithms
through RNN. However, they did not consider the constraint of the raw data form. In the following
section, we present the constraint of the raw data form of the power data and suggest methods to
supplement it to better utilize the temporal information for data learning through RNN.

3. Proposed Approach

When using power data as raw data for representing only the time series information,
several issues may arise. The power data is sampled in the process of digitizing analog data. By the
sampling process, the data become a one-dimensional array having one value at each sampling time.
With one-dimensional data typically is very complex, irregular, or difficult to find any patterns
(confer Figure 1). It is not a desirable form of data to be used for RNN where we have to find out the
patterns of data. To solve this issue, we propose to pre-process the data to use alternative forms of
the data as input to RNN. In particular, we used the feature extraction used for transforming time
series data in audio signal processing to two-dimensional form. When the data is transformed from
one-dimension to two-dimension as a sequence of feature vectors instead of samples, this modified
form of data can better represent the data patterns. So more efficient and high-performance learning
can be achieved. In addition, by applying such transformations, it is possible to make the learning
faster by reducing the data size with an advantage that important information hidden in the data can
be better represented for learning. More details about the feature extraction step for our proposed
method is described in Section 3.1.

We selected the ML-LSTM model to effectively learn the characteristics of time-series data.
Since RNN analyzes data using not only current information but also past information, there is an
advantage that it can learn pattern changes according to time changes, but it requires much more
information. Therefore, when long-term data is received as input, there is not enough memory to
store the data to use the information of the data long ago. LSTM is used as a solution to solve this
problem. In addition, by using the LSTM, it is possible to selectively not use unnecessary information
from the past information, thereby enabling more efficient learning. However, if the data is very large
or contains a lot of important information throughout the data, using only one layer LSTM will not
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be able to store all the information of the data or will miss important information. For this reason,
we used ML-LSTM, which was developed by stacking LSTM in multiple layers.

Overall, we propose the appliance classification network with MFC-ML-LSTM. Figure 7 shows
the proposed network structure and Figure 8 shows a block diagram of the proposed appliance
classification network.

Figure 7. Network structure of MFC-ML-LSTM.

Figure 8. A block diagram of the proposed appliance classification network.
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3.1. Feature Extraction

In machine learning, feature extraction starts from an initial set of measured data and builds
derived values (features) intended to be informative and non-redundant, facilitating the subsequent
learning and generalization steps and in some cases leading to better human interpretations.
Feature extraction involves reducing the amount of resources required to describe a large set of
data. When performing analysis of complex data one of the major problems stems from the number of
variables involved. Analysis with a large number of variables generally requires a large amount of
memory and computational power, also it may cause a classification algorithm to overfit to training
samples and generalize poorly to new samples. Feature extraction is a general term for methods
of constructing combinations of the variables to get around these problems while still describing
the data with sufficient accuracy [40–43]. Optimized feature extraction is the key to effective model
construction. There are various approaches to feature extraction. We applied the techniques used
in data characterization in audio signal processing to feature extraction of power data. The power
data is long sequence data that shows patterns with frequency and time. Therefore, we consider
that the feature extraction using the audio signal processing which applies the analysis technique to
the characteristics according to the change of the frequency and time of the data will perform better
than other feature extraction algorithms. Khunarsal et al. and Raicharoen [44] suggested that, for the
classification of sound, all the features extracted through various feature extraction techniques rather
than one feature extractor were able to achieve better performance in the overall classification task.
As such, we extracted the patterns of power data using three feature extraction techniques which are
spectrogram, Mel-Frequency Cepstral Coefficient (MFCC) and Mel-spectrogram after trying various
features and then applied them to improve the performance of the classification task.

3.1.1. Spectrogram

A spectrogram is a two-dimensional representation of the magnitude of a signal at various
frequencies over time. A spectrogram shows the signal power at each frequency at a particular time as
well as how it varies over time. This makes spectrogram an extremely useful tool for the frequency
analysis of time-series data. Our work used spectrogram feature analysis based on the Short-Time
Fourier transform (STFT) for feature extraction. The STFT is a Fourier transform computed by taking a
short segment of a signal typically after applying a window [45]. In practice, the STFT can be obtained
by dividing the long-time signal into shorter segments of equal length and calculating the Fourier
transform separately in each shorter segment. This represents the Fourier spectrum of each short
segment. It then displays the spectra that usually change as a function of time. We can obtain discrete
version of STFT in the following equation:

w[n] = 0.54− 0.46 cos
πn
N

, 0 ≤ n ≤ N − 1 (6)

