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Abstract: This paper deals with sensor faults of aircraft engines under uncertainties using a bank
of second-order sliding mode observers (SMOs). In view of the effect of inevitable uncertainties
on the fault reconstruction, a method combining H∞ concepts and linear matrix inequalities (LMIs)
is proposed, in which a scaling matrix is designed to minimize the gain of the transfer function
matrix from uncertainty to reconstruction. However, robust design generally requires that engine
outputs outnumber faults. In the case where the above-mentioned requirement is not satisfied, a
bank of sliding mode observers is proposed to ensure the degrees of freedom available in robust
design. In specific, each observer corresponds to a certain sensor with the hypothesis that the
corresponding sensor will not have faults, to create one degree of design freedom for each observer.
After fault occurrence, a large estimation error is expected in the observers with wrong hypothesis,
and then a logic module is designed to detect sensor faults and obtain the optimal robust sensor
fault reconstruction at the same time. The proposed approach is applied to a nonlinear engine
component-level-model (CLM) simulation platform, and a numerical study is performed to validate
the effectiveness.

Keywords: sensor fault; sliding mode observer; aircraft engine; robust; uncertainty

1. Introduction

With the increasing demand for higher reliability and safety of aircraft engine, the fault detection
and isolation (FDI) system has been widely developed in recent decades [1–3]. With sensor being an
important part in the control loop, faults occurring in sensors would directly affect, even devastate the
quality of the control system, hence more and more importance has been attached to the study of sensor
fault diagnosis. Different approaches including model-based methods [4,5] and data-based methods [6]
can be found in the literature. Due to the limitation of on-board storage capability of engines, the
model-based approach [7], which relies on mathematical model and residual generation [8], has gained
more attention from researchers. The main drawback of these approaches lies in their dependence on
the accurate dynamic model, which is hard to balance simplicity against accuracy from many actual
systems, and the presence of uncertainty will inevitably cause deviations from true states and optimal
fault reconstructions [9,10]. Nevertheless, most frameworks of FDI are designed for the linear system
in the past decades [11,12]. Model-based fault diagnosis against external disturbance and modeling
uncertainties is the most difficult and important issue, especially in the incipient fault detection (IFD)
step [13–15].

As a model-based method, the sliding mode observer is widely studied in fault diagnosis because
of its inherent robustness against uncertainties which satisfies characteristic conditions [16–18]. It is
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able to resist uncertainties by applying proper gain without resorting to any numerical optimization,
and then deal with sensor fault [19], actuator fault [20,21], performance change estimation [22], and so
on. In sliding mode observers, a non-linear discontinuous term containing the information of output
estimation error is designed to make the system converge to the sliding surface [17]. Although the
discontinuous switching term makes the chattering phenomenon of fault reconstruction inevitable,
proper observer design such as high-order sliding mode can weaken this issue according to the recent
research [23]. Higher order sliding modes (HOSM), which eliminate the chattering phenomenon [24,25],
are proved to have better performance than first orders. In this paper, a second-order sliding mode
observer (SOSMO) is proposed based on the super twisting algorithm (STA) [26] due to its fast
convergence rate and robustness against bounded uncertainties. Compared with the standard first
order sliding mode observer [17], SOSMOs do have better performance such as small chattering
effect [22]. Its stability and finite time convergence under uncertainties is proved through the Lyapunov
function [27]. To ascertain the robustness against a class of perturbations wider than that in [27], a family
of strict Lyapunov functions is constructed for the STA [28] by JA Moreno and M Osorio. However, the
design described above only ensures the finite-time convergence, and the effect of uncertainty on fault
reconstruction is still inevitable. In order to minimize this effect, two types of sliding mode observer
designs are proposed. The first one is to estimate the uncertainty directly and compensate for the effect
of uncertainty into the reconstruction, but this method has strict conditions for application [29]. The
second one is to minimize the gain of the transfer matrix from uncertainty to reconstructions through
the LMI design, so as to reduce the effect of uncertainty on the reconstruction [17,30,31]. In this paper,
the latter approach is adopted for its general applicability in handling more forms of uncertainties and
conditions, and the method based on H∞ is widely used for robust fault estimation [22–33].

