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Abstract: Due to their advantages of self-powered capability and compact size, combined
thermoelectric devices, in which a thermoelectric cooler module is driven by a thermoelectric
generator module, have become promising candidates for cooling applications in extreme conditions
or environments where the room is confined and the power supply is sacrificed. When the device is
designed as two-stage configuration for larger temperature difference, the design degree is larger
than that of a single-stage counterpart. The element number allocation to each stage in the system
has a significant influence on the device performance. However, this issue has not been well-solved
in previous studies. This work proposes a three-dimensional multi-physics model coupled with
multi-objective genetic algorithm to optimize the optimal element number allocation with the
coefficient of performance and cooling capacity simultaneously as multi-objective functions. This
method increases the accuracy of performance prediction compared with the previously reported
examples studied by the thermal resistance model. The results show that the performance of the
optimized device is remarkably enhanced, where the cooling capacity is increased by 23.3% and the
coefficient of performance increased by 122.0% compared with the 1# Initial Solution. The mechanism
behind this enhanced performance is analyzed. The results in this paper should be beneficial for
engineers and scientists seeking to design a combined thermoelectric device with optimal performance
under the constraint of total element number.

Keywords: thermoelectric generator; thermoelectric cooler; combined thermoelectric device;
multi-objective optimization; numerical simulation

1. Introduction

Due to their compact size, light weight, good reliability, cut-price operation, and environmentally
friendly operation, thermoelectric devices have attracted great attention in the last several decades [1,2].
Their extensive applications include cooling of electronic chips [3], temperature control [2], heat pump
engines [4,5], waste heat recovery to generate electric power [6,7], etc. Thermoelectric devices comprise
a thermoelectric generator (TEG) and thermoelectric cooler (TEC). The TEG module connected with an
external heat load generates an electrical current through the Seebeck effect [4,8], while the TEC module
driven by a power supply pumps heat from the cold end to the hot end by the Peltier effect [1,9]. The
phenomena of the Thomson effect, Joule heating effect, Fourier heat conduction effect, and electric
conduction effect are always multi-physically coupled either in the TEG or TEC. Generally, for most
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practical applications, thermoelectric devices usually operate in single TEG module or single TEC
module mode. Focusing on TEC modules, their performance is not only relevant to figure of merit
(ZT) of the semiconductor materials but also sensitive to the geometric parameters [10–16]. In the past
several years, many works have been investigated to improve the performance metrics, and these
efforts have made significant progress as well as extended the application of these devices in many
fields [17–23].

However, under specific extreme conditions where the environments are too severe, too sensitive,
or too confined for conventional heating or cooling techniques, such as aerospace [24–26], isolated
mountains or desert areas [27,28], and other geothermal energy exploitation fields [29], there is always
the problem of confined space and lack of electricity supply. Thus, a power supply system with a
high degree of integration and compact size is required. Harvesting energy from the environment
autonomously is one of the smartest solutions to this problem. In addition, with the development of
renewable and sustainable energy sources, although the electric grid may not be available in remote
areas, solar energy or waste heat are abundant [19,20]. Hence, cooling directly driven by solar power
or waste heat source is an appropriate method for many applications. Last but not least, in many
energy conversion and management systems, generation of a huge amount of heat which must be
removed in time to keep components cool and operational is inevitable [5,6,21]. If the waste heat could
be directly used to generate electricity and drive the thermoelectric cooler for cooling, it would not
only increase the energy conversion efficiency but also simplify the complexity of the cooling system.
Consequently, heat-driven and self-cooling compact thermoelectric devices are required. Recently,
combined thermoelectric devices (CTEs), in which a TEC module is driven by a TEG counterpart,
have attracted considerable attention due to their advantages of directly converting heat to cooling
capacity, integrating the waste heat recovery and compact cooling requirements together, and with
no requirement for an associated power source [11,30,31]. Among these combined systems, CTEs
with two-stage configurations are an especially promising structure design because they can obtain a
much lower cooling temperature [32]. Thus, a CTE with two-stage configuration is considered in the
present study.

The literature has evidenced that material properties and structure geometry are significant factors
that influence the device performance. Thus, modeling and simulation is a cost-effective way for
engineers and scientists to understand, develop, optimize, and control two-stage CTE designs. In the
past several years, considerable progress has been made on the underlying mechanisms of the device
operation to improve their performance [11,30–42]. These achievements can be classified into numerical
modeling, structure design, and optimization methods. For convenience of analysis and comparison,
they are summarized in Table 1. In the structure design parameters, the element number for each stage
of the two-stage CTE module is a critical issue that influences the performance. This was justified
in [11,31]. In the practical design of a CTE system, besides materials and geometric size, the number of
elements for each stage is significant for the device performance under the constraint of constant total
thermocouple number. This is the determining factor influencing the cooling performance and energy
conversion efficiency. However, very little investigation has been performed on the element number
allocation design of CTEs.

Besides, the following conclusions about the two-stage structure design can also be reached:
(1) most of the models employed are based on thermal resistance model, in which the Thomson
effect and temperature-electric potential coupling effect are neglected, leading to the fact they cannot
predict the device performance accurately. Thus, a comprehensive multi-physics model is required;
(2) although many works examining parameter sensitivity are presented, the focus is mainly on single
parameter analysis, however, the factors influencing the device performance are coupled with each
other, and the optimal value of a certain specific variable is dependent on the value of other variables.
This means that simultaneous optimization of multiple parameters is necessary; (3) the performance
metrics to evaluate a CTE include coefficient of performance (COP) and cooling capacity, which
are two conflicting objectives. In general, these two indicators cannot reach their maximum values
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simultaneously, meaning that obtaining a higher cooling capacity is always on the cost of a deteriorated
COP. To solve this contradiction, multi-objective optimization is also necessary.

