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Abstract: Alarm messages for grid monitoring are an important way to supervise the operation of
power grids. Since the use of alarm messages is increasing exponentially due to the continuous
expansion of the scale of power grids, a processing method for alarm messages based on statistics is
proposed in this study. Entropy theory in information theory is introduced into the calculation of
information value in power-grid alarming. By means of multiple entropy definitions, an evaluation
index system for information value is constructed. Based on the analytic hierarchy process (AHP),
various alarm-message entropies are used as indices to comprehensively assess the information value
and level of each alarm message. Finally, an example is given to illustrate the effectiveness and
practicality of the proposed method. This study provides a new idea for the intelligent classification
of alarm messages.
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1. Introduction

Using alarm messages for grid monitoring, Supervisory Control and Data Acquisition (SCADA)
systems display the operation of power grids to supervisors, and alarm messages also constitute a
data basis for fault diagnosis and decision analysis [1,2]. With renewable energy and electric vehicles
now connected to power grids, power data are becoming more abundant, and such data are highly
valuable [3–5]. These data are stored in databases in the form of audio, text, and images [6]. The scale
of power grids is gradually expanding, and the number of alarm messages as text data is also growing
exponentially. Take a provincial electric power company as an example: The company serves more
than 40 million electricity customers in the province. Until September 2017, more than 3500 substations
with a voltage of 35–500 kV were connected, and the electricity consumption of the province exceeded
600 billion kWh. According to statistics, over 1700 alarm messages are processed by each person on
duty per day on average, i.e., every 50 s, one alarm message has to be analyzed, judged, and processed,
thus posing a tremendous challenge to the dispatch and operations personnel. Therefore, faced with a
massive number of alarm messages for grid monitoring, the classification and processing of messages
can help the operations personnel effectively improve the efficiency and precision of monitoring and
develop intelligent alarms.

Intelligent alarms provide functions such as the comprehensive compression of alarms, the priority
classification of alarms, and the delivery of fault diagnosis results through comprehensive analysis
of alarm messages when a power grid fails [7]. Intelligent alarm systems are an important way for
supervisors to monitor the safety and stability of the operation of a power grid. In order to accelerate
the development of intelligent monitoring system, scholars have conducted in-depth research on
intelligent alarm technology [8].
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In Reference [9], an integrated fuzzy expert system is presented to diagnose various faults that
may occur in a regional transmission network and substations. Using the fuzzy discriminant method,
the problem of discriminating malfunction is solved. Silva et al. [10] introduced a new expert system
framework which includes two applications to meet the daily needs of control centers: An alarm
processing system and a power system recovery support system. This framework can improve the
rules of expert systems. In Reference [11], a novel power-system alarm processing and fault diagnosis
expert system (AFDES) is presented. Backus–Naur Form (BNF) is used to design a kind of expert rule
framework which can filter and classify alarm messages according to their priority and comprehensive
level. Although expert systems are constantly improving with the advancement of research, they
still have some shortcomings, such as incompleteness of knowledge base rules, slow diagnosis speed,
and poor fault tolerance.

In order to improve the fault tolerance of monitoring and alarm systems, alarm methods based
on artificial neural networks have gradually started to be applied. Souza et al. [12] proposed a
hybrid model based on a rule-based system and an artificial neural network for intelligent substation
alarm processing and fault location. The rule-based system can selectively process alarm messages,
and the artificial neural network can further classify the selected alarm messages. Fritzen et al. [13]
used an artificial neural network (ANN) and a genetic algorithm (GA) for alarm processing and
fault diagnosis, which improves the diagnosis speed and generalization ability of the alarm system.
Although such methods can improve the fault tolerance of alarm systems, they have problems, such as
poor interpretation ability and difficulty in sample acquisition.

Additionally, scholars have proposed many other intelligent alarm methods, for example involving
Petri nets and information fusion. For example, in Reference [14], an enhanced fuzzy Petri net (based
on an existing fuzzy Petri net) embedded with temporal constraints of alarm messages is proposed
for power-system fault diagnosis. However, the Petri net method is too complex for the modeling
of large-scale power grids, and the model versatility is poor when the grid topology changes.
In References [15,16], the authors use multi-source information fusion to diagnose and analyze
power-grid faults. Their methods can improve the accuracy and fault-tolerance of intelligent alarms
to some extent, however information completeness cannot be guaranteed, and the redundancy of
information will reduce the speed of analysis. Therefore, this kind of method needs to be studied further.

