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Abstract: The widely used flywheel energy storage (FES) system has such advantages as high
power density, no environment pollution, a long service life, a wide operating temperature range,
and unlimited charging–discharging times. The flywheel array energy storage system (FAESS),
which includes the multiple standardized flywheel energy storage unit (FESU), is an effective
solution for obtaining large capacity and high-power energy storage. In this paper, the strategy for
coordinating and controlling the charging–discharging of the FAESS is studied in depth. Firstly,
a deep analysis is conducted on the loss generated during the charging–discharging process of
the FESU. The results indicate that the loss is related to the charging–discharging of power. To
solve the problems of over-charging, over-discharging, and overcurrent caused by traditional
charging–discharging control strategies, this paper proposes a charging–discharging coordination
control strategy based on the equal incremental principle (EIP). This strategy aims to minimize the total
loss and establish a mathematical model of optimal coordination control with the constraints of total
charging–discharging power, rated power limit, over-charging, over-discharging, and overcurrent.
Based on the EIP, the optimal distribution scheme of power charging–discharging is determined.
Secondly, this paper gives the specific implementation scheme of the optimal coordinated control
strategy. Lastly, the charging–discharging coordinated control strategy is verified by examples.
The results show that the coordinated control strategy can effectively reduce the loss during the
charging–discharging process and can prevent over-charging, over-discharging, and overcurrent of the
system. Overall, it has a better control effect than the existing charging–discharging control strategies.

Keywords: flywheel array energy storage system; minimization of total loss; equal incremental
principle; power distribution

1. Introduction

To address the increasingly prominent environmental and energy problems, renewable energy
sources, such as solar and wind energy, have developed rapidly in recent years. However, if renewable
energy sources with characteristics of intermittence and randomness are connected to the power grid
on a large scale, the voltage and frequency of the power grid will fluctuate drastically, resulting in
poor continuity and stability of the power supply [1,2]. The configuration of a large capacity energy
storage system in the power grid that utilizes charging and discharging functions can smooth out the
power fluctuation in renewable energy, achieving decoupling control of both the power generation
side and the power consumption side to improve the stability of the power grid [3]. At present,
the energy storage form adopted in the power grid system is generally the storage battery, whose
charging–discharging process is achieved by electrochemical reactions, with drawbacks such as slow
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speed, a limited recycling time, and a short service life. At the same time, the replacement of batteries
will significantly increase operating costs [4]. In addition, wasted batteries pollute the environment.

Flywheel energy storage (FES) is a form of energy storage that uses a high-speed rotating flywheel
rotor as a carrier to convert electrical energy into mechanical energy. It has the advantages of high power
density, no environmental pollution, a long service life, and an almost unlimited charging–discharging
time. Therefore, FES has been widely used in various fields, including renewable energy power
generation, rail brake energy recovery, uninterrupted power supply (UPS), frequency modulation and
voltage regulation in power systems, satellite energy storage, and attitude adjustment [5,6]. There are
two main technical approaches used to acquire a larger storage capacity, higher charging–discharging
power, and longer backup time. One is to develop a large-capacity single-unit FES system, and the
other one is to connect multiple standardized flywheel energy storage units (FESUs) in parallel to form
a flywheel array energy storage system (FAESS). The single large-capacity FES, however, not only
increases the cost significantly but is also difficult to use due to technical limitations [3]. Comparatively,
the FAESS can decrease both the cost and the time required for research and development; accordingly,
it is a better solution for obtaining a high-capacity and high-power energy storage system.

Few studies have investigated the optimization of coordination control of the FAESS, both at
home and abroad. In regard to charging, based on the average distribution algorithm, [7] proposes a
distribution algorithm according to the chargeable capacity. As for discharging, discharging power
distribution algorithms (average distribution, distribution by speed ratio, and distribution by residual
energy ratio) are proposed in [7–10], and a preliminary simulation study was conducted. In terms of
the FAESS used in wind farms, a layered distribution control strategy is presented in [11]: The upper
layer is used to allocate energy to each FESU based on the proportional consistency algorithm, and the
lower layer relies on the local controller in the FESU to adjust the rotating speed. This strategy, however,
does not consider the effect of loss on the charging–discharging of the system. In [12], the FAESS is
applied in the field of urban rail transit to absorb braking energy, and it achieves a good control effect;
however, its power distribution scheme has not been studied in depth. The study presented in [13]
advances a comprehensive electromechanical model of FES system, analyzes small-signal stability, and
conducts time domain simulation research. The results show that the FAESS improves the stability of
grid system, but the internal power distribution has not been studied in depth. In [14–16], an optimal
control method aimed at FAESS is proposed for the grid-connected micro-grid. The upper optimization
center establishes a corresponding charging–discharging optimized model according to the power
vacancy and rotating speed of each flywheel, and solves the power parameter of each flywheel. The
lower flywheel controller adopts a dual-module, dual-ring control method to control the rotating
speed and output power of the flywheel. This method is still, essentially, a distribution by residual
power ratio.

In general, the existing coordinated operation control of the FAESS mostly adopts the algorithms
of average distribution, distribution by speed ratio, or residual energy ratio. These algorithms are
likely to cause the distributed power to be greater than the available output power of the FESU, further
causing overcurrent of the flywheel motor. At the same time, over-charging or over-discharging is
likely to occur. In addition, the existing algorithms do not consider the internal loss factor of the
system during the actual operation, resulting in low system operation efficiency. In order to solve these
problems, further research on the FAESS is needed.

In this paper, the distribution of the charging–discharging power of the FAESS is studied in depth.
Firstly, this paper conducts an in-depth analysis of the power loss of each component of the FESU,
including the loss from the grid-side converter, the generator-side converter, and the motor. Then,
with minimum loss as the optimization goal, an objective function of optimal control is established
and solved by the equal incremental principle (EIP), with constraints on the total charging–discharging
power, rated power limit, overcharging, over-discharging, and overcurrent. Secondly, based on
theoretical research, a specific implementation scheme for the charging–discharging control strategy is
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proposed. Finally, the charging–discharging control strategy based on EIP is analyzed and verified by
examples. The results demonstrate the effectiveness of the control strategy.