Nevertheless, classical robust design against uncertainties using LMI [33] requires the degrees of
freedom available. For sensor fault diagnosis, it means that at least one sensor is ensured to be no
fault during operations. In some practical situations, certain sensors are actually less vulnerable than
others, and the above-mentioned assumption is not unrealistic [17]. However, for aircraft engines,
all sensors work in the environment of high temperature, high pressure, and high rotation speed,
thus, all risk damages. In this situation, there is not enough design freedom left for robust design
against any uncertainty. Therefore, a framework constituting a bank of sliding mode observers is
proposed in this paper. The architecture contains 7 sliding mode observers where 7 is the number of
considered sensors. Each observer corresponds to a certain sensor, with the specific hypothesis that the
corresponding sensor is guaranteed not to malfunction, for example, the first observer is constructed
on the premise that the first sensor is reliable. This design ascertains that each observer can have a
degree of design freedom. In the event that a fault occurs, reconstructions except the SMOs using the
correct assumptions will produce large reconstruction errors. A scalar indicator is designed to evaluate
the residual of each observer and the fault diagnosis module is established to detect and reconstruct
the sensor faults.

This paper is organized as follows: The system description of aircraft engines is shown in Section 2,
and the rest part of this section is concerned about the design of the bank of SMOs, containing the
robust design based on STA using LMI and the whole framework of the FDI system. The proposed
method is applied to the engine system which is depicted in Section 3. The whole FDI system’s
validation is proved in simulation and experiment. And conclusions are given in Section 4.

2. Design of the Bank of Robust Sliding Mode Observers

A twin-spool commercial turbofan engine is used in this paper. The structure of the engine is
shown in Figure 1. The air is compressed by a low pressure compressor (LPC) and a high pressure
compressor (HPC), mixed with fuel, and injected into the combustor for combustion. A high pressure
turbine (HPT) and a low pressure turbine (LPT) are driven by gases of high pressure and temperature
generated by combustion, and drive the two compressors through two rotating shafts. The notations
in this paper are shown in Table 1.
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Figure 1. Structure of the engine.

Table 1. The descriptions of the notations.

Notation Description

H Flight height
Ma Mach number
Wf Fuel flow rate
T25 LPC outlet temperature
P25 LPC outlet pressure
T3 HPC outlet temperature
P3 HPT outlet pressure

T495 Exhaust gas temperature
NL Low pressure rotor speed
NH High pressure rotor speed

The engine is inherently nonlinear on account of the thermal effects, complex mechanical structures
and so on. A component level model (CLM) is used in this paper which is a nonlinear simulation of
the turbofan engine with high fidelity, and it has been validated versus testing data [34]. Based on the
CLM, a state variable model (SVM), which is a linear engine dynamic model, can be obtained and
represented by the following state-space equations [34]:

.
x(t) = Ax(t) + Bu(t), (1)

y(t) = Cx(t) + Du(t), (2)

where x(t) ∈ Rn, y(t) ∈ Rp, u(t) ∈ Rm are the state variables, measurable outputs, and measurable
inputs, respectively. A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and D ∈ Rp×m are real known matrices. x(t) =[

NL NH
]T

, y(t) =
[

NL NH T25 P25 T3 P3 EGT
]T

, and u(t) = W f , that is, n = 2, p = 7
and m = 1.

The nominal model does not take into account uncertainties such as parameter uncertainties and
external disturbances. Under the influence of simultaneous sensor faults and uncertainty, the real
engine dynamic system can be written as:

.
x(t) = Ax(t) + Bu(t) + Q1ξ(x, t), (3)

y(t) = Cx(t) + Du(t) + Nf(t) + Q2ξ(x, t), (4)
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where the signal f(t) ∈ Rq represents the sensor faults imposed upon the system with p ≥ q and
N ∈ Rp×q as the distribution matrix. The term ξ(x, t) ∈ Rr is considered as any uncertainty present.
Q1 ∈ Rp×r, Q2 ∈ Rn×r are real known distribution matrices. Sensor fault signals and uncertainties are
unknown but bounded and satisfy the following conditions:

‖f(t)‖ ≤ ε1, ‖
.
f(t)‖ ≤ ε2, ‖ξ(t)‖ ≤ η, (5)

where ε1, ε2, and η are known scalars, and ‖·‖ represents Euclidean norm of the vector. All parameters
are normalized and the detailed values are calculated by the data extracted from the engine design
point.