The abovementioned alarm methods can realize intelligent fault diagnosis in [9–16].
Alarm classification functions have also been used, for example in [10–12]. However, such alarm
methods with a classification function are all filtered according to established rules in expert systems.
In Reference [17], alarm messages were automatically associated with an alarm knowledge base using
a fuzzy matching and reasoning method in order to improve the flexibility of alarm systems. However,
it is first necessary to establish an alarm-message matching rule table. In Reference [18], a knowledge
mining method for association rules based on ontology is proposed for the intelligent analysis of
substation alarm messages. A data-mining method is adopted to generate rules instead of artificially
making rules, however, this does not remove the constraints of the rules.

In summary, on the one hand, there are some problems with existing fault diagnosis methods.
However, on the other hand, alarm-classification methods are mainly based on rules. Although the
Chinese State Grid Corporation has developed a relevant classification standard for alarm messages [19],
artificial marking is still needed when entering alarm messages into the database, which entails a
very large amount of work. Moreover, there is confusion regarding the classification. For example,
“accident”, “abnormal”, and “notification” indicate the severity of the alarm, whereas “off-limit”
and “displacement” are the content of the alarm and cannot be used to determine its severity. With
the increasing complexity of power-grid architecture, the connection modes and configuration of
primary and secondary equipment in substations have diversified, which affects the applicability of
conventional rules and methods.

For the whole of a complex power system, it is uncertain whether the failure or abnormality of
primary and secondary equipment will occur, or which failure or abnormality will occur. Additionally,
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the reflection of the real-time status of equipment by the alarm message is also subject to great uncertainty.
All of these factors add to the difficulty of precise monitoring and early warning. Therefore, the
quantitative characterization of the importance of information carries great engineering value for
improving the pertinence of information processing and the accuracy and efficiency of monitoring
operators. Based on the information theory method, we can effectively address the uncertainty of an
alarm system from the perspective of probability and statistics. The method based on information
theory is widely used in wind speed forecasting [20], probabilistic load flow modeling [21], electric
energy procurement in smart grids [22], fault prediction in power transformers [23], the evaluation
of generation reserve margins in power systems with renewable sources [24], and other areas of
power systems.

Therefore, faced with the rapid increasing of alarm messages, this paper proposes a new intelligent
alarm method which can automatically classify alarm messages based on information theory. The main
contributions of this paper are as follows:

1. We build a multi-dimensional evaluation index system based on information theory and
determine the information value of monitoring alarm messages from a statistical viewpoint. Thus,
we overcome the barrier of set rules and reduce the workload of the supervisors.

2. The analytic hierarchy process (AHP) is used to comprehensively evaluate alarm messages. It can
realize the automatic classification and intelligent marking of large numbers of monitoring alarm
messages. The disposal pattern can be transformed from the passive response to a single record
to active perception hierarchically.

2. Quantitative Calculation of the Information Value of Alarm Messages Based on
Information Theory

2.1. Pre-Processing of Alarm Messages

Grid-monitoring alarm messages consist of text information, and are transmitted from electrical
equipment to a supervisor. If the objective features of the text could be excavated using a text-mining
method and an automatic processing approach could be generated, it would be possible to change
the current mode of analyzing monitoring alarm messages one by one, therefore, greatly reducing
the pressure and work intensity experienced by supervisors and, thus, greatly increasing the safety of
power-grid operation. Therefore, in this study, text-mining, such as word segmentation and removing
stop words, is employed to pre-process monitoring alarm messages. The process is shown in Figure 1.
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2.2. Alarm Messages and Information Theory

Information theory is based on mathematical statistics, and is used to study the quantification
of information, communication of information, and the rule of transformation of information. It has
been widely used in fields such as computer science and communication. In the mid-18th century,
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the German physicist Rudolf Clausius first introduced the concept of entropy, and explained that, in
thermodynamics, entropy is used to describe the distribution homogeneity of any energy in space. The
more homogeneous the energy distribution, the greater the entropy. Entropy has been extensively used
in various areas of research, such as cosmology (i.e., the entropy of black holes [25]) and environmental
science [26]. In 1948, Shannon creatively introduced entropy into information theory, and proposed
the concept of information entropy [27,28]. Information entropy can be used to express the expected
value of a random variable, that is, the average amount of information produced by the information
source. Information entropy can be used to quantitatively characterize the statistical property of an
information source as a whole. The value of information entropy indicates the average degree of
uncertainty of the information source.