2. Loss Analysis of FESU

During charging, the FESU absorbs energy from the grid, whereas during discharge, it outputs
energy into the grid. As shown in Figure 1, the converter generates switching and conduction loss
during the power conversion process. During the electromechanical conversion process, the loss
generated by the motor includes copper loss, iron loss (hysteresis loss, eddy current loss), and friction
loss (bearing friction loss, wind resistance friction loss). When the FESU is connected to the grid
for discharging, the loss distribution is as shown in Figure 2. The mechanical energy stored in the
flywheel rotor is first converted into electrical energy through electromechanical conversion, and is
then transferred into the power grid through the converter. Similar to that, during the charging process,
the motor loss during the electromechanical conversion process includes copper loss, iron loss, and
friction loss. During the process of power conversion, there are also switching and conduction losses.
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Figure 1. Energy conversion during flywheel charging. 
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2.1. Loss Analysis of the Converter in the FESU

The converter loss in the FESU includes the loss from the grid-side and the motor-side converters.
As shown in Figure 3, taking the voltage source converter (VSC) as an example, the grid-side converter
contains six insulated gate bipolar transistors (IGBTs) and six anti-parallel diodes, and the loss mainly
includes switching and conduction loss. The switching loss in the grid-side converter is as shown
in (1):

Psw_G = 6× (Psw_IGBT + Psw_D)

= 6
π × fsw × (Eon_test + Eo f f _test + Erec_test) ×

Im
Itest
×

Udc
Vtest

(1)

where Psw_G represents the switching loss of the grid-side converter; Psw_IGBT represents the switching
loss of a single IGBT; Psw_D represents the switching loss of a single diode; Eon_test represents the
switching-on loss of the IGBT; Eo f f _test represents the switching-off loss of the IGBT; Erec_test represents
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the switching-off loss of the diode; Itest represents the test current; Vtest represents the test voltage; Im

represents the output current of the grid-side converter; Udc represents the DC bus voltage; and fsw

represents the switching frequency of the grid-side converter.
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Since the conduction loss of the negative half-cycle of the grid-side converter is the same as that
of the positive half-cycle, we can only consider the conduction loss of the positive half-cycle. In the
one-phase leg of the grid-side converter, the conduction loss of the IGBT is

PIGBT = VT0·Im(
1
π
+

1
4

m cosϕ) + RCE·Im
2
·(

1
4
+

2
3π

m cosϕ) (2)

where PIGBT represents the conduction loss of the IGBT in the one-phase leg of the grid-side converter;
VT0 represents the IGBT threshold voltage; Im represents the output phase current in the grid-side
converter; m represents the modulation ratio; ϕ represents the power factor angle; and RCE represents
the IGBT conduction resistance.

By calculating the diode conduction loss, we can acquire

PD = VD0·Im(
1
π
−

1
4

m cosϕ) + RD·Im
2
·(

1
4
−

2
3π

m cosϕ) (3)

where PD represents the conduction loss of the diode in the one-phase leg of the grid-side converter;
VD0 represents the diode threshold voltage; Im represents the output phase current in the grid-side
converter; m represents the modulation ratio; ϕ represents the power factor angle; and RD represents
the diode conduction resistance.

The total conduction loss of grid-side converter Pcond is

Pcond = 3(PIGBT + PD)

= 3Im·(
VT0+VD0

π + m cosϕVT0−VD0
4 )+

3Im
2
·

[
RCE+RD

4 + m cosϕ 2(RCE−RD)
3π

] (4)

The absolute value of m cosϕ is less than 1, and∣∣∣∣∣m cosϕ
VT0 −VD0

4

∣∣∣∣∣ << VT0 + VD0

π
(5)

∣∣∣∣∣∣m cosϕ
2(RCE −RD)

3π

∣∣∣∣∣∣ << RCE + RD

4
(6)

Therefore, the total conduction loss can be simplified to

Pcond =
3(VT0 + VD0)

π
Im +

3(RCE + RD)

4
Im

2. (7)
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According to (1) and (7), the total conduction loss in the grid-side PG_tot is

PG_tot = bIm + cIm
2 (8)

b =
6
π
× fsw × (Eon_test + Eo f f _test + Erec_test) ×

1
Itest
×

Udc
Vtest

+
3(VT0 + VD0)

π

c =
3(RCE + RD)

4
.

Since the relation between the amplitude of output phase current Im and the active power directive
value P∗ is

Im =
P∗
√

3UN
×

√

2, (9)

the total loss in the grid-side converter PG_tot is

PG_tot = d|P∗|+ f P∗
2

(10)

where
d = b×

√
2

√
3∗UN

=
[

6
π × fsw ×

(
Eon_test + Eo f f _test + Erec_test) ×

1
Itest
×

Udc
Vtest

+
3(VT0+VD0)

π

]
×

√
2

√
3UN

f = c×
2

3UN2 =
3(RCE + RD)

4
×

2
3UN2 .

Taking the VSC converter as an example for the motor-side converter, the loss mechanism is
exactly the same. In the dq coordinate system, the d axis current id is set to be 0, and then the amplitude
of the output phase current is the absolute value

∣∣∣iq∣∣∣ of the q axis current iq. Similarly, the total loss in
the motor-side converter PM_tot is

PM_tot = b
∣∣∣iq∣∣∣+ ciq2. (11)

2.2. Motor Loss of FESU

As shown in Figures 2 and 3, the motor loss in the FESU is mainly copper loss, iron loss, and
friction loss. The cooper loss Pcu in the motor is

Pcu =
3
2

Rsiq2 = giq2 (12)

where
g =3Rs/2

where Rs is the resistance of the stator in the motor.
The iron loss of the permanent magnet synchronous motor includes hysteresis loss and eddy

current loss. The iron loss can be represented by the equivalent iron loss resistor Rc. The equivalent
steady state circuit of the permanent magnet synchronous motor that includes the iron loss resistor Rc

is shown in Figure 4.
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From Figure 4, we can acquire (13): icd =
−ωeLqioq

Rc
= −kLqioq

icq =
ωe(Ldiod+ψ f )

Rc
= k(Ldiod +ψ f )

(13)

where icd represents the d axis equivalent current of the equivalent iron loss current ic; icq represents the
q axis equivalent current of the equivalent iron loss current ic; ωe represents the electric angular speed
of the motor; ψ f represents the excitation flux linkage of the motor permanent magnet; Ld represents
the d axis equivalent inductance of the motor; Lq represents the q axis equivalent inductance of the
motor; iod represents the d axis equivalent current of the motor; and ioq represents the q axis equivalent
current of the motor.