STFTx(m, ω) = X(m, ω) =
∞

∑
n=−∞

x[n]w[n−m]e−jωn (7)

where w[n] is the window function with length N that is often taken to be Gaussian window, Hann
window or Hamming window: window function is Hamming window in Equation (6) and x[n] is
a discrete-time data at time indexed by an integer n. Finally, the spectrogram can be obtained by
logarithmic or linear representation of the spectrum generated by the previous STFT as follows:

SpectrogramLinear(m, t) = |STFTx(m, ω)|2 , ∀t (8)

SpectrogramLog(m, t) = Log(SpectrogramLinear(m, t)), ∀t (9)
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Figure 9 shows the block diagram of the spectrogram based on the STFT for feature extraction
and Figure 10 shows the waveform and spectrogram of input time series data which is part of the
self-configured dataset used in the experiment section.

Figure 9. The block diagram of the spectrogram based on STFT.

(a)

Figure 10. Cont.
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(b)

Figure 10. The waveform and spectrogram of input time series data which is part of the self-configured
dataset used in the experiment section. (a) The waveform of Machine 1–3’s current for 2 s
(16,000 samples). (b) The spectrogram of Machine 1–3’s current for 60 s.

3.1.2. Mel-Spectrogram and MFCC

Human perception of the frequency content of sound for an audio signal does not follow the
linear scale. Thus, for each tone with the actual pitch f measured in Hz, the subjective pitch is measured
on a scale called a ‘Mel’ scale. The Mel-frequency scale is a linear frequency interval of 1000 Hz or less
and a log interval of 1000 Hz or higher [46]. On Mel-frequency scale, spectrum is transformed into
Mel-spectrum through Mel-filter banks of triangular overlapping windows. The Mel-filter bank is a
critical band with various bandwidth on normal frequency scale and emphasizes information in the low
frequency range by placing a large number of filters in low frequency bands than high frequency bands.
Mel-spectrogram generated in this manner focuses more on the low frequency patterns than the higher
frequency patterns of the power signal with the reduced dimension. Although the Mel-spectrogram
is motivated by human perception of audio frequency, we believe that this conversion is useful for
power data analysis because the lower frequency patterns may also carry crucial information than
higher frequency patterns. At the same time, higher frequency patterns may also contribute to the
information, less importantly than the lower frequency patterns, making the Mel-spectrogram a useful
choice for the classification task.

Mel Frequency Cepstral Coefficients (MFCC) can be obtained by converting the logarithm of the
Mel-spectrum back to time with a discrete cosine transform (DCT) [46]. By converting the logarithm of
the Mel-spectrum, low-frequency information is extended, and the MFCC has only a real part because
of DCT. It can be expressed by the following equation:

cn =
K

∑
k=1

(log sk)cos [n(k− 0.5)
π

K
], for n = 1, . . . , N, (10)

where sk is the output power of the kth filter of the filter bank and cn is the obtained MFCC with N
number of parameters through DCT. Figure 11 shows the Block diagram of MFCC.

One of the advantages of the MFCC is that it deconvolves convoluted signal into individual
components [45] and although it was originally developed for speech analysis [46], we believe that it
works well for power signal analysis because power signals may also contain convolutive components.
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Figure 11. The Block diagram of MFCC.

3.2. Multiple Feature Combination

We use three data feature extraction techniques for better appliance classification performance as
described in Section 3.1. However, unlike the existing method [44], each data obtained through three
feature extraction is not inputted as one data independently, but the data generated after three feature
extraction are combined into one data as input. When each data is used independently, it is difficult to
optimize the trained parameters of the deep learning to values that satisfy all of the different data types.
Therefore, it is possible to learn data more efficiently by using it as a single data. The combination of
data is a simple concatenation. First, when each feature extraction technique is applied to the raw data,
the parameters of each feature extraction technique are set so that the temporal dimension can be
generated equally to constitute as one set. The next step is to stack the data up in temporal order.
This set of data is one input. In this paper, data were stacked in the order of spectrogram, MFCC and
Mel-spectrogram. The data concatenation can be expressed as follows:

x(1) = Spectrogram ∈ RL×T (11)

x(2) = MFCC ∈ RN×T (12)

x(3) = Mel-Spectrogram ∈ RK×T (13)

x = [x1, x2, · · · , xT ] =

x(1)

x(2)

x(3)

 ∈ R(L+N+K)×T , (14)

where L, N, and K are the feature vector sizes of spectrogram, MFCC, and Mel-spectrogram respectively.
At each time t, the column vector xt of size (L + N + K)×1 is used as the input to the RNN structure
(confer Figure 3). Figure 12 shows the combined features for some appliances along with the raw data.