Assuming that a discrete random variable X may take n states, x1, x2, . . . , xn, if p(xi) represents the
probability value of xi, then the information entropy of the random variable and the self-information
of xi can be defined as:

H(X) = −
n∑

i=1

p(xi) · log(p(xi)) (1)

I(xi) = − log(p(xi)) (2)

where 0 ≤ p(xi) ≤ 1 and
n∑

i=1
p(xi) = 1.

The amount of information in a piece of alarm message is directly related to the uncertainty of
the message [29]. Every piece of a monitoring alarm message carries various elements, such as scene,
voltage level, equipment name, property of behavior, and behavior. The random combination of these
elements with different probabilities constitutes a complete alarm message [30], which displays the
specific failure or abnormality of the power system to the supervisor. As the monitoring alarm message
triggered by the grid operation is highly complex and uncertain, the degree of uncertainty can be
measured through information entropy. The more homogeneous the probability distribution of the
occurrence of the elements is, the longer the information will be and the greater the uncertainty and
the information entropy will be. Therefore, more information will be uploaded to the supervisor when
the alarm is triggered.

In this paper, the concepts of information source, channel, and destination in information theory
are introduced into the information transmission process of a power system [31], as shown in Figure 2.
In the cases of operation of the equipment, off-limit status, failure, etc., protection and control devices
will be triggered and send out messages. A monitoring alarm message will then be uploaded to the
SCADA system of the main station through the communication device, and will finally form short-text
series in temporal order. Then, the short-text series will generate a short text separated into Chinese
words by spaces using word segmentation technology. After the word segmentation, the entropy of
the monitoring alarm message is calculated with the alarm-message entropy defined below, and the
distribution of alarm-message entropies is obtained. In this way, we evaluate the potential value of the
alarm message and provide support for the decision-making of the supervisor.
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2.3. Definition of Alarm-Message Entropies

Based on entropy-related theories, we define various entropies, such as absolute alarm-message
entropy, Term Frequency-Inverse Document Frequency (TF-IDF) alarm-message entropy, relative
alarm-message entropy, self-information of monitoring alarm message, and average alarm-message
entropy [32] to measure the importance of every piece of alarm message in order to obtain an overall
picture of the content of the message. The absolute alarm-message entropy is defined from the
perspective of the word frequency of a single sentence, while the TF-IDF alarm-message entropy and
relative alarm-message entropy are defined considering the overall message base. The self-information
of a monitoring alarm message describes the sentence level. The definition of these four entropies is
demonstrated in Table 1. The average alarm-message entropy also considers the length of the message.

Table 1. Definitions of different alarm message entropies.

Entropy
Definition

From the Perspective of Words From the Perspective of Sentences

Absolute alarm-message entropy
√

TF-IDF alarm-message entropy 1 √ √

Relative alarm-message entropy
√

Self-information of monitoring
alarm message

√

1 TF-IDF: Term Frequency-Inverse Document Frequency.

2.3.1. Absolute Alarm-Message Entropy

If we assume that M is the given monitoring alarm message base, then the i-th monitoring alarm
message can be expressed as mi = {wi1, wi2, . . . , win}, where wi j represents the occurrence of the word j
in the i-th monitoring alarm message. Through the normalization of mi, that is, mi =

{
p1

i1, p1
i2, . . . , p1

in

}
,

and p1
i j = wi j/

n∑
k=1

wik, the absolute alarm-message entropy of a single piece of alarm message can be

expressed as follows:

H1(mi) = −
n∑

j=1

p1
i j · log(p1

i j) (3)

where p1
i j indicates the probability of occurrence of the word j in the i-th alarm message. Absolute

alarm-message entropy is used to assess the uncertainty of the message from the perspective of word
frequency in a single record of message. From the calculation formula above, we find that long
messages embody a higher entropy value than short messages; therefore, long messages will give out
more information to the supervisor, such as equipment status, protection signals, and operation modes.