Define a new output z(t) ∈ Rp which is a filter version satisfying:

z(t) = −A f z(t) + A f y(t), (6)

where A f is a designed stable real matrix. According to Equations (3), (4) and (6), the uncertain system
can be rewritten as an augmented state-space system given by:[ .

x(t)
.
z(t)

]
=

[
A 0

A f C −A f

]
︸             ︷︷             ︸

Aa

[
x(t)
z(t)

]
+

[
B

A f D

]
︸    ︷︷    ︸

Ba

u(t) +
[

0
A f N

]
︸    ︷︷    ︸

Ma

f(t) +
[

Q1
A f Q2

]
︸     ︷︷     ︸

Qa

ξ(x, t), (7)

z(t) =
[

0 Ip
]

︸     ︷︷     ︸
Ca

[
x(t)
z(t)

]
, (8)

Define xa(t) = [ x(t)T z(t)T ]
T
∈ Rn+p are augmented state variables. Aa, Ba, Ca, Ma and Qa are

augmented matrices with appropriate dimensions.
To underpin the rest part of this method, the following conditions must be satisfied:

1. The fault distribution matrix Ma has full rank of columns and satisfies the equation rank(CaMa) =

rank(Ma) = r.
2. Let the triple (Aa, Ma, Ca) represent the linear system and the invariant zeros (if any) of (Aa, Ma, Ca)

are Hurwitz.

Considering the special structure of Ma, Ca, and the square matrix A f with full rank, the first
condition can be proved by:

rank(Ma) = rank
([

0
A f N

])
= rank

(
A f N

)
= rank(N) = q

(9)

rank(CaMa) = rank
([

0 Ip
][ 0

A f N

])
= rank

(
A f N

)
= rank(N) = q

(10)

The zeros of (Aa, Ma, Ca) are given by the values of s which make the Rosenbrock matrix R lose
rank [17], where:

R =

[
sI−Aa −Ma

Ca 0

]
=


sIn −A 0 0
−A f C sIp + A f A f N

0 Ip 0

. (11)
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In consideration of the fact that the matrix A f is square with full rank, the Rosenbrock matrix loses
rank if rank(sIn −A) < n. The invariant zeros of (Aa, Ma, Ca) are contained in the eigenvalues of A and
so if the open-loop system is stable, system is detectable and minimum phase [17].

Based on the uncertain system in Equations (7) and (8), a sliding mode observer can be designed
in the following form:

.
x̂a(t) = Aax̂a(t) + Bau(t) + Gnv−Glez(t), (12)

ẑ(t) = Cax̂a(t), (13)

where (x̂a(t), ẑ(t)) are the estimates of (xa(t), z(t)) and v(t) ∈ Rp is a nonlinear discontinuous term.
Define e(t) := x̂a(t) − xa(t) and ez(t) = ẑ(t) − z(t) as the state estimation and output estimation errors,
respectively. The output error feedback term Glez(t) is attached to the observer to enlarge the size
of the sliding patch. Both Gl ∈ R(n+p)×p and Gn ∈ R(n+p)×p are design matrices to be determined.
Assuming that the gain Gl and Gn have the structure:

Gn =

[
0
Ip

]
, Gl =

[
0
−A f

]
. (14)

Then based on the super-twisting algorithm (STA), the term v(t) is designed component-wise
as [28]:

vi(t) = −k1sign(ez,i(t))
∣∣∣∣ez,i(t)

∣∣∣∣ 1
2
+ di(t), (15)

.
di(t) = −k2sign(ez,i(t))i = 1, 2, · · · , p, (16)

where k1 and k2 are design scalars to be determined. d(t) is an intermediate variable. The subscript i
represents ith element of variables.