Based on the above analysis, the motivation of this study lies in optimizing the two-stage CTE by
three-dimensional multi-physics model coupled with a multi-objective genetic algorithm to improve
its performance. In particular, optimization of element number allocation to each stage of CTE is the
main focus, where both the cooling capacity and COP metrics are considered as objective functions.

Table 1. Summary of previous literature *.

Year Reference Model Structure Design Optimization Method

2006 [30] TRM S-CTE SPA
2006 [31] TRM S-CTE SPA
2009 [32] TRM T-CTE SPA
2010 [33] TRM S-CTE SPA
2010 [34] TRM S-CTE SPA
2012 [35] TRM S-CTE SPA
2012 [36] TRM S-CTE SPA

2014 [11] Multi-physics
Model S-CTE SPA

2016 [37] TRM S-CTE SPA

2018 [38] TRM S-CTE Multi-parameter
Optimization

2018 [39] Multi-physics
Model T-CTE SPA

2018 [40] Experiment S-CTE SPA

2018 [41] TRM S-CTE Multi-parameter
Optimization

2018 [42] TRM S-CTE SPA
* In Table 1, “TRM” denotes “Thermal Resistance Model”; “S-CTE” denotes “Single-stage CTE”; “T-CTE” denotes
“Two-stage CTE”; “SPA” denotes “Single Parameter Analysis and there is no optimization”.

2. Numerical Model

2.1. Structure Design

Figure 1a illustrates the schematic diagram of the studied two-stage CTE device, where the left
module is the TEG and the right module is the TEC. Either the TEG or the TEC features two-stages. In
the device, QH-G is absorbed from the hot end of the TEG module, and QL-G is rejected out of the cold
end of the TEG module. This procedure generates an electric current through the Seebeck effect. The
generated current is then directly injected into the TEC module, in which QL-C is absorbed from the
cooling object at the cold end and QH-C is dissipated to the hot end. This procedure is driven by the
Peltier effect. All of the element thermocouples in the CTE device are connected in series and thus a
single current I flows through each element. The element numbers in the top and the lower stage of
the TEG are defined as m1 and m2, respectively; the element numbers in the top and the lower stage of
the TEC are defined as n1 and n2, respectively; m1, m2, n1, and n2 are the four search variables in the
following optimization procedure. The total element number of this combined system is fixed at 40
(i.e., m1 + m2 + n1 + n2 = 40).

The structure of the thermoelectric element as a periodic unit in the combined device is shown
in Figure 1b. Each element comprises a P-type and an N-type semiconductor leg, two electrically
insulated ceramic plates and three metallic connectors. Each element maintains the same geometric
structure in the combined device, and the geometric parameter values are shown in Table 2.
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Figure 1. (a) Schematic diagram of the two-stage CTE; (b) Schematic diagram thermoelectric element
of the CTE.

Table 2. Geometry structure of thermoelectric elements.

Geometry of Thermoelectric Elements [9]

L1 = 1.0 mm L2 = 1.0 mm L3 = 0.2 mm

H1 = 1.0 mm H2 = 0.1 mm H3 = 0.3 mm

2.2. Material Properties

The properties of thermoelectric materials are specified as temperature-dependent and formulated
as follows, where α denotes the Seebeck coefficient (V K−1), k denotes the thermal conductivity
(W m−1 K−1), and ρ denotes electric resistivity (Ω m). For the p-type leg [11]:

αp =
(
22, 224 + 930.6T − 0.9905T2

)
× 10−9 V K−1 (1)

kp =
(
62, 605− 277.7T + 0.4131T2

)
× 10−4 W m−1 K−1 (2)

ρp =
(
5112 + 163.4T + 0.6279T2

)
× 10−10 Ω m (3)

For the n-type leg [11]:

αn = −
(
22, 224 + 930.6T − 0.9905T2

)
× 10−9 V K−1 (4)
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kn =
(
62, 605− 277.7T + 0.4131T2

)
× 10−4 W m−1 K−1 (5)

ρn =
(
5112 + 163.4T + 0.6279T2

)
× 10−10 Ω m (6)

Besides, the Seebeck coefficient αCu, thermal conductivity kCu, and electric resistivity ρCu for the
copper connectors are specified as constants of 6.5 × 10−6 V K−1, 400 W m−1 K−1, and 1.7 × 10−9 Ω m,
respectively. The thermal conductivity of the ceramic plate kCe is specified as 175 W m−1 K−1. It should
be indicated here that, a new thermal conductivity value of Al2O3 ceramics was reported recently by
Yoo et al. [43]. The thermal conductivity decreases with temperature and is formulated as follows:

kCe =
(
573, 275− 2037.1T+ 3T2

− 0.00156T3
)
× 10−4 W m−1 K−1 (7)

It is believed that the device performance is sensitive to the thermal conductivity of the ceramic
plate because it is a key component in the device. Adoption of Equation (7) is more practical because
it is temperature-dependent. To justify this, simulations with the updated thermal conductivity are
also performed. The comparison of the results calculated by using the values of 175 W m−1 K−1 and
Equation (7) are shown in Figure A1 from Appendix A. We can conclude that the previous studies using
the constant thermal conductivity of 175 W m−1 K−1 overestimate the device performance. However,
for convenience to compare our optimization results with those reported in previous publications, the
following results are calculated by using a constant thermal conductivity value of 175 W m−1 K−1.