2.3.2. Average Absolute Alarm-Message Entropy

Here, we introduce the average absolute alarm-message entropy to eliminate the absolute deviation
caused by the length of a message. The calculation formula of the average absolute alarm-message
entropy is as follows:

H2(mi) =
H1(mi)

len(mi)
(4)

where len(mi) stands for the length of message mi. The average absolute alarm-message entropy is the
ratio of the absolute alarm-message entropy to the length of alarm message. The average absolute
alarm-message entropy takes into consideration the word frequency and the message length, thus
providing a more reasonable description of the entropy of the alarm message.
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2.3.3. Term Frequency-Inverse Document Frequency (TF-IDF) Alarm-Message Entropy

The word occurrence probability in absolute alarm-message entropy only applies to the current
monitoring alarm message. In order to comprehensively assess the contribution of words in the entire
monitoring alarm message base, we introduce TF-IDF in information retrieval to the definition of
alarm-message entropy. TF-IDF is a commonly used weighting technique for information retrieval
and data mining [33], where TF refers to the frequency of the term in the document and IDF is the
logarithm of the ratio of the total number of documents to the number of documents containing the
term. The TF-IDF alarm-message entropy can be defined in the following way: TF represents the
contribution of a word to the monitoring alarm message, and IDF shows the frequency of the word in
the entire monitoring alarm message base. If we assume that M is the given monitoring alarm message
base, then the i-th monitoring alarm message can be expressed as: mi = {vi1, vi2, . . . , vin}, where vij
represents the quasi-TF-IDF value of the word in the monitoring alarm message and can be calculated
in the following way:

vi j =
wi j

n∑
k=1

wik

· log(
SN

Si j + 1
) (5)

where wi j indicates the frequency of word j in monitoring alarm message i, SN represents the total
number of monitoring alarm messages in the base, and Si j is the number of alarm messages in the base
which are found to contain word j as in alarm message i.

To introduce information entropy, we normalize the single piece of monitoring alarm message,

mi =
{
p3

i1, p3
i2, . . . , p3

in

}
, p3

i j = vi j/
n∑

k=1
vik, so the TF-IDF alarm-message entropy is calculated as follows:

H3(mi) = −
n∑

j=1

p3
i j · log(p3

i j) (6)

where p3
i j is the normalization frequency of the quasi-TF-IDF value of a word in that alarm message.

Compared with the absolute alarm-message entropy, the TF-IDF alarm-message entropy considers
not only the frequency of a word in a specific monitoring alarm message, but also the frequency of the
word in the alarm message base, which better distinguishes the alarm message with different values of
information. The TF-IDF alarm-message entropy allows the evaluation of the message uncertainty not
only from the perspective of word frequency in a single piece of message and the sentence frequency
in the entire base, but also from the perspective of the newness of the word, i.e., its low occurrence in
the base.

2.3.4. Average TF-IDF Alarm-Message Entropy

As does the absolute message entropy, the TF-IDF alarm-message entropy has the problem of
unbalanced calculation results due to the message length. Hence, we introduce the concept of the
average TF-IDF alarm-message entropy, which is calculated as follows:

H4(mi) =
H3(mi)

len(mi)
(7)

2.3.5. Relative Alarm-Message Entropy

Information theory has been used to prove that the self-information of a word is only related to its
probability of occurrence in a document. The smaller the probability is, the bigger the information
value will be. We consider that the amount of information in one piece of message is only related to the
number of different words it contains. Repeating a word does not increase the amount of information
in a sentence. Inspired by the TF-IDF alarm-message entropy, we calculate the word frequency based
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on the entire alarm message base in order to improve the estimation of the absolute alarm-message
entropy. If we assume that M represents the given monitoring alarm message base, the i-th alarm
message can be mi = {ui1, ui2, . . . , uin}, where ui j indicates the relative frequency of word j in the i-th
monitoring alarm message. The formula for ui j is as follows:

ui j =

SN∑
k=1

wkj

TN∑
l=1

SN∑
k=1

wkl

(8)

where wkj is the number of occurrences of word j in alarm message k, SN is the total number of alarm
messages, and TN is the word count of the entire alarm message base. The self-information of word j
in the i-th message, expressed by variable I(ti j), is first calculated as follows:

I(ti j) = − log(ui j) (9)

Then, the relative alarm-message entropy of the alarm message is calculated as follows:

H5(mi) =
n∑

j=1

I(ti j) (10)

From the formula, we can see that its physical meaning lies in the measurement of the message
uncertainty from the perspective of the word frequency in the entire alarm message base. Thus, alarm
messages with more accidental equipment malfunctions and names of protections have more value.

2.3.6. Average Relative Alarm-Message Entropy

Here, we introduce the concept of average relative alarm-message entropy as follows:

H6(mi) =
H5(mi)

len(mi)
(11)

2.3.7. Self-Information of the Alarm Message

The above methods use the word level to calculate the entropy of all the alarm messages. However,
the frequency of the complete alarm message in the alarm message base can also be used, to some
extent, to determine the value of the information. As in our intuitive perception, alarm messages with
more value occur less frequently. Self-information is used to measure the uncertainty of a message
from the perspective of sentence frequency in the entire alarm message base. Here, we define the
self-information of a monitoring alarm message as follows:

I(mi) = − log(p(mi)) (12)

where p(mi) is the frequency of alarm message mi in the alarm message base.