According to the definitions of e(t) and ez(t), the error system can be obtained from Equations (7),
(8), (12) and (13):

.
e(t) = Aae(t) −Glez(t) + Gnv(t) −Maf(t) −Qaξ(x, t), (17)

ez(t) = Cae(t). (18)

Due to the special structure of Ca in Equation (8), the state estimation error can be partitioned as

e(t) = [ e1(t)
T ez(t)

T ]
T

where e1(t) ∈ Rn. Then the error system can be rewritten as:

[ .
e1(t)
.
ez(t)

]
=

[
A 0

A f C −A f

][
e1(t)
ez(t)

]
+

[
0
Ip

]
v(t) −

[
0
−A f

]
ez(t) −

[
0

A f N

]
f(t) −

[
Q1

A f Q2

]
ξ(x, t). (19)

The above equation can be further written in the following form:

.
e1(t) = Ae1(t) −Q1ξ(t), (20)

.
ez(t) = A f Ce1(t) + ν(t) −A f Nf(t) −A f Q2ξ(x, t), (21)

and from the definition of v(t), the output error system in Equation (21) becomes (component-wise):
.
ez,i(t) = (A f C)ie1(t) + [−k1sign(ez,i(t))

∣∣∣∣ez,i(t)
∣∣∣∣ 1

2
+ di(t)] − (A f N)if(t) − (A f Q2)iξ(x, t)

= [−k1sign(ez,i(t))
∣∣∣∣ez,i(t)

∣∣∣∣ 1
2
] + [(A f C)ie1(t) − (A f N)if(t) − (A f Q2)iξ(x, t) + di(t)]

.
di(t) = −k2sign(ez,i(t)) i = 1, 2, · · · , p

, (22)

where (A f C)i, (A f N)i, and (A f Q2)i represent the ith row of the corresponding matrices, respectively.
For simplicity, define nominal variables:

dt(t) := A f Ce1(t) −A f Nf(t) + d(t), (23)

φ(t) := A f C
.
e1(t) −A f N

.
f(t), (24)
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and the error system can be rewritten as:
.
ez,i(t) = [−k1sign(ez,i(t))

∣∣∣∣ez,i(t)
∣∣∣∣ 1

2
] + dt,i(t) − (A f Q2)iξ(x, t)

.
dt,i(t) = −k2sign(ez,i(t)) + φ(t) i = 1, 2, · · · , p

, (25)

the term v(t) has been designed to switch discontinuously around the sliding surface S ={
e(t) : Cae(t) = 0

}
and to drive the trajectories of e(t) to S. From inequality (5) and the definition of

φ(t), the existence of a constant L is ensured, such that the inequality:

‖φ(t)‖ ≤ L, (26)

holds for any possible t.
The output error system in Equation (25) is a standard super-twisting structure with disturbance

term. Then the design process of the two important coefficients k1 and k2 in Equations (15) and (16) is
as follows [28]:

1. Choose positive constants (β,γ) satisfying 0<β < 1, γ > 1, and β ∗ γ > 1.
2. Calculate positive constants (µ,α) where:

µ =
(β− 2 1

γ )β+ 1

1− β2 ,α =
β− 1

γ

1− β2 . (27)

3. Given such values of (β,γ) and (µ,α), the gains can be calculated as:

k1 = µ

√
2γ

(1− β)α

√

L, k2 =
β+ 1
1− β

L. (28)

The gains k1, k2 based on the recipe in [28] assure the robust, finite time stability of the super-twisting
structure with disturbance term, and ensures that a sliding motion can be achieved (ez(t) =

.
ez(t) = 0).

The proof of standard super-twisting structure stability can consult the Lyapunov stability theorem
in literature [28]. Once the system state is reached and maintained on the sliding surface S, the error
system defined by Equations (20) and (21) can be written as:

.
e1(t) = Ae1(t) −Q1ξ(t), (29)

0 = A f Ce1(t) + νeq(t) −A f Nf(t) −A f Q2ξ(x, t), (30)

where veq(t) is the so-called equivalent output error injection. This is not the term v(t) which is applied
to the system, but rather, the averaged injection used to maintain the sliding motion (ez(t) =

.
ez(t) = 0),

and it can be obtained by filtering.
In the case where the uncertainties are not taken into account, i.e., ξ(x, t) = 0, the existence of the

fact e1(t)→ 0 in finite time is ensured. Hence the reconstruction of f(t) from the equivalent injection
signal will be in the following form:

f̂(t) = (A f N)−1veq(t), (31)

where f̂(t) is the estimation of the real sensor faults without robust design.
However, the actual system is always affected by uncertainties. In the case where ξ(x, t) , 0, the

above attempted reconstruction f̂(t) will be corrupted by the exogenous factor ξ(x, t). To minimize the
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influence of the uncertainty on the reconstruction, a scaling of the equivalent output injection signal
veq(t) is demanded to be chosen. To this end define:

Wsc =
[

W1 M0
−1

]
, (32)

where W1 ∈ Rp×(p−q) is the design freedom to be determined and M0 ∈ Rr×r is a nonsingular design
matrix.