2.3. Governing Equations

When an external heat source is loaded on the TEG, the heat-driven carriers of holes and electrons
migrate from the hot end to the cold end across the device. A current is generated as a result. When
an electric current is injected into the TEC, carrier-driven heat is pumped from the cold end to the
hot end. It has been demonstrated that while the TEG or TEC operates, the Seebeck effect, Peltier
effect, and Thomson effect co-exist and are accompanied by a Joule heating effect, heat conduction
effect, and electric conduction effect. Under this circumstance, the electric current, electric potential,
temperature, electric field are all multi-physically coupled with each other. Hence, a 3D multi-physics
complex coupling thermoelectric model developed by our previous work [9,12,44,45] is adopted as the
direct problem solver in the present study. To facilitate solving the model, the following assumptions
are adopted: (1) the electric and thermal contact resistances between thermoelectric couple/metallic
connector and metallic connector/ceramic plate are neglected; (2) the radiative heat loss and convective
heat transfer loss to the environment are not of concern.

The governing equations determining the physics of CTE are expressed as follows. For brevity,
a general form of energy equation for the p-type leg, n-type leg, metallic connector, and ceramic
plate reads:

∇ · (ki∇T) +
J2

σi
− βi

→

J · ∇T = 0 (8)

where T denotes absolute temperature,
→

J represents current density vector, k is thermal conductivity, σ
denotes electric conductivity, and β means the Thomson coefficient which is expressed as:

β = T
dα
dT

(9)

where α is the Seebeck coefficient. The first term on the left side of Equation (8) represents Fourier's
heat conduction effect, the second term describes the Joule heating as internal heat sources, and the
third term is the Thomson effect. It is noted that the second and third terms in Equation (8) both
diminish for the ceramic plates because of their electrical insulation. The electric potential profile is
solved by the following formula:

∇ · (σ(∇ψ− α∇T)) = 0 (10)
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whereψ denotes the electric potential, α∇T denotes the thermoelectric electromotive force driven by the
Seebeck effect. After the profile ofψ is obtained the electric field can be solved by the following equation:

→

E = −∇ψ+ α∇T (11)

Finally, the current density can be obtained through Ohm's law:

→

J = σ
→

E (12)

More details of the modeling can be found in [9,12,44,45]

2.4. Boundary Conditions

Four temperatures employed in the present CTE device are defined as follows: TH-G is the
temperature at the hot end of the top stage in TEG; TL-G is the temperature at the cold end of the
lower stage in TEG. TH-C is the temperature at the hot end of the top stage in TEC; TL-C is the
temperature at the cold end of the lower stage in TEC. In the simulation, TH-G = 450 K, TL-G = 300 K,
TH-C = TL-C = 300 K.

Note that TH-C = TL-C = 300 K is a particular case in TEC model. In common practical applications,
however, TECs usually operate with TH-C − TL-C > 0. Wang et al. [9,12] have proved that QL-C increases
with decreasing temperature difference of TH-C − TL-C under the same injection current (see Figure 5
in [9] and Figure 9 in [12]). Consequently, QL-C will reach its maximum value when TH-C − TL-C = 0 K.
To obtain a maximum of QL-C, TH-C = TL-C = 300 K is adopted in the present work. However, to examine
the effect of different TH-C − TL-C temperature differences on the device performance, simulations with
TH-C − TL-C = 20 K are also performed and the results are shown in Table A1 and Figure A2 from
Appendix B. The data will be discussed and compared with the literature later.

On the side surfaces of the TEG and TEC element, the adiabatic boundary conditions are specified
as follows:

∂T
∂z

= 0 (13)

where, z denotes the component with direction normal to the side surface of the device. On the internal
interfaces between adjacent materials, the temperature and heat flux are assumed continuous.

For the electric modeling module, the TEC module is specified as the load of the TEG module.
The outlet of current for the TEC is directly connected with the inlet of current of the TEG. On the other
surfaces of the CTE element, the current cannot flow out:

→

J ·
→
z = 0 (14)

where
→
z denotes the element vector normal to the side surface of the device.

2.5. The CTE Performance Metrics

In the present study, the performance of the TEG-TEC combined system is evaluated by the
following two objective functions defined as:

f1(n1, n2, m1, m2) = QL−C (15)

f2(n1, n2, m1, m2) = COP =
QL−C

QH−G
(16)

where QL-C is the absorbed heat pumped from the cold end of the lower stage in TEC, and QH-G is the
total heat supplied from the hot end of the top stage in TEG.

The governing Equations (8)–(12) are iteratively solved to determine the temperature distributions
and electric potential profile in the CTE. When the temperature difference across the TEG is established,
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the heat flux will be driven from the hot end on the top stage to the cold end on the lower stage of
the TEG. Then, the value of QH-G can be determined. Meanwhile, the current generated in the TEG is
injected into the TEC to pump heat by the Peltier effect. When the current flowing through the TEC is
known, QL-C can be determined at the interface between copper connectors and semiconductors by
using the formula αTJA (Peltier effect), where A is the cross-sectional area at the interface. Finally, the
COP can be calculated.

3. Optimization Procedure

3.1. Multi-Objective Functions and Optimization Algorithm

The performance metrics to evaluate a CTE module contains cooling capacity and COP, which are
calculated by Equation (15) and Equation (16), respectively. In general, these two indicators cannot
reach their maximum values simultaneously, which means a higher cooling capacity always is at the
cost of a deteriorated COP. This general conclusion will be demonstrated by the present calculated
data later. Thus, it is difficult to obtain an ideal solution to a particular practical application.