According to (13), the iron loss of motor PFe is

PFe =
3
2
(i2cd + i2cq)Rc =

3
2

kpωm[(Ldiod +ψ f )
2 + (Lqioq)

2]. (14)

From {
id = icd + iod = −kLqioq + iod = 0

iq = icq + ioq = k(Ldiod +ψ f ) + ioq
(15)

we can acquire 
iod =

kLq(iq−kψ f )
1+k2LdLq

ioq =
iq−kψ f

1+k2LdLq

. (16)

Bringing (16) into (14), we can acquire

PFe = (k1iq2 + k2iq + k3) ×ωm (17)

where ωm is the mechanical angular speed of the flywheel rotor and

k1 = 3
2

kp(1+k2Ld
2)Lq

2

(1+k2LdLq)
2

k2 =
3k2pψ f (Ld−Lq)Lq

(1+k2LdLq)
2

k3 = 3
2

kp(1+k2Lq
2)ψ f

2

(1+k2LdLq)
2

The friction loss of the flywheel P f r can be represented by

P f r = B×ωm
2 (18)

where B represents the viscous friction coefficient and ωm represents the mechanical angular speed of
the flywheel rotor.
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2.3. Analysis of the Total Charging–Discharging Loss of the FESU

Figure 5 shows the energy flowing when the FESU is charging. PC is the absolute value of the
directive value of active power during charging; Pdcin is the DC input power of the generator-side
converter; Pacin is the AC output power of the generator-side converter; PM is the electromagnetic
power of the flywheel motor; and PF is the actual storage power of the flywheel. During charging in
the grid, the total loss Plossin of FESU is

Plossin = αP2
C + βPC + γ (19)

where
α = f + (c + g + k1ωm)kω2

β = d + (b + k2ωm)kω

γ = k3ωm + Bωm
2.
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Figure 5. Energy flowing in the FESU during charging.

The energy flowing in the FESU during discharge is shown is Figure 6. PD is the absolute value of
the directive value of active power during discharge; Pdcout is the DC output power of the motor-side
converter; Pacout is the AC input power of the motor-side converter; PM is the electromagnetic power of
the flywheel motor; and PF is the actual output power of the flywheel. During charging of the grid,
the total loss Plossout of FESU is

Plossout = α′PD
2 + β′PD + γ′ (20)

where
α′ = f + (c + g + k1ωm)k′ω2

β′ = d + (−b + k2ωm)k′ω

γ′ = k3ωm + Bωm
2.
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It can be seen from the above analysis that when the FESU is charged or discharged, the generated
loss is related to power charging or discharging. In the case that the total charging or discharging
power is fixed, the charging or discharging power that distributes to each unit is different and so is the
generated loss and the total loss in the system. Therefore, it is necessary to conduct in-depth research
on the charging–discharging coordination control strategy of the FAESS.

3. Charging Control Strategy of the FAESS

3.1. Charging Objective Function for the FAESS

When the total charging power of the system is fixed, in order to minimize the total loss Ploss_tot
during the charging operation, the objective function is as follows:

Ploss_tot =
N∑

i=1

Ploss_i(PC_i) (21)

Ploss_i(PC_i) = αiP2
C_i + βiPC_i + γi (i = 1, 2, . . . , N) (22)

where Ploss_tot represents the total loss of the FAESS during charging; Ploss_i represents the loss of FESU
i during charging; PC_i represents the charging power reference value of FESU i; and

αi = f + (c + g + k1ωm_i)kω_i
2

βi = d + (b + k2ωm_i)kω_i

γi = k3ωm_i + Bωm_i
2

kω_i =
1− d

b + hωm_i
.

3.2. Charging Constraints of FAESS

3.2.1. Equity Constraint

The sum of the total charging power of FESU is equal to the charging power reference value of the
system PC_array, which is

N∑
i=1

PC_i = PC_array. (23)

3.2.2. Inequity Constraints

(1) Inequity constraints of the limited amplitude of the rated power

The charging power of each FESU cannot exceed its rated power, which is

0 ≤ PC_i ≤ Prated (i = 1, 2, . . . , N). (24)

(2) Inequity constraints of overcharging prevention

The current rotating speed of FESU i is set as ωm_i , and the kinetic energy is set as Ei. After
operating cycle ∆T, the rotating speed is changed to ωm_i_next and the kinetic energy is changed to Ei_next .
In order to prevent overcharging, the rotating speed of the next moment ωm_i_next should not exceed the
maximum permitted rotating speed ωmax , as shown in Figure 7.
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The kinetic energy of the flywheel energy storage unit at the next moment Ei_next should not
exceed the maximum allowable kinetic energy Emax (25).