(a) (b)

Figure 12. Cont.
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(c) (d)

(e) (f)

Figure 12. The feature combination of some appliances with original signal. (a) i7_desktop (b) hairdryer
(c) primary_tv (d) toaster (e) fridge_freezer (f) oven.

4. Experiments

We constructed experiments to verify the validity and the performance of the proposed model,
MFC-ML-LSTM. The experimental configuration consisted of four performance comparison works.
First, we compare the performance of raw data and spectrogram as input by using a self-configured
dataset. Second, we compare the performance of the CNN model with our ML-LSTM model using the
spectrogram of the self-configured dataset. Third, we compared the performances of the MFC input
consisting of spectrogram, MFCC and Mel-spectrogram with only the spectrogram input using the
UK-DALE-2017 dataset. These three comparison works are done for the task of single-label multi-class
classification, where a single appliance is identified among multiple appliances from the power data of
a single unknown appliance. Finally, we compare the performance of our proposed model with the
existing methods presented in other works [23,24] for the multi-label multi-class classification, where
one or more unknown number of appliances are identified from aggregated power data of unspecified
number of appliances.
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4.1. Dataset Description

We constructed two sets of data to validate our results by applying our work to real data. One is
a self-configured dataset for experimentation and the other is the UK-DALE-2017 dataset, a public
dataset for NILM.

4.1.1. Self-Configured Dataset

We configured our own dataset for performance evaluation of data with high sampling rate. Data
have been collected from three different factory equipment’s motor at a sampling rate of 8 kHz, and
the values of three-phase, four-wire current and voltage for each equipment were recorded. When
comparing the amount of information for the same time with the data with low sampling rate, the data
with high sampling rate has the disadvantage that it needs a lot of memory for higher data capacity in
the classification work but has the advantage that it can achieve better performance because it utilizes
more information.

4.1.2. UK-DALE-2017 Dataset

The UK-DALE-2017 dataset was proposed by Jack Kelly and William Knottenbelt and it was
released in 2014 at first and it has been updated every year [25]. It is an open-access dataset from the
UK recording Domestic Appliance-Level Electricity at a sample rate of 16 kHz for the whole-house
and at 1/6 Hz for individual appliances. But, the 16 kHz data was not used in this paper because
the difference in data recording periods for each appliance is so large, this data unbalance can bring
about overfitting problems in training with deep learning and we also have focused more on the user’s
appliance usage pattern. Therefore, we use only 1/6 Hz data. There are power data for five houses,
each house has information about the different kinds and number of appliances, and the recording
duration of each house and appliance is different. In our experiments, we did not use data which don’t
label properly or have a very little amount of data compared to other appliances. Table 2 shows the
detailed description of UK-DALE-2017 dataset and Table 3 shows the list of appliances selected for
learning with UK-DALE-2017 dataset.

Table 2. The detailed description of UK-DALE-2017 dataset.

House Building of Type
Duration of
Recording
(Days)

Number of
Appliance

Number of Using
Appliance Sample Rate

1 End of terrace 786 53 31 16 kHz, 1 Hz, 1/6 Hz
2 End of terrace 234 20 12 16 kHz, 1 Hz, 1/6 Hz
3 - 39 5 2 1/6 Hz
4 Mid-terrace 205 6 2 16 kHz, 1 Hz, 1/6 Hz
5 flat 137 26 15 1/6 Hz

Table 3. The list of appliances selected for learning in UK-DALE-2017 dataset.