To resolve this contradiction, multi-objective optimization is necessary. The classical solution to
this problem is converting multiple objectives into a single composite function expressed as:

Max f (n1, n2, m1, m2)= ω1 · {
f1(n1, n2, m1, m2)

f1max }+ω2 · {
f2(n1, n2, m1, m2)

f2max } (17)

where ω1 and ω2 are artificially specified weight factors. In this way, the optimization results are
sensitive to the weight factors ω1 and ω2. Thus, the results are not always the ideal solutions, because
they are always accompanied by subjective empirical errors.

To avoid this problem, a Non-dominated Sorting Genetic Algorithm II (NSGA-II) [46] is adopted
in the present work. It should be indicated that the encoding method in this algorithm is changed
to binary because of the integer optimization variables requirement. NSGA-II is a popular fast
elitist multi-objective and non-domination-based genetic algorithm. The principle of NSGA-II can
be described as follows: first, a population with size N is initialized. After non-dominated sorting, a
new hierarchy of sub-populations was generated through genetic selection, intercross, and variation.
From the second generation, the algorithm preserves and use the best solutions found previously
in subsequent generations. Then, a non-dominated sorting and crowded tournament selection are
performed to preserve the diversity among non-dominated solutions in the later stage of the run, in
which way it can obtain a good spread of solutions. Finally, a new hierarchy of sub-populations was
generated, loop, and until the well-spread solutions over the Pareto-optimal front are found.

The entire optimization procedure is shown in Figure 2, where in this work the population size N
is 40 and the evolutionary generation is 80. The detailed numerical and structural parameters of the
optimization algorithm are given in Tables A2 and A3 from Appendix C.

In the optimization procedure, the design parameters contain four variables m1, m2, n1, and n2.
The design variables are subjected to the following constraint:

m1 + m2 + n1 + n2 = 40
1 ≤ m1, m2, n1, n2 ≤ 37
m1, m2, n1, n2 ⊆ N∗

(18)

where N* means positive integers. In this optimization method, the Pareto front indicates any arbitrary
compromise between the maximum cooling capacity and COP. The concept of Pareto frontier is shown
in Figure 3. In the optimization procedure, the individuals (the definition can be found in [13–15]; it
means any point to which a user can apply the objective function) are sorted according to the objective
function values. In the following evolution steps, non-dominated solutions with higher fitness score
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are more likely to be adopted and preserved. Therefore, as the iterative process continues, the Pareto
optimal solutions will be evolved gradually until the Pareto front is obtained.Energies 2019, 12, x 9 of 26 
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3.2. TOPSIS Selection

For practical applications, it is important to choose the best alternatives among several solutions.
However, the best alternatives cannot be obtained by sorting the fitness function values in the Pareto
solution set, because solutions from the Pareto frontier have the same level of optimization. Therefore,
a decision-making approach is necessary to select the best solution from the alternatives. In the present
multi-objective optimization, a classic and practical decision-making method, TOPSIS, is used and is
expected to provide a reasonable compromise solution [47]. It selects alternatives closest to the ideal
solution and farthest from the negative-ideal solution. The procedure of the TOPSIS method can be
divided into following six steps:

Step 1: Measure the normalized decision matrix. The normalized value ri j is:

ri j =
xi j√
m∑

i = 1
x2

i j

i = 1, 2, . . . , m and j = 1, 2, . . . , n

(19)

where xi j denotes the performance measure of the i-th alternative solution in terms of the j-th objective.
Step 2: Specify the weight coefficient w j and measure the weighted normalized decision matrix.

The weighted normalized value vi j is:

vi j = ri j ×w j
i = 1, 2, . . . , m and j = 1, 2, . . . , n

(20)

where w j is the weight of the Jth criterion or attribute and
∑n

j = 1 w j = 1. Here, the weight factors
assigned to QL-C and COP are 0.65 and 0.35 respectively, which means the interested application
requires a relative high QL-C and a not too much low COP.

Step 3: Determine the positive ideal solution A+ and negative ideal solution A−:

A+ = {(max
i

vi j| j ∈ Cb), (min
i

vi j| j ∈ Cc)} = {v+j | j = 1, 2, . . . , n} (21)

A− = {(min
i

vi j| j ∈ Cb), (max
i

vi j| j ∈ Cc)} = {v−j | j = 1, 2, . . . , n} (22)

Step 4: Measure the separation metrics with the n-dimensional Euclidean distance. The separation
metrics for each alternative solution from the positive ideal solution and the negative ideal solution are
as follows:

S+
i =

√
n∑

j = 1
(vi j − v+j )

2 (23)

S−i =

√
n∑

j = 1
(vi j − v−j )

2 (24)

Step 5: Measure the relative closeness to the ideal solution. The relative closeness of the alternative
Ai to ideal solution A+ is defined as:

RC+
i =

S−i
S+

i + S−i
|i = 1, 2, . . . , m (25)

Step 6: Rank the preference order of each solution by relative closeness, and select the one which
is the shortest to the ideal solution.