If condition 1 is satisfied it can be proven that there exists an orthogonal matrix T ∈ Rp×p, where:

TT
(
A f N

)
=

[
0

M0

]
l

l

p− q
q

, (33)

the solution of T can be obtained by ‘QR’ decomposition of
(
A f N

)
.

Define a would-be reconstruction signal as:

f̂r(t) = WscTTveq(t). (34)

Re-arranging (29) and (30) as:

.
e1(t) = Ae1(t) −Q1ξ(x, t), (35)

νeq = −A f Ce1(t) + A f Nf(t) + A f Q2ξ(x, t). (36)

Pre-multiplying (36) by WscTT obtains:

f̂r(t) = −WscTTA f Ce1(t) + WscTTA f Nf(t) + WscTTA f Q2ξ(x, t). (37)

Remark 1. Notice that WscTTA f N =
[

W1 M0
−1

][
0 M0

T
]T

= Iq, the special structure of the scaling
matrix Wsc in Equation (32) is aim to decouple sensor faults and exogenous signal and leave a certain degree of
design freedom to minimize the effect of the exogenous signal on the reconstruction.

Theorem 1. Considering the system from (35) and (37), it can be rewritten as:

.
e1(t) = A′e1(t) + B′ξ(x, t), (38)

f̂r(t) = C′e1(t) + D′ξ(x, t) + f(t), (39)

where A′ = A,B′ = −Q1,C′ = −WscTTA f C, and D′ = WscTTA f Q2. The following statements are equivalent.

1. The system is asymptotically stable and the gain of transfer matrix G(s) does not exceed κ ∈ R+

(‖G(s)‖
∞
< κ) where:

G(s) , C′(sI−A′)−1B′ + D′. (40)

2. There exists a symmetric matrix P > 0 satisfying:
PA′ + A′TP PB′ C′T

B′TP −κI D′T

C′ D′ −κI

 ≺ 0. (41)

Proof of Theorem 1. See Appendix A.
�
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Therefore:
f̂r(t) = f(t) + G(s)ξ(x, t), (42)

where the transfer matrix G(s) = WscTTA f C(sI−A)−1Q1 + WscTTA f Q2 derived from (38) and (39).
The effect from ξ(x, t) to f̂r(t) can be minimized by choosing the appropriate W1. Based on

Theorem 1, the L2 gain of G(s) will not exceed κ if the following inequality can be satisfied:
PA + ATP −PQ1 −(WscTTA f C)

T

−Q1
TP −κIr (WscTTA f Q2)

T

−WscTTA f C WscTTA f Q2 −κIq

 ≺ 0, (43)

where P ∈ Rn×n is symmetric positive definite. The value of W1 and P can be calculated through
standard LMI software in Matlab and subsequently the observer parameters can also be obtained. It is
worth noting that the selection of Q1 and Q2 is very critical and will affect the final optimization effect.
The selection of Q1 and Q2 can be referred to [17]. Remark 2 Robust design for exogenous signal ξ(x, t) is
essentially dependent on the design matrix W1 ∈ Rp×(p−q). It is worth noting that for the square system
(p = q), W1 does not exist, and the transfer function G(s) = M0

−1TTA f C(sI−A)−1Q1 + M0
−1TTA f Q2

is a constant matrix, thus the significance of robust design does not exist.
From Remark 2, the dimension of output signal y(t) must be larger than that of sensor fault signal

f(t) to ensure the validity of robust design (p > q). In other words, it is necessary to ensure that at least
one dimension of sensor is reliable and not prone to fault, so that at least one dimension of freedom
can be left for robust design. However, the sensors of the engine work in the harsh environment of
high pressure, high temperature and high rotation, so all sensors are facing with the possibility of fault.
The actual system has no design freedom (square system), so the design method mentioned above
cannot be directly applied.