House Appliance

1

dishwasher, amp_livingroom, kitchen_dt_lamp, livingroom_lamp_tv,
washing_machine, battery_charger, office_lamp3, livingroom_s_lamp, kitchen_lamp2,
livingroom_s_lamp2, gigE_&_USBhub, solar_thermal_pump, fridge, samsung_charger,
htpc, hifi_office, gas_oven, subwoofer_livingroom, tv, office_pc, bedroom_chargers,
lighting_circuit, laptop, kitchen_lights, office_lamp1, lcd_office, adsl_router,
kitchen_phone&stereo, childs_ds_lamp, data_logger_pc, office_lamp2

2
server, dish_washer, laptop2, router, fridge, modem, washing_machine, monitor,
running_machine, microwave, server_hdd, speakers

3 electric_heater, laptop

4 gas_boiler, freezer

5
core2_server, microwave, washer_dryer, i7_desktop, network_attached_storage,
dishwasher, sky_hd_box, 24_inch_lcd_bedroom, fridge_freezer, oven, 24_inch_lcd,
treadmill, atom_pc, home_theatre_amp, primary_tv
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4.2. Data Processing and Setup

We have worked to fit the dataset into our framework for multi-class classification as follows
(the entire process is done independently for each house in the UK-DALE-2017 dataset and each factory
equipment in the self-configured dataset):

1. Define the data size by cutting a time series data for each appliance class every duration L with
stride M (overlapping L−M) and then cut the data as defined.

2. If non-zero data is less than 1% of the duration L, the data is additionally labeled as ‘None’.
3. Labeling each class about appliance by one-hot encoding.
4. The datasets of each class about appliance are collected and shuffled randomly.
5. The datasets are divided into train, validation and test sets with the ratio of 60:20:20.

In order to increase the amount of data, we truncated the stride to less than time L so that the data
cut in step 1 of the process can be overlapped. By doing this, not only the amount of data increases,
but also the important front and back information relation of the serial data can be maintained
naturally. Table 4 shows time L, M for each dataset setting and Tables 5 and 6 show the overall
dataset configuration.

Table 4. The time L, M for each dataset setting.

Dataset L (One Data Duration) M (Stride) L-M (Overlapping)

UK-DALE-2017 24 h 12 h 12 h
Self-configured 3 s 2 s 1 s

Table 5. The number of extracted data for each house of UK-DALE-2017 dataset.

House # of Train (+Validation) # of Test

House 1 75,771 18,923
House 2 3659 909
House 3 112 28
House 4 724 180
House 5 3413 849

Table 6. The number of extracted data for each feature of self-configured dataset.

# of Train # of Validation # of Test

10,912 3632 3648

Since UK-DALE-2017 dataset recorded at 1/6 Hz contains only individual directly measured data
for each appliance, it does not include any aggregated data. So for multi-label classification, the data
from individual appliances should be combined together. In order to maintain the balance among
different classes, the data mixing process for combining data of different appliances considers the
frequency of usage for each appliance. The specific data mixing procedure is as follows.

1. Define the data size by cutting a time series data for each appliance class every duration 24 h
with stride 12 h (overlapping 12 h) and then cut the data as defined (as Table 4).

2. If non-zero data is less than about 30 s of duration 24 h, the data is removed.
3. Obtains the number of data of each appliance generated through steps 1, 2.
4. The dataset is divided into train (+ validation) set and test set at a ratio of 80:20.
5. (For each set) After finding the number of appliances with the highest number of data, fill the

data with only as few as zero for the appliance with a lower number of data and shuffle randomly.
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6. (For each set) To create various mixing patterns, randomly shuffle the data generated in step 5
and attach it to the back of the existing data.

7. (For each set) Mix all the appliance data with simple addition and label with multi-hot encoding.
8. (For each set) Add independent data of each appliance that is not mixed to set.

Since the measurement duration of the power used by each appliance and the measurement
start time are different, it is necessary to adjust the total duration of the data to be mixed as in the
above-mentioned step 4 in data mixing. And, since the measurement duration of each of the appliances
is different but there is not much difference except for a few, it makes possible that the user’s usage
frequency information of data can be mixed similarly to the actual data by filling with zero to the data
of the insufficient duration and shuffling randomly. In step 5, data before mixing is added to the train
set to improve classification performance, and also added to the test set to check the performance of
the single appliance event. Figure 13 shows the diagram of the data mixing process and Figure 14
shows some mixed data plots.

Figure 13. The diagram of the data mixing process.

Figure 14. Some mixed data plots.



