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Abstract: This work presents an optimization strategy and the cost-optimal design of an off-grid
building served by an energy system involving solar technologies, thermal and electrochemical
storages. Independently from the multi-objective method (e.g., utility function) and algorithm used
(e.g., genetic algorithms), the optimization of this kind of systems is typically characterized by a
high-dimensional variables space, computational effort and results uncertainty (e.g., local minimum
solutions). Instead of focusing on advanced optimization tools to handle the design problem, the
dimension of the full problem has been reduced, only considering the design variables with a high
“effect” on the objective functions. An off-grid accommodation building is presented as test case: the
original six-variable design problem consisting of about 300,000 possible configurations is reduced
to a two-variable problem, after the analysis of 870 Monte Carlo simulations. The new problem
includes only 220 possible design alternatives with a clear benefit for the multi-objective optimization
algorithm. The energy-economy Pareto frontiers obtained by the original and the reduced problems
overlap, showing the validity of the proposed methodology. The No-RES (no renewable energy
sources) primary energy consumption can be reduced up to almost 0 kWh/(m2yr) and the net present
value (NPV) after 20 years can reach 70 k€ depending on the number of photovoltaic panels and
electrochemical storage size. The reduction of the problem also allows for a plain analysis of the
results and the drawing of handy decision charts to help the investor/designer in finding the best
design according to the specific investment availability and target performances. The configurations
on the Pareto frontier are characterized by a notable electrical overproduction and a ratio between the
two main design variables that goes from 4 to 8 h. A sensitivity analysis to the unitary price of the
electrochemical storage reveals the robustness of the sizing criterion.

Keywords: hybrid renewable energy systems; off-grid buildings; electrochemical storage; dynamic
simulation; multi-objective optimization; screening design methodology; solar technologies

1. Introduction

Planning in the medium-long term the construction of an integrated thermal and electrical energy
production system fed by renewable sources (also known as hybrid renewable energy systems, HRES) is
certainly a tricky but interesting investment decision that occurs under multiple uncertainties. In recent
years, in fact, the deregulation of the electricity sector, as well as the introduction of environmental
constraints, has significantly stimulated the market of solutions for local energy production and
consequently raised the attention of investors to new business opportunities, also adding new variables
and constraints that further complicate the investment decision [1]. As an example, one can cite the call
for reduction of greenhouse gas emissions, the new targets for penetration of renewable energy sources
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(RES) in the electricity generating mix (Directive 2009/28/EC) and the Energy Performance of Buildings
Directives (2010/31/EU and 2018/844/EU), which require new buildings to be nearly zero-energy by the
end of 2020.

In this context, energy capacity planning and optimal power generation mix (or portfolio) are
among the most challenging and investigated topics, both in a large-scale perspective, as for the
national electricity generation system [2], and for small-scale plants, as stand-alone configurations
or autonomous buildings [3–5]. Critical issues typically addressed are: the number of different
energy sources to be included into the HRES; the type of technology of the generation sub-systems
(conventional or not); the design parameters of the HRES (size, control, and management policies); the
strategies used for decision assessment.

Many possible system configurations and uncertain variables should be considered in the problem
formulation [6–10]. Furthermore, the increased complexity of HRES with respect to the systems fed by
a single form of energy is due to the non-linear characteristics of the components, the high number of
variables and parameters that have to be considered for the optimal design, and the fact that the ideal
configuration and the optimal control strategy are interdependent [11]. Modern HRES are generally
integrated (electrical, thermal components and buildings), made of highly-coupled subsystems where
different technologies (e.g., renewable energy systems and traditional generators) cooperate for
concurrent multiple objectives, such as reliability, cost efficiency, environmental sustainability, indoor
comfort, and indoor air quality [12]. This condition calls for a robust and more integrated approach to
the evaluation of the best system design, able to deal with the increasing complexity of the decision
context, an accurate but efficient dynamic modeling of components interconnections, and decision
tools able to address the stakeholders towards the most efficient and cost-effective solutions [13–15].

In [11,16–18] the authors presented a significant review of studies regarding stand-alone HRES.
Evidence shows a great variety of design, simulation, control and optimization approaches, as well as
available software, such as HOMER (Hybrid Optimization Model for Electric Renewables, HOMER
Energy, Boulder, CO, USA), the most used tool for electric energy systems, developed by NREL
(National Renewable Energy Laboratory, Golden, CO, USA). Indeed, concerning the design and
simulation of HRES, most of the works focus on the sole electricity generation, while many thermal
aspects and the model of the building are often oversimplified or neglected. Faccio et al. Reference [19]
presented an interesting review of the most recent works on the optimal design of HRES. The cost
factor is the most common optimization goal, together with environmental emissions. Only in a few
cases do the works aim to optimize the operation of a specific, most delicate component (e.g., the
electric battery). In [20], the authors reviewed the main methodologies used for the optimization,
highlighting positive aspects and drawbacks of each modeling technique, such as linear programming,
particle swarm optimization, Monte Carlo analyses, and hybrid techniques.