In this paper, a bank of sliding mode observers is designed to solve the problem of insufficient
design freedom. It is assumed that all the sensors will not fault at the same time. The assumption used
here is more realistic than having at least one sensor guaranteed reliable. The designed structure is
shown in Figure 2. The bank of sliding mode observers contains 7 sliding mode observers where 7
is the number of monitored sensors. Each observer corresponding to a certain sensor is built on the
specific hypothesis that the corresponding sensor is guaranteed not to malfunction, for example, the
first observer is applied on the premise that the first sensor is reliable; the second observer application
is premised on the reliability of the second sensor; and so on. For square system, the purpose of this
design is to ensure that each observer has one dimension of design freedom ((p − q) = 1), so as to
achieve robust design for uncertainty. When a fault occurs, such as the fault of the first sensor, since
only the first sliding mode observer uses the wrong assumption, it will produce a large estimation
error whereas the reconstruction results of the other observers are still accurate. In order to evaluate
the accuracy of the fault reconstruction, the following scalar indicator is computed for each observer:

Ri = (f̂r
i)

T
κi f̂r

i, (44)

where i represents corresponding observer.
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The working mechanism of fault diagnosis module is summarized as follows:

1. When there is no sensor fault, each robust reconstruction f̂r has a small estimation error and
indicator calculation module can also get a small scalar indicator R. In the diagnosis module, the
sum of 7 indicators is less than the pre-defined threshold value Re, indicating that no sensor fault
occurs at this time.

2. When there are one or more sensor faults, there will be a large error in the reconstruction generated
by the observer without applying the correct assumptions, so that the corresponding indicators
will be larger than those with the correct assumptions. In the fault diagnosis module, due to the
occurrence of faults, the sum of all the indicators will exceed the set threshold value Re, indicating
there exist sensor faults. The reconstruction generated by the observer corresponding to the
smallest indicator is selected as the final estimation result of the proposed architecture.

The flow chart of fault diagnosis module is shown in Figure 3:
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where f̂n is the final robust reconstruction of sensor faults, ind is the index of the indicator with the
minimum value, and trigger signal is aim to determine whether there is a sensor fault.

3. Application of the Method to an Aircraft Engine

A CLM of a commercial turbofan engine is used in this section. By linearizing the engine at
the cruise design point (H = 10, 668 m, Ma = 0.785, 100% fan speed), an SVM can be obtained
to characterize the engine’s small range dynamic characteristics, and observer parameters are well
calculated. Simulations on CLM are carried out to examine the method in the cruise condition. To
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represent real working environment, the white Gaussian measurement noise and process noise are
considered with variance values of 0.00152 and 0.00052 (percentage of the nominal value) [34]. The
coefficient matrices are as follows:

A =

[
−1.299 1.284
−0.055 −1.319

]
B =

[
0.225
0.188

]

C =



1 0
0 1

0.342 −0.154
1.061 −0.522
0.053 1.518
0.582 3.012
−0.311 −0.962


D =



0
0

0.008
−0.005
0.038
0.103
0.536


(45)

Uncertainty ξ(x, t) present in this system is composed of parametric uncertainties ξ1 ∈ R9 and

external disturbance ξ2 ∈ R1 (ξ = [ ξ1
T ξ2

T ]
T

). The parametric uncertainty is given by:

ξ1(x, t) = 0.01×



−1.299 1.284
−0.055 −1.319

0 0
0 0

0.342 −0.154
1.061 −0.522
0.053 1.518
0.582 3.012
−0.311 −0.962


x(t), (46)

External disturbance is Gaussian distributed noise with mean value of 0.004 and variance value of
0.0032. The distribution matrices Q1 and Q2 in Equations (3) and (4) are assumed to have structures
given by:

Q1 =

[
1 0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 1

]

Q2 =



0 0 1 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 1 1


(47)

According to the design method introduced in the previous section, the selected values of relevant
design parameters are as follows:

β = 0.6, γ = 2, k1 = 1.645, k2 = 0.120, A f = 40I7, Re = 0.07, (48)

Taking the design of the first sliding mode observer as an example, since it is assumed that the
first sensor will not malfunction, the sensor fault distribution matrix N has the following form:

N =

[
01×6

I6

]
, (49)
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By LMI software, the design freedom W1 ∈ R7×1 in the scaling matrix Wsc can be obtained as

W1 =
[
−0.008 −0.007 −0.022 −0.014 −0.039 0.016

]T
, (50)

At the engine cruise design point, four sensor fault modes are examined, covering both the hard
and soft faults, and single and multiple faults, as shown in Table 2.