Energies 2019, 12, 2804 17 of 24

4.3. Experiment Environment

We used the Tensorflow framework for deep learning and the specification of our workstation for
training the proposed model is as follows:

• CPU: Intel (R) Xeon (R) CPU E5 – 2603 v3 @ 1.60Hz (12 cores)
• GPU: GeForce GTX TITAN X (x 4)
• RAM: 64 GB
• OS: Ubuntu 14.04.5 LTS

4.4. The Hyperparameters for Learning

The hyper parameter is a key factor that affects the algorithm’s performance. Depending on how
the hyper parameters are configured, data learning time, memory capacity, and learning outcomes
can change significantly. We were able to achieve better performance by adjusting hyper parameters
such as learning rate, hidden layer size, ML-LSTM layer sizes, batch sizes and epochs. Our Hyper
parameter settings are shown in Table 7.

Table 7. Hyper parameter settings for learning.

Hyper Parameter Value Explanation

Learning rate 0.0001
The ratio to reach for the optimum set of parameters. It affects the
optimization speed of deep learning model through the optimizer.

Hidden layer size 256
The number of the hidden layer’s nodes. It affects the learning depth of
deep learning.

Optimizer Adam

A parameter optimization model. Adam Optimizer is one of the most
popular optimizers in deep learning as it adjusts the update level of
learning rate by calculating the optimization speed of parameters while
reducing learning rate during training.

ML-LSTM layer size 6
The number of stacked LSTM layers. As the more layers, the LSTM can
store more information.

Batch size 20
The size of the batch which is a way of learning various information at
the same time by grouping multiple inputs rather than one input.

Epochs 600
A unit for the process of learning with the whole data once in the training
dataset.

4.5. Evaluation Methods of Performance

For our model performance evaluation, we measured the micro-average of the Precision, Recall,
F1-Score and Accuracy by using the confusion matrix which is proposed by Kohavi and Provost [47],
as shown in Table 8.

Table 8. The confusion matrix.

Label
Predicted Yes No

Yes TP FN
No FP TN

Where, TP is “true positive” for correctly predicted event, FP is “false positive” for incorrectly
predicted event, TN is “true negative” for correctly predicted non-event, and FN is “false negative” for
incorrectly predicted non-event. The Precision, Recall, F1-Score and Accuracy are defined as follows:

Precision =
TP

TP+FP
(15a)
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Recall =
TP

TP+FN
(15b)

F1-Score = 2∗ Precision*Recall
Precision+Recall

(15c)

Accuracy =
TP+TN

TP+FP+FN+TN
(15d)

5. Results and Discussion

5.1. Performance Comparison between Raw Data and Spectrogram

In this experiment, we use the self-configured dataset to verify the importance of the input
data type. We used ML-LSTM model for single-label multi-class classification for both raw data and
spectrogram. Since the raw data is a 1-D array, we divide the values according to each time into specific
period units and use it as information in each step of RNN to add more information at each step.
Figure 15 shows the results of using raw data and spectrogram as input.

(a) (b)

Figure 15. The training and test results for raw data and spectrogram of self-configured dataset as
the input to an ML-LSTM model. (a) The training result in terms of the accuracy with respect to the
number of epochs. (b) The test result in accuracy.

Figure 15b shows that with the raw data as input, the training accuracy begins at about 40%
whereas with the spectrogram as input, the training accuracy begins at about 100%. This confirms that
the spectrogram carries more prominent patterns of the data for classification. Also, the results of each
test show that when the spectrogram was the input, the performance of the classification accuracy
is higher at 99.8%. Although there are only three classes for classification with the self-configured
dataset, we confirm that the performance is better with the spectrogram than the raw data as input.

5.2. Performance Comparison between CNN and RNN

In this experiment, we compare the RNN model with the CNN model by using the spectrogram
as input using the self-configured dataset. The spectrogram is used because it performs better than
the raw data and is a two-dimensional format suitable for training with the CNN, and CNN uses a
structure that extends the filter size of the convolution layer to 5× 5 of the LeNet5. Figure 16 shows
training and test results for the CNN and the RNN where ML-LSTM was used as the RNN model.
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(a) (b)

Figure 16. The training and test results for CNN and RNN using spectrogram of self-configured dataset.
(a) The training result in terms of the accuracy with respect to the number of epochs. (b) The test result
in accuracy.