Ei_next = Ei + PF_i × ∆T ≤ Emax (25)

where PF_i is the current input power of i of the flywheel rotor.
Equation (25) can be represented by

PF_i ≤ PC_i − dPC_i − f P2
C_i − Bω2

m_i. (26)

According to (26),

Ei + PF_i × ∆T ≤ Ei + (PC_i − dPC_i − f P2
C_i − Bω2

m_i) × ∆T. (27)

It can be seen from (27) and (25) that if (28) is established, (25) is also established:

Ei +
(
PC_i − dPC_i − f P2

C_i − Bω2
m_i) × ∆T ≤ Emax. (28)

From (28), (29) is acquired:

1
2

Jω2
m_i + (PC_i − dPC_i − f P2

C_i − Bω2
m_i) × ∆T ≤

1
2

Jω2
max. (29)

which is
f ·∆T·P2

C_i + l·∆T·PC_i +
1
2

Jω2
max −

1
2

Jω2
m_i + B·∆T·ω2

m_i ≥ 0 (30)

where l = d− 1 and
Ai =

1
2

Jω2
max −

1
2

Jω2
m_i + B·∆T·ω2

m_i. (31)

Then,
f ·∆T·P2

C_i + l·∆T·PC_i + Ai ≥ 0. (32)

According to (32),

PC_i ≤
−l·∆T −

√
(l·∆T)2

− 4Ai f ·∆T

2 f ·∆T
= POCh_i_max (i = 1, 2, . . . , N) (33)

where for Ai, as in (31), l = d− 1.
Equation (33) is the constraint for preventing the overcharging of FESU i.

(3) Inequity constraints of preventing overcurrent in the motor

If the distributed charging power is excessive, overcurrent can occur in the flywheel motor when
the FESU is connected to the grid and charging. The q axis current of flywheel motor i is set as iq_i. After
operating cycle ∆T, the q axis current in the next moment will be iq_i_next. Since the charging power is
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constant and the rotating speed is increasing within operating cycle ∆T, there will be iq_i_next < iq_i, as
shown in Figure 8. In order to prevent the overcurrent of flywheel motor i, the q axis current iq_i cannot
exceed the maximum permitted q axis current iq_max. Thus, the q axis current will naturally not exceed
iq_max, so (34) should be guaranteed:

iq_i ≤ iq_max. (34)

According to (34),
iq_i = kω_iPC_i ≤ iq_max (35)

and then,
PC_i ≤ iq_max/kω_i = POCur_i_max (36)

where
kω_i = (1− d)/(b + hωm_i)

h = 3pψ f/2.
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Equation (38) is the constraint for preventing the overcurrent of flywheel motor i.
According to (24), (33), and (36), the upper limit of charging power should be the minimum of

these three values, which is

PC_i_max = min(Prated, POCh_i_max, POCur_i_max) (i = 1, 2, . . . , N). (37)

Comprehensively, when the FAESS is charging, the charging power of each unit should meet the
following inequality constraints:

0 ≤ PC_i ≤ PC_i_max (i = 1, 2, . . . , N). (38)

3.3. Research of the Charging Control Method for FAESS

The charging power distribution of FAESS can be presented with the equality constraint of

N∑
i

PC_i = PC_array. (39)

Let the objective function:

Ploss_tot =
N∑

i=1

Ploss_i(PC_i) (40)

be the minimum, where ploss_i(PC_i) = αiP2
C_i + βiPC_i + γi represents the loss characteristics of each

FESU during charging.
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At the same time, the charging power of each unit PC_i should also meet the following inequity
constraints (38). When the minimum loss of the charging operation of the system is calculated by EIP,
the LaGrange function shown in (41) should be constructed according to Objectives (39) and (40):

L = Ploss_tot − λ(
N∑

i=1

PC_i − PC_array) (41)

where λ represents the LaGrange multiplier.
The necessary condition for LaGrange function L to take the extreme value is

∂L
∂PC_i

=
∂Ploss_tot
∂PC_i

− λ = 0 (i = 1, 2, . . . , N)
N∑

i=1
PC_i − PC_array = 0

. (42)

The charging loss Ploss_i(PC_i) of each unit is only the function that relates to its charging power
PC_i; therefore,

∂ploss_tot

∂PC_i
=

dploss_i(PC_i)

dPC_i
= 2αiPC_i + βi = λi (i = 1, 2, . . . , N) (43)

where λi represents the incremental rate of consumption of each FESU.
Equation (42) can be rewritten as

2αiPC_i + βi = λ (i = 1, 2, . . . , N)
N∑

i=1
PC_i − PC_array = 0

. (44)

There are N + 1 equations and N + 1 variables in (44), which means the value of PC_i solved by
(44) is the value of distributed charging power with minimum loss.

When the charging power of FESU i is lower than the lower limit or higher than the upper limit,
the charging power of the system will be zero or PC_i_max. Then, the residual charging power will be
distributed to other FESUs.

3.4. Implementation Scheme of Charging Control for FAESS

After the calculation of the distributed power value corresponding to the minimum loss based on the
equal incremental principle, the directive charging order will be sent to each underlying controller to realize
coordinated charging control of each unit. As shown in Figure 9, the implementation consists of an array
controller and N bottom controllers. The array controller runs the charging coordinated control strategy based
on the EIP and outputs the most optimal charging power value corresponding to the minimum loss; each
bottom controller will control the charging process of each unit by following the distributed charging power.
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The main steps of the coordination control strategy based on EIP are as follows:

(1) The directive value of the total charging power P∗array and the rotating speed of each flywheel
ωm_i are sampled and systematic parameters are invoked.

(2) The upper limit of charging power is calculated to prevent overcharging and overcurrent of
FESU, POCh_i_max, and POCur_i_max.

(3) The upper charging power limit of each FESU, PC_i_max, is determined according to (36).
(4) Coefficients, αi, βi, and γi are calculated using the quadratic equation of charging loss of

FESU, Ploss_i(PC_i)
.

(5) The minimum and maximum values of the incremental ratio of charging consumption of each
FESU, λi, are determined: {

λi_min = βi
λmax == 2αiPC_i_max + βi

. (45)

(6) The minimum and maximum values of the incremental ratio of public consumption of the
FAESS are determined: {

λmin = min(λ1_min,λ2_min, · · · ,λN_min)

λmax = max(λ1_max,λ2_max, · · · ,λN_max)
. (46)

(7) The incremental ratio of public consumption is set as λ(0) = λmax.
(8) The charging power P(0)

C_i corresponding to λ(0) is calculated using

P(0)
C_i =

λ(0) − βi

2αi
(i = 1, 2, . . . , N). (47)

If P(0)
C_i is over the limit, then the limit value is used.