3. Comprehensive Evaluation of Alarm Messages Based on the Analytic Hierarchy Process

In order to combine the features of various entropies and provide supervisors with an ultimate
overall index, we introduced the AHP to comprehensively assess the alarm message value obtained
through multi-dimensional calculation. The AHP is an analytical technique which is used to decompose
the target into a hierarchy of indices and then evaluate the indices to obtain a comprehensive
evaluation [34]. The AHP provides a comprehensive framework for various indices of monitoring
alarm messages, which obtains more rational and effective results. In this paper, seven alarm message
entropies were used as indices to comprehensively assess the information value of different alarm
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messages. The target layer O = {comprehensive score for monitoring alarm message}, index layer Q
= {average relative alarm-message entropy, self-information of monitoring alarm message, average
TF-IDF alarm-message entropy, average absolute alarm-message entropy, TF-IDF alarm-message
entropy, relative alarm-message entropy, absolute alarm-message entropy}. Then we define the index
layer Q =

{
f1, f2, f3, f4, f5, f6, f7

}
for convenience.

The evaluation of a monitoring alarm message based on AHP can be carried out by the following
steps [35]:

Step 1: Compare the importance of each index of the same layer to a certain target and construct a
judgment matrix.

Step 2: Check the consistency of the judgment matrix. If the consistency is not met, go to Step 3;
otherwise, go to Step 4.

Step 3: Modify the inconsistent judgment matrix.
Step 4: Calculate the weight vector of the layer based on the judgment matrix.
Step 5: Conduct a comprehensive evaluation of monitoring alarm messages.

3.1. Construction of the Judgment Matrix

We compared the importance of the index fi to that of the index f j to the upper target, that is,
fi j = cmp( fi, f j). We use a scale of 1–9 and the reciprocal to quantify fi j, as shown in Table 2 The value
of the result is represented by the notation di j.

Table 2. Meaning of the analytic hierarchy process (AHP) scale.

fij Meaning

1 fi is as important as f j
3 fi is slightly more important than f j
5 fi is obviously more important than f j
7 fi is much more important than f j
9 fi is of the utmost importance to the target compared with f j

2, 4, 6, 8 Middle values between the adjacent values
Reciprocal Importance of f j to the target compared with fi: f ji = cmp( f j, fi)

Then, we have the judgment matrix D, where the elements are defined as follows:
di j = cmp( fi, f j), i , j
d ji =

1
di j

, i , j

di j = 1, i = j
(13)

where di j > 0; 1 ≤ i ≤ n; 1 ≤ j ≤ n.

3.2. Hierarchical Ranking and Consistency Check

After the judgment matrix was constructed, we calculated the maximum eigenvalue λmax and
eigenvector x of the judgment matrix, and then normalized the eigenvector to obtain the weight
ranking of the importance of the indices to the target layer, that is, the hierarchical single arrangement.
As there is only one index layer in the scene, hierarchical total arrangement is not necessary.

The consistency ratio of the judgment matrix CR = CI/RI. The consistency index CI = (λmax −

n)/(n − 1) and the random consistency index on the average RI can be determined from the table
in [36]. When CR < 0.1, the consistency of the judgment matrix is acceptable; otherwise, modification
is needed.
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3.3. Comprehensive Evaluation

We used the min-max normalization method to convert the index values to the range of 0–1. The
normalization formula is shown as follows:

si−norm =
si − smin

smax − smin
(14)

where si−norm is the normalized value, si is the original value, and smax and smin represent the maximum
and minimum values of the original dataset, respectively.

Then, according to the normalization state values of the index S = (s1, s2, . . . , sn) and the rank
weight of the overall index obtained X = (x1, x2, . . . , xn)

T, we calculated the overall evaluation value
of each index as follows:

Y = SX =
n∑

i=1

sixi (15)

4. Results

To verify the validity of the proposed method, we referred to the corpus of a company’s monitoring
alarm messages from 2017. First, nearly six million pieces of alarm message from about 300 substations
were pre-processed and segmented using Jieba toolkit [37]. The frequency (at the minute level) of
messages of different lengths is shown in Figure 3. Then, we analyzed the alarm messages using
the above formulas, and obtained a 3D probability density map of the alarm message entropies for
messages of different lengths by fitting using the kernel density estimation method.
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4.1. Analysis of Multiple Alarm-Message Entropies

1. Absolute alarm-message entropy

As the words in the monitoring alarm messages analyzed in this study mostly occur only once, the
value of the absolute alarm-message entropy is positively correlated to the message length, as shown
in Figure 4. From the figure, it can be seen that the distribution of entropy is relatively concentrated.
Additionally, long messages have a higher absolute alarm-message entropy than short messages, which
indicates that long messages are more important.