Figure 16a shows that, at the beginning of the training, RNN achieves close to 100% training
accuracy contrary to the CNN model which achieves about 73%, even though it is a popularly used
model for image classification tasks. Also, Figure 16b shows that the performance of the CNN is
significantly lower than that of the RNN. This is because it can not fully utilize the temporal information
of the power data for learning. It is possible that the performance is poor because we used CNN’s
basic network structure (LeNet5). Nevertheless, we believe that using RNN will perform still better
than using other advanced CNN structure. Because the power data has values according to certain
patterns according to time, the RNN model is shown to be more suitable than the CNN model.

5.3. Performance Comparison between Single Input and Multiple Feature Combination Input

Previous experiments have shown that the use of RNN and spectrogram are suitable choices for
power data. Based on this, in this experiment, we compared the performance of the reconstructed MFC
input network with that of the single input network by adding other feature extraction techniques to
confirm that the performance improves when the input data consist of the combination of multiple
features (spectrogram, MFCC, Mel-spectrogram) instead of single feature (only spectrogram). The
Figure 17 shows the results for the performance based on the input settings about UK-DALE-2017
dataset. For multiple features, each feature is combined into a feature set by simple concatenation.

(a) (b)

Figure 17. The results of the performance based on the input settings of the UK-DALE-2017 dataset.
(a) Result of performance in terms of the accuracy when the input is only spectrogram. (b) Result of
performance in terms of the accuracy when the input is the multiple feature combination of Spectrogram,
MFCC, Mel-spectrogram
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The MFC performed much better than the spectrogram as the input. Although we did not
experiment with different combinations of features that had the highest performance in paper proposed
by Khunarsal et al. and Raicharoen [44], we already achieved much higher results as shown in
Figure 17b that the accuracy for each house is close to 100%. Regarding this single-label multi-class
classification task, the confusion matrix and F1-score of each appliance of House 2 of UK-DALE-2017
dataset are given in Table 9.

Table 9. The confusion matrix and F1-score of each appliance in House 2.
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monitor 62 0 0 0 1 0 0 0 4 0 0 0 0 0 0 0 0 0.939
speakers 0 70 2 2 0 0 0 3 0 0 0 0 0 0 0 0 0 0.933

server 0 0 77 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.962
router 0 1 0 73 0 0 0 0 0 1 0 0 0 0 0 2 0 0.907

server_hdd 1 0 0 0 40 0 0 0 0 0 4 0 0 0 0 0 0 0.909
kettle 0 0 0 0 0 56 1 0 0 0 0 0 0 0 0 0 0 0.974

rice_cooker 0 0 0 0 0 2 53 2 0 0 0 0 0 0 0 0 0 0.955
running_machine 0 2 4 0 0 0 0 51 0 0 0 0 0 0 0 0 0 0.895

laptop2 2 0 0 0 0 0 0 0 46 1 0 0 0 0 0 0 1 0.920
washing_machine 0 0 0 8 0 0 0 0 0 38 0 0 0 0 0 0 0 0.884

dish_washer 0 0 0 0 2 0 0 0 0 0 44 0 0 0 0 0 0 0.936
fridge 0 0 0 0 0 0 0 0 0 0 0 46 0 0 0 0 0 1.000

microwave 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 7 0.222
toaster 0 0 0 0 0 0 0 0 0 0 0 0 0 46 0 0 0 1.000

playstation 0 0 0 0 0 0 0 1 0 0 0 0 0 0 45 0 0 0.989
modem 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 45 0 0.968

none 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 53 0.876

5.4. Performance Comparison between Existing RNN Models and the Proposed Model

Finally, in this experiment, the performance of our proposed model, MFC-ML-LSTM, is compared
with other models, GRU [23] and FESL-LSTM [24], for multi-label classification. Figure 18 shows the
accuracy comparison result and Figure 19 shows the F1-score comparison result. Table 10 shows the
multi-label classification result of each appliance in House 1 of the mixed data using UK-DALE-2017
dataset as described in Section 4.2.

(a) (b) (c)

Figure 18. The multi-label classification results of the mixed data using UK-DALE-2017 dataset.
The accuracy of (a) GRU, (b) FESL-LSTM, and (c) MFC-ML-LSTM.
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(a) (b) (c)

Figure 19. The multi-label classification results of the mixed data using UK-DALE-2017 dataset.
The F1-score of (a) GRU, (b) FESL-LSTM, and (c) MFC-ML-LSTM.