(9) The deviation between the sum of charging power and the total charging power PC_array
corresponding to λ(0) is calculated:

∆P(0)
C =

N∑
i=1

P(0)
C_i − PC_array. (48)

(10) Verification of whether the power deviation will satisfy the permitted range is carried out using

∆P(0)
C ≤ ε. (49)

If (49) is satisfied, then P(0)
C_i is the value of distributed charging power with minimum loss, then

P∗i is given a negative value of P(0)
C_i as the directive value of the charging power of the FESU.

(11) If it is not satisfied, and λ(0) > λmin, then

λ(1) > λ(0) − ∆λ. (50)

The iterative computations start from step (8) until the power deviation satisfies the permitted
range, or until the incremental ratio of public consumption is lower than or equal to λmin.

The charging coordination control program based on EIP is shown in Figure 10.
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4. Discharging Control Strategy of the FAESS

4.1. Discharging Objective Function for the FAESS

When the FAESS is discharging, the loss Ploss_i of FESU i is related to its active discharging power
PD_i. In the case that the total discharging power is fixed, the distributed power of FESU i PD_i is
different, and so is its loss Ploss_i and the total loss of the system. With a fixed total discharging power,
in order to minimize the total loss Ploss_tot, the objective function is defined as follows:

ploss_tot =
N∑

i=1

ploss_i(PD_i) (51)

Ploss_i(PD_i) = α′i P
2
D_i + β′i PD_i + γ′i (i = 1, 2, . . . , N) (52)

where
α′i = f + (c + g + k1ωm_i)k′ω_i

2

β′i = d + (−b + k2ωm_i)k′ω_i

γ′i = k3ωm_i + Bωm_i
2

k′ω_i =
1 + d

b− hωm_i
.
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4.2. Discharging Constraints of the FAESS

4.2.1. Equity Constraints

When the system is discharged, the equity constraint is that the sum of the discharging power of
FESUs is equal to the total discharging power of the system PD_array, which is

N∑
i=1

PD_i = PD_array. (53)

4.2.2. Inequity Constraints

(1) Inequity constraint of the limited amplitude of the rated power

The discharging power of each unit cannot exceed its rated power, which is

0 ≤ PD_i ≤ Prated (i = 1, 2, . . . , N). (54)

(2) Inequity constraint of preventing over-discharging

The current rotating speed of FESU i is set as ωm_i and the kinetic energy is set as Ei. After
operating cycle ∆T, the rotating speed is changed to ωm_i_next and the kinetic energy is changed to Ei_next.
In order to prevent over-discharging, the rotating speed of the next moment ωm_i_next should not be
lower than the minimum permitted rotating speed ωmin , as shown in Figure 11.
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The kinetic energy of FESU in the next moment Ei_next should be higher than its minimum limit
Emin, and Equation (55) should be guaranteed:

Ei_next = Ei − PF_i × ∆T ≥ Emin. (55)

In (55), PF_i represents the current output power of flywheel rotor i:

PF_i ≥ PD_i + dPD_i + f P2
D_i + Bω2

m_i. (56)

According to (55) and (56),

Ei ≥ Emin + (PD_i + dPD_i + f P2
D_i + Bω2

m_i) × ∆T (57)

which is
1
2

Jω2
m_i ≥

1
2

Jω2
min + (PD_i + dPD_i + f P2

D_i + Bω2
m_i) × ∆T. (58)
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From (58), (59) is acquired:

f × ∆T × P2
D_i + e× ∆T × PD_i + A′i ≤ 0, (59)

and (60) can be acquired from (59):

PD_i ≤
−e× ∆T +

√
(e× ∆T)2

− 4A′i f × ∆T

2 f × ∆T
= PODch_i_max (60)

where
A′i = B× ∆T ×ω2

m_i +
1
2

Jω2
min −

1
2

Jω2
m_i

e = 1 + d.

Equation (60) is the constraint for the prevention of over-discharge of i FESU.

(3) Inequity constraints of preventing overcurrent of motor

If the distributed charging power is excessive, overcurrent of the flywheel motor can occur when
FESU is connected to the grid and discharging. The q axis current of flywheel motor i as iq_i is set. After
operating cycle ∆T, the q axis current in the next moment will be iq_i_next. Since it is within operating
cycle ∆T, where the discharging power is constant and the rotating speed is decreasing, the absolute
value of the q axis current at the next moment will be greater than the absolute value of the q axis
current. In order to prevent overcurrent in flywheel motor i, the absolute value

∣∣∣iq_i_next
∣∣∣ of the q axis

current in the next moment cannot exceed the maximum permitted q axis current iq_max, as shown in
Figure 12.
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During discharging, there is

1
2

Jω2
m_i_next ≤ Ei − PD_i × ∆T⇒

1
ωm_i_next

≥

√
J

2(Ei − PD_i × ∆T)
(61)

and

hωm_i_next
∣∣∣iq_i_next

∣∣∣ ≥ PD_i ⇒
∣∣∣iq_i_next

∣∣∣ ≥ PD_i

hωm_i_next
. (62)

From (61) and (62) we can acquire

∣∣∣iq_i_next
∣∣∣ ≥ PD_i

h
×

√
J

2(Ei − PD_i × ∆T)
(63)
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and
iq_max ≥

∣∣∣iq_i_next
∣∣∣. (64)

Therefore,

iq_max ≥
PD_i

h
×

√
J

2(Ei − PD_i × ∆T)
(65)

which is
JP2

D_i + 2i2q_maxh2
× ∆T × PD_i − i2q_maxh2 Jω2

m_i ≤ 0. (66)

From (66), we can acquire

PD_i ≤

−i2q_maxh2
× ∆T +

√
i4q_maxh4∆T2 + J2i2q_maxh2ω2

m_i

J
= P′OCur_i_max (i = 1, 2, . . . , N). (67)

Equation (67) is the constraint for preventing the overcurrent of FESU i.
According to (54), (60), and (67), the upper limit of the discharging power of FESU i should be the

minimum of these three equations, which is

PD_i_max = min(Prated, PODch_i_max, P′OCur_i_max). (68)

Generally, when the FAESS is discharged, the discharging power of each unit should meet the
following inequity constraints:

0 ≤ PD_i ≤ PD_i_max (i = 1, 2, . . . , N). (69)

4.3. Research of the Discharging Control Method for the FAESS

The discharging power distribution of the system can be presented as follows. There are the
equality constraints:

N∑
i=1

PD_i = PD_array, (70)

and the objective function

Ploss_tot =
N∑

i=1

Ploss_i(PD_i) (71)

is the minimum.
Ploss_i(PD_i) = a′iP2

D_i + β′iPD_i + γ′i represents the loss characteristics of each FESU during
discharge. At the same time, the discharging power of each unit PD_i should satisfy Equation (69).