Table 2. Descriptions of 4 fault modes.

Mode Number Description

Mode 1 −4% on NL at t = 5s
Mode 2 −4% on NL over 50s
Mode 3 −4% on NL and −6% on T495 at t = 5s
Mode 4 −5% on NL and −3% on NH over 50s

Consider a scenario where all the sensors remain fault free, the comparison between threshold
value Re and sum of all indicators is shown in Figure 4, which indicates no sensor fault occurred.
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When the fault in Mode 1 is injected into CLM, the fault indication signals and their sum are
shown in Figures 5 and 6, respectively. Figure 7 shows the comparison between robust reconstruction
f̂n and reconstruction f̂ without robust design in Mode 1.
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Figure 7. Sensor fault reconstruction in Mode 1: (a) Robust sensor fault reconstruction f̂n;
(b) reconstruction f̂ without any robust design.

From Figure 6, the fault indicator signal generated by the SMO1 is much larger than the others.
This is because the fault of Mode 1 does not satisfy the assumption of SMO1, and its reconstruction
shown in Figure 8 has a large estimation error. With the proposed fault diagnosis module, the sensor
fault can be detected around 6 s, and the final robust reconstruction f̂n is shown in Figure 7. In the
reconstruction with robust design the estimation error can be guaranteed within 0.5%, while the
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estimation results without robust design are relatively worse where the maximum estimation error
partially reaches 1.8%.
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Figure 8. Fault reconstruction generated by SMO1 in Mode 1.

To verify the effectiveness of the method under the sensor soft fault cases, Mode 2 is injected into
CLM. The fault indication signals and their sum are shown in Figures 9 and 10, respectively. Figure 11
shows the comparison between robust reconstruction f̂n and reconstruction f̂ without robust design in
Mode 2.

Energies 2019, 12, x FOR PEER REVIEW  14 of 20 

 

the estimation results without robust design are relatively worse where the maximum estimation 
error partially reaches 1.8%. 

 
Figure 8. Fault reconstruction generated by SMO1 in Mode 1. 

To verify the effectiveness of the method under the sensor soft fault cases, Mode 2 is injected 
into CLM. The fault indication signals and their sum are shown in Figures 9 and 10, respectively. 
Figure 11 shows the comparison between robust reconstruction ˆ

nf  and reconstruction f̂  
without robust design in Mode 2. 

 
Figure 9. Comparison between threshold and sum of indicators in Mode 2. 
Figure 9. Comparison between threshold and sum of indicators in Mode 2.



Energies 2019, 12, 2831 15 of 20Energies 2019, 12, x FOR PEER REVIEW  15 of 20 

 

 
Figure 10. Fault indicator signals of the bank of SMOs in Mode 2. 

 
(a) 

Figure 10. Fault indicator signals of the bank of SMOs in Mode 2.

Energies 2019, 12, x FOR PEER REVIEW  15 of 20 

 

 
Figure 10. Fault indicator signals of the bank of SMOs in Mode 2. 

 
(a) 

Figure 11. Cont.



Energies 2019, 12, 2831 16 of 20Energies 2019, 12, x FOR PEER REVIEW  16 of 20 

 

 
(b) 

Figure 11. Sensor fault reconstruction in Mode 2: (a) Robust sensor fault reconstruction ˆ
nf ; (b) 

reconstruction f̂  without robust design. 

From Figure 11, the method proposed in this paper is still effective for sensor soft fault, 
reducing the influence of uncertainty on reconstruction results, and ensuring the estimation error 
less than 0.5%. 

Mode 3 and 4 represent hard and soft faults in multi-fault cases, respectively. Figures 12 and 13 
show the sensor fault reconstructions in Mode 3 and 4, respectively. 

 
(a) 

 
(b) 

Figure 12. Sensor fault reconstruction in Mode 3: (a) Robust sensor fault reconstruction ˆ
nf ; (b) 

reconstruction f̂  without robust design. 

Figure 11. Sensor fault reconstruction in Mode 2: (a) Robust sensor fault reconstruction f̂n;
(b) reconstruction f̂ without robust design.