Table 10. The multi-label classification result of each appliance in House 1.

Appliance F1-Score Accuracy Appliance F1-Score Accuracy

dishwasher 91.96% 97.66% subwoofer_livingroom 99.74% 99.89%
amp_livingroom 97.93% 99.10% tv 99.60% 99.83%
kitchen_dt_lamp 44.82% 91.95% office_pc 50.45% 94.26%

livingroom_lamp_tv 87.78% 95.04% bedroom_chargers 62.14% 89.96%
battery_charger 40.98% 93.06% lighting_circuit 97.98% 99.12%

office_lamp3 47.50% 94.43% laptop 63.73% 94.42%
livingroom_s_lamp 84.32% 93.97% kitchen_lights 98.17% 99.21%

kitchen_lamp2 47.66% 91.43% office_lamp1 40.77% 90.15%
livingroom_s_lamp2 73.84% 91.21% lcd_office 49.30% 93.10%

gigE_&_USBhub 45.73% 92.98% adsl_router 98.58% 99.38%
solar_thermal_pump 99.16% 99.63% kitchen_phone&stereo 69.34% 90.37%

fridge 99.96% 99.98% childs_ds_lamp 77.00% 99.22%
samsung_charger 77.45% 92.33% data_logger_pc 99.86% 99.94%

htpc 98.92% 99.53% office_lamp2 52.97% 88.29%
hifi_office 48.82% 93.58% washing_machine 93.28% 97.54%
gas_oven 99.04% 99.58%

As shown in Figure 18, the accuracy of MFC-ML-LSTM is shown to be higher than the others for
all houses. The F1-score is also higher than that of the others, except for House 5, as shown in Figure 19.
These results show that our proposed model has better performance for multi-label classification.
As F1-score in Table 10 shows, the experimental results for all houses show that appliances having a
small power consumption patterns based a pulse shape such as lamp cannot be classified well if those
are mixed together with appliances that have high power consumption patterns at all times such as
fridge or PC. This, of course, is because a small signal with a simple pulse pattern is masked by being
mixed into significantly larger signal. However, even if a signal has such a simple pulse pattern, it can
be confirmed that the signal is classified better when the amplitude of the signal is larger than that of
the other mixed signals altogether.

6. Conclusions

This paper proposed a new RNN-based network for appliance classification—namely
MFC-ML-LSTM—in order to overcome the limitations of existing classification algorithms. By applying
various feature extraction techniques commonly used for audio signal processing to the ML-LSTM,
it achieves superior classification performance to the existing RNN-based methods. In particular,
by using the combination of the spectrogram providing the spectral pattern of the power data,
the Mel-Spectrogram focusing more on the lower frequency range than the higher frequency range,
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and the MFCC deconvolving any convolved components of the power data, the representation of
power data specific to the individual appliances become more apparent, resulting in more accurate
classification. Furthermore, the amount of information used for learning can be increased by combining
multiple features as a single input.

Experimental results verified the assumptions presented in this paper and then compared the
performance of the MFC-ML-LSTM with the existing RNN based models, GRU and FESL-LSTM. They
show that the proposed method achieves the accuracy and the F1-score improvements of 0.1% to
10% compared with other existing RNN-based models. In particular, the proposed method achieved
accuracy more than 95%, which is significantly high for appliance classification.

For multi-label multi-class classification, artificially generated data were used to avoid data
unbalance and labeling issues. It is anticipated that the performance may get worse if real aggregate
data are used because actual data may contain unknown patterns due to various external factors unlike
the mixed data as a simple sum of individual power data. Since the proposed approach tries to combine
multiple different representations of the power data, we expect that it may still work well, which can
be verified with the help of properly labeled aggregated data collected in real-world scenarios.

There are various power data depending on the environment in which NILM is applied.
Therefore, there exist more cases that can significantly benefit from the proper choices of feature
extraction techniques. Regarding this, we plan to investigate more powerful representations of the
power data by exploring proper frequency ranges and other feature extraction techniques in the feature
extraction layer and by changing the number, combinations, and dimension of the features in the
feature combining layer of the MFC-ML-LSTM.
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