2. Average absolute alarm-message entropy



Energies 2019, 12, 2814 10 of 18Energies 2019, 12, x FOR PEER REVIEW  10 of 18 

 

Figure 4. Probability density map of absolute alarm-message entropy. 

2. Average absolute alarm-message entropy 

Compared with the absolute alarm-message entropy, the average absolute alarm-message 

entropy is mainly concentrated in the area with higher values of alarm-message entropy. However, 

the distribution is still relatively concentrated. As shown in Figure 5, short messages have a higher 

average absolute alarm-message entropy than long messages. The method used in this study tends 

to rate short messages as more important. As can be seen in the description of actual monitoring 

alarm messages, important messages, such as those related to “protection behavior”, “general fault 

signal”, and “on-off operation”, are relatively short. Therefore, average absolute alarm-message 

entropy is more practical than absolute alarm-message entropy. 

 

Figure 5. Probability density map of average absolute alarm-message entropy. 

3. TF-IDF alarm-message entropy 

As shown in Figure 6, compared with the absolute alarm-message entropy, the TF-IDF alarm-

message entropy is relatively dispersed, which makes it easier to identify single pieces of alarm 

message. As the alarm-message entropy is the sum of words, long alarm messages still have higher 

information entropy than short alarm messages. However, the TF-IDF alarm-message entropy 

considers the inverse frequency. Thus, the entropy of short alarm messages including low-frequency 

words, such as “general fault signal”, will increase, and that of long alarm messages with high-

frequency words will decrease. Thus, we managed to separate the messages in the base by entropy 

value (information value). 

Figure 4. Probability density map of absolute alarm-message entropy.

Compared with the absolute alarm-message entropy, the average absolute alarm-message entropy
is mainly concentrated in the area with higher values of alarm-message entropy. However, the
distribution is still relatively concentrated. As shown in Figure 5, short messages have a higher average
absolute alarm-message entropy than long messages. The method used in this study tends to rate short
messages as more important. As can be seen in the description of actual monitoring alarm messages,
important messages, such as those related to “protection behavior”, “general fault signal”, and “on-off

operation”, are relatively short. Therefore, average absolute alarm-message entropy is more practical
than absolute alarm-message entropy.

3. TF-IDF alarm-message entropy
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As shown in Figure 6, compared with the absolute alarm-message entropy, the TF-IDF
alarm-message entropy is relatively dispersed, which makes it easier to identify single pieces of
alarm message. As the alarm-message entropy is the sum of words, long alarm messages still
have higher information entropy than short alarm messages. However, the TF-IDF alarm-message
entropy considers the inverse frequency. Thus, the entropy of short alarm messages including
low-frequency words, such as “general fault signal”, will increase, and that of long alarm messages
with high-frequency words will decrease. Thus, we managed to separate the messages in the base by
entropy value (information value).

4. Average TF-IDF Alarm-Message Entropy
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As a length penalty is introduced to the average TF-IDF alarm-message entropy, the distribution
will be more uniform, as shown in Figure 7. The entropy of short messages with low word frequency is
higher than that of long messages with high word frequency, which adequately depicts the differences
between monitoring alarm messages and is more realistic.

5. Relative alarm-message entropy
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Contrary to the average TF-IDF alarm-message entropy, for the relative alarm-message entropy,
most of the alarm messages have a lower entropy value, as shown in Figure 8. The relative alarm-message
entropy of short messages is lower than that of long messages. As the entropy value of long messages
composed of low-frequency words is higher, this method adequately separates long messages from
other messages.

6. Average relative alarm-message entropy
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The probability density curve of the average relative alarm-message entropy varies smoothly
and is not obviously related to the message length. The entropy value of alarm messages composed
of low-frequency words is higher, which indicates that the average relative alarm-message entropy
highlights new alarm messages, as shown in Figure 9.