Note that, the TOPSIS method also applies a weight factor according to Equation (20), which is
similar to the classical solution expressed in Equation (17). Thus, to definite the advantages of the
present method, further discussion about the above two methods is necessary.
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3.3. Comparison between Preference-based Method and Ideal Method

There are two methods to perform multi-objective optimization [48], the procedures of which are
illustrated in Figure 4. One is the preference-based strategy according to Equation (17). It converts
multiple objectives into a single composite one by specifying relevant preference weight factors. This
method obtains a single trade-off solution by a single-objective optimization algorithm. Because
preference weight factors are first determined based on high-level information before optimization, we
call this method the preference-based multi-objective optimization. For the TOPSIS method used in
the present study, a user can use multi-criteria decision-making methods to choose an ideal alternative
after a set of trade-off optimal solutions are found. We call this method the ideal multi-objective
optimization. Although the classical method and the TOPSIS method both need to specify weight
factors, there are still some fundamental differences between both approaches:

(1) For the preference-based method, a relevant preference weight factor is required to be specified
before the optimal solution is obtained. This requires analysis of experience-driven information
to determine a proper preference vector. However, this is a difficult task without any knowledge
of the possible trade-off solutions, unless an accurate and reliable preference weigh factor is
available. Consequently, the optimal solution obtained by such method is highly subjective to
the particular user. On the contrary, for the ideal approach, a user does not need any relevant
preference weigh factor information before optimization. Once a well-distributed set of trade-off

solutions is found, the problem information is easy to be used to choose an alternative with the
knowledge of already obtained trade-off solutions. Thus, the ideal approach is less subjective as
well as more methodical and more practical.

(2) For the preference-based method, the optimized solution obtained by the preference-based
strategy is sensitive to the weight factors forming the composite objective. A change in this
preference vector inevitably results in a different trade-off solution. If the preference driven by
practical applications is changed, a new search for a new solution is required. Consequently, to
find multiple trade-off solutions, procedure-repeating with different weight factors is required,
which is time-consuming and impractical. On the contrary, for the ideal approach, when objective
preference is changed, it is not needed to search for a new solution; instead, it only need to choose
another alternative from a set of already obtained trade-off solutions by considering high-level
information. It is not needed to be performed many times to find multiple ideal solutions, which
greatly increases the flexibility of the optimization procedure and saving time.
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Looking back to the two objective functions used in Equations (15) and (16), generally, for CTE,
the decision-making is driven by the practical application requirements. For example, when the CTE is
used to generate power by waste heat, a very high QL-C and a not too low COP would be of interest,
because the QH-G flux would be wasted anyway. On the contrary, when the CTE is applied in a severe
environment where power is lacking (such as aerospace applications), a very high COP is necessary,
and QL-C becomes a less important factor of concern.

4. Results and Discussion

4.1. Model Validation

Before model validation, a grid sensitivity examination is performed to ensure the calculated
results are independent of the grid. Three sets of grids are examined, as shown in Table 3. In the test,
TH-G = 450 K, TL-G = TH-C = TL-C = 300 K, m1 = m2 = n1 = n2 = 10. The cooling capacity and COP
calculated by different grids are shown in Table 3. It is evident that the relative errors for QL-C and COP
are 5.59 × 10−5 and 2.39 × 10−5 respectively when compared between Grid 2 and Grid 3, which means
that these two sets grids are valid. To simultaneously ensure the accuracy and save computational
time, Gird 2 is selected in the present work. The characteristics of the grid used are shown in Figure 5.

Table 3. Grid independence test with element allocation (m1 = m2 = n1 = n2 = 10).

Grid Sets Degrees-of-Freedom QL-C (W) Error COP Error

Grid 1 21,942 0.17897 1.68 × 10−4 0.190692 5.04 × 10−5

Grid 2 159,259 0.17895 5.59 × 10−5 0.190684 2.39 × 10−5

Grid 3 638,759 0.17894 0.190682
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To validate the present model, a results comparison according to I-U curves between Hu et al.’s
report [49] and the present simulations is carried out. In [49], the TEG comprises an N-type
semiconductor leg of Bi2Te3 with dimensions of 2.98 × 2.215 × 6.22 mm3 and copper connectors. The
performance of the TEG was numerically and experimentally examined. Temperature conditions
for the hot end were set as 423 K, while the cold end was maintained at room temperature. For fair
comparison, the operation condition and geometry simulated by the present model keep identical to
those used in [49]. Figure 6 shows the variation of I-U curves between the present model and Hu et al.’s
report. It is evident that the simulation results agree well with Hu et al.’s work, except for a slightly
overestimation of the output voltage at large output currents. The maximum deviation is less than 3%.
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The ignored contact electrical resistance and thermal resistance are responsible for the discrepancy
between the simulations and experiments.Energies 2019, 12, x 13 of 26 
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4.2. Optimization Results

Figure 7 shows the optimization evolution progress. The first, fourth, tenth and eightieth
generations are present in Figure 6a–d, respectively. It proves that the solution converges at the
tenth generation. To get a more accurate solution set, the solutions of the eightieth generation was
selected in the present study. It should be indicated that, to ensure the trade-off solutions over the
Pareto front are independent of the initial variable values randomly generated at the begin of the
running, three sets of populations were determined. The results show that they are converted into a
single Pareto front (see in Figure 7d). This strongly justifies the effectiveness of the simulated results.
Figure 8 shows the Pareto front after multi-objective optimization, where the solutions are shown
non-dominated. In the optimization process, QL-C ranges from 0.06 to 0.18 and COP increases from
0.24 to 0.63. After determining the positive ideal solution (QL-C = 0.18 and COP = 0.63) and negative
ideal solution (QL-C = 0.06 and COP = 0.24), the TOPSIS optimal results can be obtained at QL-C = 0.16
and COP = 0.36, respectively. The value of the corresponding variables of m1, m2, n1, and n2 are 5, 6,
15, and 14 respectively. The value of search variables and performance metrics corresponding to each
individual over the Pareto front for the improved CTE system is listed in Table A4 from Appendix C.