The large number of research works in this field shows that HRES are a topic of great interest,
in particular because highly interacting energy systems cannot be analyzed by traditional design
approaches. However, to the best of our knowledge, universal straightforward design procedures and
decision criteria do not exist, as any specific project has peculiar characteristics, objectives and priorities
set by the decision maker. The multi-objective optimal design requires the set-up of a multi-variable
optimization problem with all the well-known drawbacks, such as computational effort, selection of the
multi-objective method, optimization algorithms, physical interpretation, uncertainty and robustness
of the resulting optimal configurations.

Recent reviews on optimization techniques applied in HRES design [21–23] present a general
trend in analyzing, classifying and developing novel algorithms according to their ability to handle
high-dimension variable spaces [24]. On the contrary, there is a limited attention on the potential of
the preliminary analysis of the design space, to determine which variables are the main drivers of
system performances and consequentially reduce the dimension of the problem. The latter approach is
well-known in the design-of-experiments technique with the name of “factors screening” [25], in which
the number of experiment variables (i.e., the factors) is limited for practical and economic reasons. A



Energies 2019, 12, 3026 3 of 25

similar approach can be used in the multi-variable optimization problems [26], to reduce the design
space, use simpler optimization techniques, but preserving the quality of the final solution.

This work applies this approach to the multi-objective optimization of a HRES system, showing the
advantages at the computational level, but also (and particularly) in terms of engineering understanding
of the problem, interpretation of results, and support for the decision maker in the investment analysis
and HRES planning. The work includes:

• An integrated model for the simulation of the HRES and the building dynamics based on holistic
and validated physical models to assess both thermal and electrical energy flows during the
system lifetime, with low computational requirements. The strength of this approach is that,
conversely to the aforementioned scientific literature, it considers the proper size and operation of
each single component in the perspective of the global performance of the entire system, both
for electrical and thermal aspects. The main drawback consists of the accuracy of the subsystem
models, which must be coherent with the simulation time step and the uncertainty of the energy
fluxes estimation;

• A multi-objective optimization procedure that considers the targets of environmental sustainability
together with the traditional financial performance of investments;

• A screening methodology aimed at reducing the computational effort of the multi-objective
algorithm. The optimization procedure is limited only to those variables with a high correlation (or
“effect”) with the objective functions. The total computational effort of the variable identification
and reduced optimization problem is very low with respect to the original problem. Together
with the computational effort, a reduced optimization problem has the following advantages:

# an easier interpretation of the optimal design(s) found by the optimization algorithm, such
as operative features of the system and possible correlations among the optimal value of
the main design variables;

# the drawing of handy decision charts that can be used by the decision makers to assess the
energy and economic performance of the design alternatives, helping the selection of the
best configurations according to the specific objectives and priorities;

# a simpler sensitivity analysis to investigate the robustness of the optimal solutions identified
by the sizing procedure.

The presented case study is representative of an autonomous small-to-medium accommodation
building (off-grid, both electricity and gas) in mild-Mediterranean climates; anyway, the proposed
approach is generic enough to be applied also to any energy system optimization, both for stand-alone
and on-grid building-integrated HRES.

This paper is organized as follows: Section 2 describes the reference HRES system and the energy
and economy modelling methods. Section 3 illustrates the reduction methodology based on a random
sample correlation analysis. The results, the post-processing analysis, and the related discussion are
presented in Section 4. Section 5 presents the sensitivity analysis, and conclusions are finally provided
in Section 6.