7. Self-information of monitoring alarm messages
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The self-information of monitoring alarm messages is calculated at the sentence level. As shown
in Figure 10, the higher the frequency of the sentence, the lower the self-information value. From the
figure, it can be seen that the sentence frequency of most alarm messages is relatively low. Alarm
messages with high sentence frequency only represent a small proportion of the total number of alarm
messages, and through the calculation of the self-information, a large number of alarm messages with
a high frequency—that is, a low information value—were able to be filtered out.
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Summary of the characteristic and feature of each alarm-message entropy mentioned above is
shown in Table 3.

Table 3. Summary of the characteristic and feature of each alarm-message entropy mentioned above.

Entropy Characteristic Feature

Absolute alarm-message entropy Concentrated Favors long messages
Average Absolute alarm-message
entropy Concentrated Favors short messages; realistic

TF-IDF alarm-message entropy Dispersed
Favors long messages with low
word frequency; partially
separates the alarm messages

Average TF-IDF alarm-message
entropy Dispersed

Favors short messages with low
word frequency; separates the
alarm messages well; realistic

Relative alarm-message entropy Dispersed, concentrated in the
mid-to-low entropy area

Favors long messages with low
word frequency

Average relative alarm-message
entropy Dispersed Favors messages with low word

frequency
Self-information of monitoring
alarm message Concentrated in high-Entropy area Favors messages with low

sentence frequency

In summary, the average TF-IDF alarm-message entropy is relatively dispersed and could help to
better identify alarm messages. The average relative alarm-message entropy could help to identify new
messages with low frequency, while the self-information of monitoring alarm messages could be used
to separate frequent alarm messages and to facilitate the monitoring and analysis work of supervisors.

4.2. Analysis of Comprehensive Evaluation

Finally, using the AHP, we managed to conduct an overall analysis of the seven entropies and
obtain a more effective evaluation result. We calculated the single ranking weight of the index layer
using AHP, as shown in Table 4. Additionally, we determined the values of the indices CI (0.0328) and
RI (1.32) by calculating and by consulting the Table 2-2 in [37]. The value of the consistency ratio CR
verifies that the consistency of the judgment matrix is acceptable. Using the index status value and
single ranking weight, we were able to calculate the comprehensive scores of different types of alarm
messages. The probability density map of the comprehensive scores for alarm messages is shown in
Figure 11.

Table 4. Single ranking weights of the index layers.

Index f1 f2 f3 f4 f5 f6 f7

Weight 0.3504 0.2375 0.1590 0.1056 0.0696 0.0462 0.0318
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From Figure 11, it can be seen that, compared with other alarm-message entropy indices, the
comprehensive scores for alarm messages are evenly distributed, which allows the different alarm
messages to be adequately separated. Moreover, the distributions of the comprehensive scores of
alarm messages of different lengths are similar to each other. Based on project experience and the
features of the messages, the scores were divided into five grades: low, relatively low, medium, high,
and relatively high. The number of classified alarm messages and the percentage of messages in each
grade are shown in Figure 12. From the figure, it can be seen that most monitoring alarm messages
occupy the medium grade (66%), the high and relatively high grades account for a combined total
of about 21% of the alarm messages, and the low and relatively low grades account for a combined
total of about 13% of the alarm messages. It is concluded that the proportion of relatively important
messages basically satisfies the “80/20 rule”, i.e., around 20% of the messages are relatively important.Energies 2019, 12, x FOR PEER REVIEW  14 of 18 
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After checking the grades of the alarm messages, the probabilities of correct classification for the
alarm messages in each grade were calculated, as shown in Table 5. From the table, it can be seen that
the probability of correct classification for high and low grades is relatively high, while that for the
other three grades is relatively low. This is due to the fact that the statistical characteristics of messages
in high and low grades are more obvious than those of messages in the other three grades. When we
subjectively checked the classification result, we are more certain about the actual categories of the
alarm messages distributed in high and low grades. In general, the classification achieved by this
method is acceptably accurate and efficient.

Table 5. The probabilities of correct classification for alarm messages.