As indicated in the temperature boundary condition section, the simulations with TH-C − TL-C = 20 K
is more practical with a view to commercial application. The results of this case are shown in
Appendix B. It should be noted here that the thermal conductivity of the ceramic plate is set as
Equation (7) because temperature-dependent property is more practical. Table A1 lists the value of
search variables of n1, n2, m1, and m2 and performance metrics for the improved CTE system. The
temperature profiles of five different allocation design with different sets of n1, n2, m1, and m2 are
shown in Figure A2. It is found that the optimal design is reached with a ratio of elements number
between stages greater than 1, which is consistent with the results reported by Xuan et al. [50].
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Figure 9 illustrates the optimized element number assigned to each stage for each alternative
solution along the Pareto front. It can be found that for each Pareto solution, number of elements of the
TEC is always more than that of the TEG. The reason is that the TEC module must reject the extra Joule
heat generated during TEC operation, which is not required in the TEG module. For TECs or TEGs
considered individually, the element number for each stage shows less difference. Some solutions
even show that each stage has the same element number either for the TEG or the TEC. When each
stage shares a different element number, the number of elements in the top stage is larger than that
of the lower stage for the TEC. On the contrary, the number of elements in the top stage is smaller
than that in the lower stage for the TEG. These results are attributed to the fact that either for the TEC
or the TEG, the heat rejection stage needs more elements to pump the extra Joule heat. The results
reported by Xuan et al. [50] are qualitatively consistent with above results, where it demonstrated that
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the maximum QL-C (as well as the optimum COP) is reached with a number ratio of elements between
stages greater than 1.
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Figure 10a–b show the optimized objective functions of QL-C and COP in the Pareto-optimal
solution set. As the alternative solution varies, QL-C increases from 0.06 to 0.18 and the corresponding
COP decreases from 0.63 to 0.24, respectively. In addition, the variation of current is another indicator
to evaluate the performance of the device. From Figure 10c, it can be concluded that the current
increases from 0.03 A to 0.14 A over the Pareto front. This means more Joule heat will be generated,
which enhances the load for pumping heat from the cold end. The element number allocation shown
in Figure 9 can verify these results. The increased current accompanies more thermoelectric elements
assigned to the TEG. The increased current can enhance QL-C; however, the number allocated to the
TEC module are also decreased which deteriorates QL-C. There exists a trade-off between the above
two factors to determine the final QL-C. The enhanced QL-C with increasing current demonstrates that
the effect of electric current to increase QL-C is stronger.

To verify the advantage of the optimized design, reference structure should be defined for
performance comparison. NSGA-II algorithm begins with an initialized generation comprised of a
collection of individuals generated randomly, any one of these individuals can be marked as an initial
structure. As the optimization procedure evolves, the population searches fitter and fitter solutions
by new generations and eventually converges to a set of Pareto-optimal solutions. Based on this
principle, without the knowledge of how to determine the relevant values of m1, m2, n1, and n2 to
design a CTE with optimal performance, values randomly specified as m1, m2, n1, and n2 seem to
be an intuitive method. Hence, the initial structure randomly generated in the first generation can
be marked as a benchmark to compare. To ensure the reliability of the reference structure, the three
randomly generated initial structures corresponding to populations 1#, 2#, and 3# shown in Figure 7
are all selected, which are marked as 1# initial solution, 2# initial solution, and 3# initial solution,
respectively. It should be noted that, another case that can also be intuitively selected as reference is
the equal allocation to m1, m2, n1, and n2. Thus, this case is also selected as the benchmark to compare.
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Figure 10. Performance variation with different individual solution: (a) cooling capacity; (b) COP; and 
(c) electrical current. 

To verify the advantage of the optimized design, reference structure should be defined for 
performance comparison. NSGA-II algorithm begins with an initialized generation comprised of a 
collection of individuals generated randomly, any one of these individuals can be marked as an initial 
structure. As the optimization procedure evolves, the population searches fitter and fitter solutions 
by new generations and eventually converges to a set of Pareto-optimal solutions. Based on this 
principle, without the knowledge of how to determine the relevant values of m1, m2, n1, and n2 to 
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initial solution, and 3# initial solution. COP is increased by 122.0%, 221.1%, and 2377.4%, respectively, 
compared with 1# initial solution, 2# initial solution, and 3# initial solution. Also, it can be found that 
the optimized design has increased COP by 90.6% at the expense of 8.1% cooling capacity compared 
to equal allocation design. In terms of comprehensive trade-offs between cooling capacity and COP, 
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structure. 
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The values of the objective functions compared between the three initial solutions and the
optimized design selected by TOPSIS are shown in Figure 11. The equal allocation design is also
compared in the figure. From Table 4, it is worth mentioning that, after optimization, the cooling
capacity is improved by 23.3%, 90.2%, and 551.7%, respectively, compared with 1# initial solution, 2#
initial solution, and 3# initial solution. COP is increased by 122.0%, 221.1%, and 2377.4%, respectively,
compared with 1# initial solution, 2# initial solution, and 3# initial solution. Also, it can be found that
the optimized design has increased COP by 90.6% at the expense of 8.1% cooling capacity compared
to equal allocation design. In terms of comprehensive trade-offs between cooling capacity and COP,
the optimized design selected by TOPSIS is superior to both initial design and equal allocation
design structure.Energies 2019, 12, x 17 of 26 
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Table 4. Parameters and performances comparison between the Initial Solutions, Equal Allocation, and
TOPSIS Solution.