When the minimum discharging loss of the system is calculated by EIP, a LaGrange function
should firstly be constructed according to Objectives (70) and (71).

L = ploss_tot − λ(
N∑

i=1

PD_i − PD_array) (72)

where λ is the LaGrange multiplier.
The necessary conditions for LaGrange function L at the extremum are

∂L
∂PD_i

=
∂Ploss_tot
∂PD_i

− λ = 0 (i = 1, 2, . . . , N)
N∑

i=1
PD_i − PD_array = 0

. (73)
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Since the charging loss Ploss_i(PD_i) of each unit is only the function that relates to the discharging
power PD_i of each unit,

∂Ploss_tot

∂PD_i
=

dPloss_i(PD_i)

dPD_i
= 2α′i PD_i + β′i = λi (i = 1, 2, . . . , N) (74)

where λi represents the incremental rate of consumption of each FESU.
Equation (73) can be rewritten as

2α′i PD_i + β′i = λ (i = 1, 2, . . . , N)
N∑

i=1
PD_i − PD_array = 0

. (75)

There are N + 1 equations and N + 1 variables in (75), which means the PD_i solved by (75) is the
value of the distributed discharging power with the minimum loss.

When the discharging power of FESU i based on EIP is lower than the lower limit or higher than
the upper limit, the discharging power of the unit will be zero or PD_i_max. Then, the other FESUs will
be distributed as the residual discharging power.

4.4. Implementation Scheme of Discharging Control for the FAESS

After the calculation of distributed power value corresponding to the minimum loss based on the
EIP, the directive discharging order will be sent to each bottom controller to realize the discharging
control coordination of each FESU, as shown in Figure 13. The main steps are as follows:

(1) The directive value of the total charging power P∗array and the rotating speed of each flywheel
ωm_i are sampled, and systematic parameters are invoked.

(2) The upper limit of discharging power calculated to prevent overcharging and overcurrent of
FESU, POCh_i_max and POCur_i_max.

(3) The upper discharging limit of each FESU, PD_i_max, is determined.
(4) The coefficients, α′i, β′i, and γ′i are calculated using the quadratic equation of the discharging

loss of FESU Ploss_i(PD_i).
(5) The minimum and maximum values of the incremental ratio of the discharging consumption

of each FESU λi are calculated using{
λi_min = β′i

λi_max == 2α′i PD_i_max + β′i
(i = 1, 2, . . . , N). (76)

(6) The minimum and maximum values of the incremental ratio of public consumption of FAESS
are determined: {

λmin = min(λ1_min,λ2_min, · · · ,λN_min)

λmax = max(λ1_max,λ2_max, · · · ,λN_max)
. (77)

(7) The incremental ratio of public consumption is set as λ(0) = λmax.
(8) The charging power P(0)

D_i corresponding to λ(0) is calculated using

P(0)
D_i =

λ(0) − β′i
2α′i

(i = 1, 2, . . . , N). (78)

If P(0)
D_i is over the limit, then the limit value is used.
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(9) The deviation between sum of discharging power and the total discharging power PD_array

corresponding to λ(0) is calculated using

∆P(0)
D =

N∑
i=1

P(0)
D_i − PD_array. (79)

(10) Verification of whether the power deviation will satisfy the permitted range is carried out using

∆P(0)
D ≤ ε. (80)

If (80) is satisfied, then P(0)
D_i is the value of the distributed discharging power with the minimum

loss, and P∗i is given the value of P(0)
D_i as the directive value of the charging power of FESU.

(11) If (80) is not satisfied, and λ(0) > λmin, then

λ(1) > λ(0) − ∆λ. (81)

The iterative computations will start again from step (8) until the power deviation satisfies the
permitted range or the incremental ratio of public consumption is lower than or equal to λmin.
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5. Simulation and Experimental Verification

Examples are analyzed to verify the effectiveness of the charging–discharging control strategy for
FAESS based on EIP. The IGBT parameters used in the converters of the standardized FESU are shown
in Table 1. The parameters of the permanent magnet synchronous motor and flywheel are shown in
Table 2. The effective value of the grid voltage is 270 V, the frequency is 50 Hz, and the DC bus voltage
of converter Udc is 500 V.

Table 1. Insulated gate bipolar transistor (IGBT) parameter of the converter.

IGBT On Energy, Eon_test 51 mJ IGBT Off Energy, Eoff_test 45.5 mJ

Diode on Energy, Erec_test 32.5 mJ Switching Frequency, fsw 6000 Hz
Test Voltage, Vtest 900 V Test Current, Itest 225 A

VT0 1.14 V VD0 1.1925 V
RCE 0.0036 ohm RD 0.0027 ohm

Table 2. Parameters of the Flywheel of the Permanent Magnet Synchronous Motor.

Number of Pole-pairs, p 2 Kc 0.11 ohm/rpm

Stator Resistance, Rs 0.097 Ω Excitation flux linkage, Ψf 0.1286 Wb
D-axis inductance, Ld 1.435 mH q-axis inductance, Lq 2.085 mH

Viscous friction coefficient, B 0.0035 Nm/(rad/s) Flywheel rotating inertia, J 2.063 kg m2
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According to Tables 1 and 2, the loss constants of the standardized FESU can be calculated as
shown in Table 3.