Grade High Relatively High Medium Relatively Low Low

Probability (%) 99.1 98.09 95.59 97.95 98.82

Based on the AHP, we carried out a comprehensive evaluation of the monitoring alarm messages
using a method which integrates the advantages of multiple alarm message entropies, and classified
the messages according to their comprehensive scores. If compared with the single entropy of an alarm
message, the score of an alarm message after the comprehensive evaluation is no longer related to its
length. The low-frequency alarm messages and the alarm messages with low word-frequency were
usually found to occupy the high grade, indicating the occurrence of more important messages that
require attention. For example, for a message containing the text, “power protection exit in 756 line of
XX substation in XX City”, the dispatch log shows that the message was caused by a tripping operation.
Protection action triggered by a fault in the 110 kV line is deemed to be a serious accident which might
entail great losses. Therefore, this message was rated in the high grade. However, high-frequency
alarm messages and alarm messages containing high word-frequency occupy the low grade, indicating
that such messages could be screened; in such cases, alarm screening analysis is not necessary. For
example, the maintenance personnel found that an alarm message containing the text, “abnormal
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voltage of #2 AC bus in the XX substation in XX province”, is frequently triggered by equipment failure
which only affects the power consumption below 400 V in the substation. Therefore, such messages
are rated in the low grade, as the impact of such equipment failure is small. Typical alarm messages
for each grade are shown in Table 6.

Table 6. Typical alarm messages for each classification grade.

Grade Typical Alarm Message

High

Forbidden reclosure action caused by 2Y26PRC31A02DL low pressure
in XX substation
Power protection exit in 756 line of XX substation
B-phase closing of 220 kV Xijin 4Y22 circuit breaker of XX substation

Relatively high

1n GOOSE chain rupture of 102B smart terminal of XX substation
AC air switch jump-off action of 172 of XX substation
High-temperature alarm of the body winding of #2 main transformer in
XX substation

Medium

Overloaded #2 main transformer protection blocked on-load voltage
Regulation in XX substation
290 control circuit broken of XX substation
Alarm of 710 Integrated Smart Terminal in XX substation

Relatively low
No energy stored in the spring 1R1of XX substation
Unqualified bus voltage in 10 kV line in XX substation
1R2 circuit breaker opening of #2 capacitor of XX substation

Low

On-load voltage regulation on-off operation of #1 main transformer of
XX substation
Abnormal voltage of #2 AC bus of the transformer in XX substation
142 earthing of XX substation in XX City

5. Discussion

The classification of monitoring alarm messages enables supervisors to conduct more targeted
alarm screening analysis and formulate a processing plan. The method proposed in this paper, which
is designed for practical applications, incorporates the classification standard of the Chinese State
Grid Corporation for messages reporting accidents, abnormality, off-limit alarm, displacement, and
notification, and provides double validation to determine the risk level of an alarm message and the
according processing method. This method could assist in decision-making and allow more accurate,
reliable, and evidence-based message monitoring. This method could provide advance warning of
equipment faults, so that equipment that frequently triggers a high-risk alarm could be repaired or
tested in advance. The double verification of monitoring alarm messages is shown in Table 7, and the
processing methods for alarm messages of each risk level are shown in Table 8.

Table 7. Double validation of monitoring alarm messages.

Classification
Grade

High Relatively High Medium Relatively Low Low

Alarm (accident,
abnormal, off-limit,

displacement)
High risk Medium risk

Notification
(notification) Medium risk Low risk
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Table 8. The processing method for alarm messages of every risk level.

Severity Way of Alarm Processing

High risk Voice message, ring Immediate processing (within 1 h)
Medium risk Ring Timely processing (within 1–4 h)

Low risk Delay or no alarm Processing in 4 h or more

From the above analysis of the results and the discussion for practical application, it can be
seen that the proposed method can improve upon the traditional method by statistically analyzing
monitoring alarm messages, which allows the automatic classification of messages. Using this
method, workloads could be greatly reduced compared with the traditional expert system and artificial
classification. Moreover, accurate monitoring of alarm messages would be possible by combining
the new method with the existing classification standard of the Chinese State Grid Corporation. In
engineering applications, this new method could serve as a new means for evaluating the information
value of alarm messages and for alarm message pre-processing, thus providing a new perspective and
support for intelligent alarms and decision-making.

In this study, we propose only a means of information quantification and message grading. Future
research will focus on the application of this method to the accurate classification of alarm messages
and fault diagnosis, as well as the correlation between alarm messages and electrical equipment.

6. Conclusions

Since grid monitoring is increasing rapidly, a processing method for alarm messages based on
information theory is proposed in this paper, and its effectiveness and applicability are verified through
an example. The conclusions obtained are as follows:

1. The proposed method is based on information theory and can quantify the value of alarm messages
at the sentence and word levels. It can achieve the automatic classification of alarm messages.

2. Based on the analytic hierarchy process (AHP), this method combines the advantages of the
measurement of various kinds of entropy, and can be used to carry out accurate and overall
classification of alarm messages.
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