From Figure 11, the method proposed in this paper is still effective for sensor soft fault, reducing
the influence of uncertainty on reconstruction results, and ensuring the estimation error less than 0.5%.

Mode 3 and 4 represent hard and soft faults in multi-fault cases, respectively. Figures 12 and 13
show the sensor fault reconstructions in Mode 3 and 4, respectively.
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The effectiveness of this method is proved in the case of simultaneous faults of multiple sensors.
Figure 14 shows the comparison of the maximum estimation error between the proposed robust
method and the design without considering uncertainty.
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From Figure 14, the reconstruction errors can be guaranteed to be less than 0.5% for both hard and
soft faults. Compared with the reconstructions without robust design, the proposed method reduces
the influence of uncertainty on the reconstructions.

4. Conclusions

In this paper, a bank of second-order sliding mode observer has been designed based on the
super-twisting structure for robust sensor fault reconstruction. In order to reduce the influence of
uncertainties on reconstructions, the proposed method has minimized the L2 gain of the transfer matrix
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from uncertainty to the reconstructions by designing a scaling matrix Wsc. Facing the problem of
lacking design freedom in the square system, a bank of sliding mode observers has been proposed,
in which each observer corresponds to a certain sensor with the assumption that the corresponding
sensor would not have faults, so that the design freedom is available for robust design. When sensor
faults occur, estimation errors generated by the observers with wrong hypothesis would be large.
Then, through the logical diagnosis module, sensor faults can be detected and the optimal robust
reconstruction results can be obtained. Numerical simulations covering diverse fault scenarios have
shown the ascendency of the proposed method.
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Appendix A

For the system (38) and (39), we choose the Lyapunov function candidate:

V(e1) = eT
1 (t)Xe1(t), (A1)

where X = κP > 0 is symmetric.
Multiply (41) with diag

{
κ1/2I,κ1/2I,κ−1/2I

}
in the right and left yield:

A′TX + XA′ XB′ C′T

B′TX −κ2I D′T

C′ D′ −I

 ≺ 0. (A2)

By adopting the Schur complement, (A2) is equivalent to: C′T

D′T

[ C′ D′
]
+

[
A′TX + XA′ XB′

B′TX −κ2I

]
≺ 0. (A3)

For any T > 0, consider:

JT =

∫ T

0
‖f̂r(t)‖

2

dt− κ2
∫ T

0
‖ξ(x, t)‖

2

dt, (A4)

and under the zero initial condition:

JT =
∫ T

0

[
f̂
T
r (t)f̂r(t) − κ

2ξT(x, t)ξ(x, t)
]
dt

=
∫ T

0

[
f̂
T
r (t)f̂r(t) − κ

2ξT(x, t)ξ(x, t) + d
dt V(e1)

]
dt−V(e1(T))

=
∫ T

0

[
f̂
T
r (t)f̂r(t) − κ

2ξT(x, t)ξ(x, t) + 2eT
1 (t)X(A′e1(t) + B′ξ(x, t))

]
dt−V(e1(T))

=
∫ T

0

[
e1(t)
ξ(x, t)

]T C′T

D′T

[ C′ D′
]
+

[
A′TX + XA′ XB′

B′TX −κ2I

][ e1(t)
ξ(x, t)

]
dt−V(e1(T))

(A5)

By (A3), we know: ∫ T

0

[
f̂
T
r (t)f̂r(t) − κ

2ξT(x, t)ξ(x, t) +
d
dt

V(e1)

]
dt < 0. (A6)
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Consider the zero initial condition,

eT
1 (T)Xe1(T) +

∫ T

0
f̂
T
r (t)f̂r(t)dt < κ2

∫ T

0
ξT(x, t)ξ(x, t)dt. (A7)

Let T→∞ ,
‖f̂r(t)‖

2
2 < κ

2
‖ζ(x, t)‖22. (A8)

By (A8), the transfer function G(s) of system (38) and (39) satisfies:

‖G(s)‖
∞
=
‖f̂r(t)‖2
‖ζ(x, t)‖2

< κ. (A9)

By (A2), it is easy to know that A′TX + XA′ < 0. As X > 0, system is asymptotically stable.
Theorem 1 has been proved.
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