Reference
Structures

Allocation QL-C(W) Variation COP Variation
m1 m2 n1 n2

1#Initial Solution 7 14 7 12 0.133 23.3% 0.164 122.0%
2#Initial Solution 5 16 7 12 0.086 90.2% 0.113 221.1%
3#Initial Solution 1 3 21 15 0.025 551.7% 0.015 2377.4%
Equal Allocation 10 10 10 10 0.179 −8.4% 0.191 90.6%
TOPSIS Solution 5 6 15 14 0.164 - 0.364 -

To explain the underline physics of the improved performance for the optimized structure, the
temperature profiles of the improved design is compared with the three initial solutions and the equal
allocation design as shown in Figure 12. It is found that the temperature difference is very large
between the top and lower stages for both the TEG and the TEC module in the three initial solutions,
which means the heat cannot transfer easily through the device due to the improper element number
allocation. The heat is accumulated at the interface between the top and the lower stage in the TEC
module. For the equal allocation design, although the heat transport is more uniform, there still exist
heat accumulation. However, after optimization, appropriate element number ratio between the TEG
and TEC as well as between the two stages for TEG and TEC eliminate the heat accumulated at the
stage interfaces, which enhance the entire performance of the CTE. This mechanism is consistent with
the previous results reported in [51].

To further elucidate the effect of variation of m1, m2, n1, and n2 on the performance of the CTE
device, analysis from the point of view of temperature distribution and heat flux is present in this
section. the results are beneficial to optimize the geometry of the device. It is believed that when
the element number allocated to TEG is fixed, different number ratio between the top and the lower
stage of TEC will influence the CTE performance, and vice versa when the element number allocated
to TEC is fixed. Also, when the element number allocated to the two lower stages of CTE is fixed,
different number ratio between the TEG module and the TEC module for the two top stages of CTE
will influence the CTE performance, and vice versa when the element number allocated to the two top
stages of CTE is fixed. Accordingly, four sets of cases corresponding to above conditions are shown in
Figure 13a–d, respectively, in which the variables of n1, n2, m1, and m2 are changed, respectively. It is
interestingly found that, for each variable, there exists an optimal value, which corresponding to the
optimal solution selected by TOPSIS in the optimization procedure.

The heat transport equilibrium between the TEG module and the TEC module or between the
top stage and the lower stage of the CTE is the key point to determine the device performance. To
justify this hypothesis, we select the cases shown in Figure 13a as representatives to analyze, where
the structures with n1 = 5, 11, 15, 19, and 25 are chosen. When the elements to the top and the lower
stage of TEC are re-allocated, the circuit load connected to the TEG is changed, which may cause the
generated current decrease or increase. Then the Joule heat and QL-C curve vary with current. Besides,
the re-allocated elements also leads to the heat load to the top and the lower stage changed, breaking
the heat transport equilibrium in the device. The updated cooling capacity of the top and the lower
stage influence QL-C. Above factors together determine the final QL-C. The temperature profiles and
heat flux distributions are illustrated in Figures 14 and 15, respectively. It is found that, as n1, increases
from 3 to 15, the heat accumulated at the interface is alleviated, and the heat flux is also distributed
more uniformly. As n1 further increases from 15 to 25, the heat flux distribution and the resultant
temperature profile is again deteriorated. The change of heat transport equilibrium influences the QL-C

of the TEC and the QH-G of the TEG, which resultantly causes the COP variation.
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Figure 13. The effect of element number allocated to each stage on the performance of CTE under four 
different conditions: (a) different number ratio between the top and the lower stage of TEC when the 
element number allocated to TEG is fixed; (b) different number ratio between the top and the lower 
stage of TEG when the element number allocated to TEC is fixed; (c) different number ratio between 
the TEG module and the TEC module for the two top stages of CTE when the element number 
allocated to the two lower stages of CTE is fixed; and (d) different number ratio between the TEG 
module and the TEC module for the two lower stages of CTE when the element number allocated to 
the two top stages of CTE is fixed. 

Figure 13. The effect of element number allocated to each stage on the performance of CTE under four
different conditions: (a) different number ratio between the top and the lower stage of TEC when the
element number allocated to TEG is fixed; (b) different number ratio between the top and the lower stage
of TEG when the element number allocated to TEC is fixed; (c) different number ratio between the TEG
module and the TEC module for the two top stages of CTE when the element number allocated to the two
lower stages of CTE is fixed; and (d) different number ratio between the TEG module and the TEC module
for the two lower stages of CTE when the element number allocated to the two top stages of CTE is fixed.
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5. Conclusions

In this paper, the effect of number allocation to each stage in a two-stage thermoelectric combined
device is investigated by a three-dimensional multi-physics model. Multi-objective genetic algorithm
NSGA-II as well as finite element method are coupled to solve this problem. After optimization, a set
of Pareto-optimal solutions are obtained. Based on simultaneously considering QL-C and COP, the
best compromised alternative solution is determined by the TOPSIS technique. The main conclusions
can be summarized as follows: (1) An appropriate element number ratio between the TEG and TEC
as well as between the two stages for TEG and TEC is significant for the combined thermoelectric
device performance. The heat accumulated at the stage interfaces is responsible for the deteriorated
performance. This issue can be alleviated and the performance can be improved by optimizing the
element number allocated to each stage in the combined system. (2) Under the constraint of total
element number of 40 for the CTE, the optimal element number for the top and the lower stage of the
TEG module is 5 and 6, respectively; the optimal element number for the top and the lower stage of the
TEC module is 15 and 14, respectively. After optimization, the cooling capacity is improved by 23.3%
and COP is increased by 122.0% when compared with the 1# Initial Solution. (3) The heat transport
equilibrium between the TEG module and the TEC module or between the top stage and the lower
stage of the CTE is the key point to determine the device performance.

Author Contributions: conceptualization, J.-H.M. and H.-C.W.; methodology, J.-H.M. and H.-C.W.; software,
H.-C.W.; validation, H.-C.W.; formal analysis, J.-H.M., H.-C.W. and T.-H.W.; investigation, H.-C.W.; resources,
H.-C.W.; data curation, H.-C.W.; writing—original draft preparation, T.-H.W.; writing—review and editing, T.-H.W.
and H.-C.W.; supervision, J.-H.M. and T.-H.W.; funding acquisition, J.-H.M. and T.-H.W.