Table 3. Total Loss Constant of the FESU.

b 5.8733 c 0.004725
d 0.0178 f 4.321 × 10−8

g 0.1455 h 0.3858
k1 2.4829 × 10−5 k2 −3.79 × 10−6

k3 0.094457 l −0.9822

The rated power of the standardized FESU is Prated = 40 kW; the maximum q-axis current is
iqmax = 99 A; the flywheel rotating speed range is [5000 rpm, 10,000 rpm], the upper speed limit is
nmax = 10, 000 rpm, and the lower speed limit is nmin = 5000 rpm. The time interval of the power
distribution is ∆T = 1 s.

5.1. Charging Example Analysis of FAESS

The FAESS that contains three standardized FESUs is used as an example. A simulation analysis is
conducted on three strategies: Equal distribution, distribution by chargeable energy, and distribution
by the EIP. The initial rotating speeds of each FESU are n1 = 5000 rpm, n1 = 7000 rpm, and
n1 = 8000 rpm, respectively. The speed limits are all nmax = 10, 000 rpm. The total charging power is
PC_array = 60 kW.

(1) The results of charging power distributed by equal distribution

With equal distribution, the directive values of the charging power, the actual charging power, the
rotating speed of the flywheel rotor, and the q-axis current distribution are as shown in Figure 15a–d.
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According to Figure 15a,b, the directive values of charging power of the three units are all equal 
to −20 kW. The actual charging powers of the three units are also around −20 kW, which corresponds 
to the charging directive value. According to Figure 15d, the absolute values of the q-axis currents of 
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According to Figure 15a,b, the directive values of charging power of the three units are all equal
to −20 kW. The actual charging powers of the three units are also around −20 kW, which corresponds
to the charging directive value. According to Figure 15d, the absolute values of the q-axis currents of
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the three motors are gradually decreasing, because the charging power is constant and the rotating
speed of each motor is increasing. Therefore, the torque of each motor is gradually decreasing, and so
is the absolute value of the q-axis current. In addition, as shown in Figure 15c, the rotating speeds of
the three flywheels increase from 5000, 7000, and 8000 rpm to 7539, 8937, and 9699 rpm, respectively.
After calculation, the total kinetic energy increment is 1049.3 kJ, and the total energy loss is 150.7 kJ.

(2) The results of power charging by chargeable energy distribution

For the chargeable energy distribution, the directive value of the charging power, the actual
charging power, the rotating speed of the flywheel rotor, and the q-axis current distribution are as
shown in Figure 16a–d.
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As shown in Figure 16a,b, the lower the rotating speed is, the larger the chargeable energy of
the FESU is and the greater the absolute value of the assigned directive value of charging power is.
The charging power of the three units can follow the directive value. According to Figure 16d, when
the q-axis current of the first flywheel motor exceeds its maximum value (99 A), overcurrent occurs.
In addition, as shown in Figure 16c, the rotating speeds of the three flywheels increase from 5000, 7000,
and 8000 rpm to 8250, 8805, and 9119 rpm, respectively. Therefore, the total kinetic energy increment is
1026.3 kJ, and the total energy loss is 173.7 kJ.

(3) The results of power charging distributed by the EIP

With optimal distribution by the EIP, the directive value of the charging power, the actual charging
power, the rotating speed of the flywheel rotor, and the q-axis current distribution are as shown in
Figure 17a–d.
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Figure 17. Simulation waveforms of power charging distributed by the EIP.

As shown in Figure 17a, the directive charging value undergoes a larger change when the EIP
is used. The absolute value of the directive charging value of the third unit begins to descend and
approaches zero, and the absolute values of the directive charging values of the other two start
ascending. As shown in Figure 17c, at 18 s, the rotating speed of the third flywheel reaches the upper
limit. In terms of the constraints of the EIP, the charging power of the third flywheel is automatically
limited. Since the total charging power is fixed, it will only be distributed between the first and second
units. Thus, the absolute values of the directive charging values of the two FESUs begin to increase.

According to Figure 17d, the actual charging power of the three units can follow the directive
value of the power charging. As seen in Figure 17c,d, there is no over-charging or over-discharging in
any of the three FESUs.

In addition, as shown in Figure 17c, the rotating speeds of all three units increase from 5000,
7000, and 8000 rpm to 6797, 9214, and 10,000 rpm, respectively. The total kinetic energy increment is
1052.9 kJ, and the total energy loss is 147.1 kJ.

The calculation above shows that when the charging power is distributed by equal distribution,
chargeable energy, and EIP, the total energy loss of the FAESS is 150.7 kJ, 173.7 kJ and 147.1 kJ,
respectively. A comparison of these three distribution methods is shown in Figure 18.
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According to Figure 18, when the charging power is distributed by EIP, the total energy loss of
the FAESS is at the minimum; the loss can be lowered by 15.3% and 2.4% compared with distribution
by chargeable energy and equal distribution, respectively. It can be seen from the above simulation
analysis results that power charging distribution using the EIP can not only decrease loss, but also
avoid overcharging and overcurrent. The simulation results verify the effectiveness of this charging
control strategy.

5.2. FAESS Discharging Example

Four strategies—equal distribution, distribution by rotating speed, distribution by residual energy,
and distribution by EIP—are simulated. The FAESS that contains three standardized FESUs is again
used as an example. The initial rotating speeds of each FESU are n1 = 10, 000 rpm, n2 = 8000 rpm,
and n3 = 7000 rpm, respectively. The lower limit of the rotating speed is nmin = 5000 rpm and the
total discharging power is PD_array = 60 kW.

(1) The results of discharging power distributed by equal distribution

With equal distribution, the directive value of discharging power, the actual discharging power,
the rotating speed of the flywheel rotor, and the absolute value of the q-axis current distribution are as
shown in Figure 19a–d.
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According to Figure 19a,b, the directive values of the discharging powers of the three units
are equal to 20 kW. The actual discharging powers of the three units are also around 20 kW, which
corresponds to the discharging directive value. According to Figure 19d, the absolute values of q-axis
currents of the three motors gradually increase, because the discharging power is constant and the
rotating speed of each motor is decreasing. Therefore, the torque of each motor gradually increases, as
does the absolute value of the q-axis current. When the q-axis currents of the second and third motors
exceed the maximum value of 99 A, overcurrent occurs.

In addition, as shown in Figure 19c, the rotating speeds of the three flywheels are lowered from
10, 000 rpm, 8000 rpm, and 7000 rpm to 7666 rpm, 4931 rpm, and 3079 rpm, respectively. When the
speeds of the second and third flywheels are lower than the lower limit, overcharging occurs. The total
kinetic energy decrement is 1362.1 kJ, and the total energy loss is 162.1 kJ.

(2) The results of discharging power distributed by the rotating speed
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When the discharging power is distributed by the rotating speed, the directive value of the
discharging power, the actual discharging power, the rotating speed of the flywheel rotor, and the
absolute value of the q-axis current distribution are as shown in Figure 20a–d.
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Figure 20. Simulation waveforms of discharging power distributed by the rotating speed.

According to Figure 20a,b, the higher the rotating speed, the larger the directive value of
discharging power. The actual powers of the three units can follow the directive value of discharging
power. As seen in Figure 20d, the q-axis currents of three motors are basically the same.

In addition, as shown in Figure 20c, the rotating speeds of the three flywheels are lowered from
10, 000 rpm, 8000 rpm, and 7000 rpm to 7072 rpm, 5114 rpm, and 4123 rpm, respectively. When the
speed of the third flywheel is lower than the lower limit of 5000 rpm, over-discharging occurs. It is
calculated that the total kinetic energy decrement is 1355.3 kJ, and the total energy loss is 155.3 kJ.

(3) The results of discharging power distributed by residual energy

According to Figure 21a,b, the FESU with more residual energy will be distributed with more
discharging power. The actual discharging powers of the three units follow the directive value.
According to Figure 21d, when the absolute value of the q-axis current of the first motor exceeds the
maximum value of 99 A, overcurrent occurs.
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Figure 22. Simulation waveforms of the discharging power distributed by the EIP. 

According to Figure 22, at 18 s, the value of the discharging power distributed by the EIP 
undergoes a large change, and the directive value of the third unit becomes zero. According to 
Figure 22c, at 18 s, the rotating speed of the third unit reaches the lowest limit. With the constraint 
for preventing over-discharging in the distribution strategy based on the EIP, the discharging power 
of the third unit is automatically limited to zero. 

According to Figure 22b, the actual discharging powers of the three FESUs can follow the 
directive value of the discharging power. As seen in Figure 22c,d, there is no over-discharging and 
overcurrent in any of the three FESUs. 
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Figure 21. Simulation waveforms of discharging power distributed by residual energy.

In addition, as shown in Figure 21c, the rotating speeds of the three flywheels are lowered from
10, 000 rpm, 8000 rpm, and 7000 rpm to 5960 rpm, 5530 rpm, and 5329 rpm, respectively. The total
kinetic energy decrement is 1340.2 kJ, and the total energy loss is 140.2 kJ.

(4) The results of discharging power distributed by the EIP

When the discharging power is distributed by the EIP, the directive value of the discharging
power, the actual discharging power, the rotating speed of the flywheel rotor, and the absolute value of
the q-axis current distribution are as shown in Figure 22a–d.
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Figure 22. Simulation waveforms of the discharging power distributed by the EIP. 
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Figure 22. Simulation waveforms of the discharging power distributed by the EIP.

According to Figure 22, at 18 s, the value of the discharging power distributed by the EIP undergoes
a large change, and the directive value of the third unit becomes zero. According to Figure 22c, at
18 s, the rotating speed of the third unit reaches the lowest limit. With the constraint for preventing
over-discharging in the distribution strategy based on the EIP, the discharging power of the third unit
is automatically limited to zero.

According to Figure 22b, the actual discharging powers of the three FESUs can follow the directive
value of the discharging power. As seen in Figure 22c,d, there is no over-discharging and overcurrent
in any of the three FESUs.
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As shown in Figure 22c, the rotating speeds of the three flywheels are lowered from 10, 000 rpm,
8000 rpm, and 7000 rpm to 6620 rpm, 5279 rpm, and 5004 rpm, respectively. The total kinetic energy
decrement is 1315.0 kJ, and the total energy loss is 138.7 kJ.

The above simulation analysis shows that when the discharging power is distributed by equal
distribution, rotating speed, residual energy, and the EIP, the total energy loss of the FAESS is 162.1 kJ,
155.3 kJ, 140.2 kJ, and 138.7 kJ, respectively. A comparison of these four distribution methods is shown
in Figure 23.
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Figure 23. Comparison of total discharge loss.

According to Figure 23, when the discharging power is distributed by the EIP, the total discharging
energy loss of the system is at the minimum. Compared with the loss of the average distribution, the
rotating speed distribution, and the residual energy distribution, the energy loss of can be reduced by
14.4%, 10.7%, and 1.1%, respectively, when the EIP is used. It can be seen from the above simulation
analysis that the discharging power distribution based on the EIP can not only decrease the loss, but
also avoid over-discharging and overcurrent.

The simulation results verify the effectiveness of the charging–discharging control strategy of
FAESS based on the EIP.

6. Conclusions

In this paper, the charging–discharging control strategy for the FAESS is studied in-depth. Firstly,
the power loss problem of the FESU during the charging and discharging operation is studied.
The results show that the power loss is directly related to power charging–discharging. Based on
a relevant theoretical analysis, this paper establishes an objective function of the FAESS with the
minimum total power loss as the optimization target. Based on the EIP, it also proposes the constraints
of overcharging, over-discharging, and overcurrent. Secondly, a specific implementation scheme
for the charging–discharging control strategy for the FAESS based on EIP is proposed. Finally,
the charging power distribution strategies (equal distribution, distribution by chargeable energy,
distribution by the EIP) are analyzed and compared with examples. In addition, the discharging power
distribution strategies (equal distribution, distribution by rotating speed, distribution by residual
energy, distribution by the EIP) are analyzed and compared with examples. The results show that the
control effect of the charging–discharging control strategy of the FAESS based on the EIP is better than
the other control strategies.
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