Funding: This research was funded by the National Natural Science Foundation of China (No. 51706067), National
Natural Science Foundation of China (No. 51876059), Fundamental Research Funds for the Central Universities
(No. 2019MS053), and Fundamental Research Funds for the Central Universities (No. 2018MS059).

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

A the cross-sectional area at the interface
f objective function
I electrical current flows through each element of the CTE (A)
→

J current density vector

k thermal conductivity (W m−1 K−1)
m1 the element number in the top stage of the TEG
m2 the element number in the lower stage of the TEG
N population size of optimization algorithm
n1 the element number in the top stage of the TEC
n2 the element number in the lower stage of the TEC
QH-C heat that TEC dissipates to the heat sink at the hot end (W)
QH-G heat that TEG absorbs from the heat source at the hot end (W)
QL-C heat that TEC absorbs from the refrigerated object at the cold end (W)
QL-G heat that TEG reject to the heat sink at the cold end (W)
T absolute temperature (K)
TH-C temperature at the hot end of the top stage in TEC (K)
TH-G temperature at the hot end of the top stage in TEG (K)
TL-C temperature at the cold end of the lower stage in TEC (K)
TL-G temperature at the cold end of the lower stage in TEG (K)
ZT figure of merit
Greek letters
α Seebeck coefficient (V K−1)
β Thomson coefficient (V K−1)
ρ electric resistance (Ω m)
ψ electric potential (V)
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Acronyms and abbreviations
COP coefficient of performance
CTE combined thermoelectric device
NSGA-II Non-dominated Sorting Genetic Algorithm II
TEC thermoelectric cooler
TEG thermoelectric generator
TOPSIS Technique for Order Preference by Similarity to an Ideal Solution
Subscripts and Superscript
Ce ceramic plate
Cu copper connector
max maximum
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Figure A1. Comparison of distribution of Pareto fronts between case 1 and case 2: (a) the first 
generation; (b) the fourth generation; (c) the tenth generation; and (d) the eightieth generation. In case 
1, Cek is determined by Equation (A1). In case 2, Cek is determined by Equation (A2). 
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Figure A1. Comparison of distribution of Pareto fronts between case 1 and case 2: (a) the first generation;
(b) the fourth generation; (c) the tenth generation; and (d) the eightieth generation. In case 1, kCe is
determined by Equation (A1). In case 2, kCe is determined by Equation (A2).

kCe = 175 W ·m−1
·K−1 (A1)

kCe =
(
573, 275− 2037.1T+ 3T2

−0.00156T3
)
× 10−4 W m−1 K−1 (A2)

Appendix B

Table A1. The value of search variables and performance metrics for the improved CTE system.

Individual Number
Allocation Design Parameters QL-C(W) COP

m1 m2 n1 n2

1 10 8 10 12 0.062 0.065
2 8 7 12 13 0.067 0.058
3 10 9 10 11 0.062 0.067
4 9 8 11 12 0.066 0.064
5 10 8 11 11 0.063 0.064
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Appendix C

Table A2. Numerical parameters of optimization algorithm.

Population Size Generation Pareto Fraction Crossover Fraction Migration Rate Mutation Rate

40 80 0.7 0.8 0.2 0.01

Definitions in Table A1: Population size: a population is an array of individuals; Generation: maximum number of
iterations before procedure termination; Pareto fraction: limiting the number of individuals on the Pareto front to
keep the most fit population down to the specified fraction in order to maintain a diverse population; Crossover
fraction: specifying the fraction of the population, other than elite children, that are crossover children; Migration
rate: specifying how many individuals move between sub-populations; Mutation rate: controls the standard
deviation of the mutation at the first generation, which is Scale multiplied by the range of the initial population.

Table A3. Structural parameters of optimization algorithm.

Structural Parameters Option

Coding scheme binary encoding
Selection binary tournament

Crossover arithmetic crossover
Mutation Gaussian mutation

Constraint constraint-dominate definition [46]
Stopping criterion maximum iteration numbers
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Table A4. The value of search variables and performance metrics for the improved CTE system.

Individual Number
Allocation Design Parameters QL-C(W) COP I(A)

m1 m2 n1 n2

1 1 2 19 18 0.058 0.631 0.025
2 1 3 18 18 0.063 0.602 0.028
3 2 2 18 18 0.083 0.574 0.037
4 2 3 18 17 0.096 0.547 0.045
5 2 4 17 17 0.102 0.522 0.049
6 3 3 17 17 0.113 0.501 0.055
7 3 4 17 16 0.125 0.477 0.062
8 3 5 16 16 0.131 0.454 0.068
9 4 4 16 16 0.138 0.438 0.071

10 4 5 16 15 0.147 0.416 0.079
11 4 6 15 15 0.153 0.396 0.085
12 5 5 15 15 0.156 0.383 0.087

13 1 5 6 15 14 0.164 0.364 0.096
14 5 7 14 14 0.168 0.345 0.102
15 6 6 14 14 0.169 0.335 0.103
16 6 7 14 13 0.175 0.318 0.111
17 6 8 13 13 0.178 0.301 0.117
18 7 7 13 13 0.178 0.293 0.117
19 7 8 13 12 0.182 0.277 0.126
20 7 9 12 12 0.183 0.261 0.132
21 8 9 12 11 0.185 0.241 0.140

1 The TOPSIS selected individual.
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