2. Hybrid Renewable Energy Systems (HRES) Energy and Economy Modelling

In this work, we refer to the optimal design of an off-grid building served by a HRES system,
according to cost-benefit considerations. The reference facility is an off-grid small-to-medium
accommodation building, located in an isolated area of the countryside in a mild-Mediterranean
region. Energy requirements include heating, cooling, domestic hot water (DHW), and electrical
services. To address these loads, an integrated system including solar thermal panels, photovoltaic
modules, thermal storage (TS), electrochemical storage (ES), a heat pump (HP), and a combined heat
and power system (CHP) must be optimally designed. A schematic representation of the overall system
is presented in Figure 1.
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As the building is a stand-alone one, particular attention should be given in the design of the
overall HRES system, as all the technologies have to be designed and integrated to address the building
requirements, without oversizing, so avoiding additional costs and, in some cases, also worse operating
performances (e.g., heat pumps). The overall building and energy system are analyzed through an
hourly dynamic simulation, using literature or in-house mathematical models shortly discussed in
Sections 2.1–2.4.
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2.1. External Climate and Building Envelope Model

The hourly heating and cooling loads, Eth,H and Eth,C, are evaluated correlating the design thermal
load and a mean external temperature Text on the effective time shift of the building [27,28]. For the
summer season, the mean sol-air temperature [28,29] on the same time shift of the building, T

∗

ext, is
considered, instead of the external temperature. The two equations read:

Eth,H = PH

1−
Text − Tdes,H

To f f ,H − Tdes,H

 (1a)

Eth,C = PC

1−
T
∗

ext − T∗des,C

To f f ,C − T∗des,C

 (1b)

Typical hotel schedules are used as DHW and electrical load profiles, including induction cooking,
lighting, and household appliances [30]. Further details about the characterization of the energy
requirements profiles can be found in [31].

2.2. Modeling of the Generation System

The performance of the photovoltaic (PV) modules are evaluated through the assessment of the
cell temperature, depending on the clearness of the sky Kt [32] and the external temperature, Text,
using the model discussed in [33]. The equations read:

TPV = Text + (219 + 832Kt)
NOCTPV − 20

800
(2a)

ηPV = ηinv
(
ηPV,re f

[
1− βT,PV

(
TPV − Tre f ,PV

)])
(2b)
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EPV = ηPVSPVIsol (2c)

As for the evaluation of the solar thermal system (ST) panels’ efficiency, classical models in
literature and technical standards are used [32,34]. The Equations read:

ηST = FR(τα)n

(
1− b0

( 1
cosθ

− 1
))
−

FRUL(TST,in − Text)

Isol
(3a)

EST = ηSTSSTIsol (3b)

where TST,in is assumed equal to the water temperature in the thermal storage (see Equation (5)).
The heat pump is a pivotal element in the system, as it links thermal and electrical energy fluxes.

It can receive electrical energy from the PV modules, the CHP generator, or the electrochemical
storage and provide energy to: (i) the cooling service directly to the building; (ii) for the heating
service, either directly to the building or through the thermal storage, and (iii) for the DHW service,
heating the thermal storage. On the contrary, the ST collectors can only provide thermal energy to
the thermal storage. The heat pump performances are evaluated through the second-law efficiency
method [35], using a fixed value of both ηII

H and ηII
C (assessed through manufacturers’ data), the outdoor

temperature, Text, and the supply water temperature Tcond/Teva for the evaluation of the ideal COP/EER.
The equations read:

COP = ηII
HCOPid = ηII

H
Tcond

Tcond − Text
(4a)

EER = ηII
CEERid = ηII

C
Teva

Text − Teva
(4b)

The CHP consists of a diesel-engine generator. When necessary, it recharges the electrochemical
storage to the assumed minimum state of charge and/or delivers the electrical load that cannot be
provided by the ES due to the power limits of the converter. Fixed values for the electrical power
generation efficiency, ηCHP,el, and thermal power recovery efficiency, ηCHP,th, are used.

2.3. Modeling of the Thermal Storage

A simplified lumped-element thermal storage model is considered to evaluate the TTS evolution
considering heat inputs (thermal energy from the CHP, solar thermal collectors, heat pump, and
recovered energy from PV overproduction), heat outputs (energy used for heating and DHW services),
thermal losses, and the variation of internal energy. The equations read:

VTSρwcw
(
Tt+1

TS − Tt
TS)

)
= Et

CHP,th + Et
ST + Et

HP,TS + EPV,oprdηrec −
(
Et

TS,H + Et
TS,DHW

)
− Et

TS,l (5a)

Et
TS,l = STS

λTS
sTS

(
Tt

TS − Tt
ext,TS

)
(5b)

The thermal storage is kept at a temperature equal or higher than the set-point temperature
TTS,set by the thermal generators. When its temperature is higher than the threshold value TTS,UP ,
the heat pump is switched-off from direct heating mode and the heating service is provided by the
thermal storage.

2.4. Modeling of the Electrochemical Storage

During standard plant operation, the electrochemical storage receives the surplus of the energy
produced by the PV systems and/or delivers the load deficit that cannot be met by the PV. Lithium
technology has been taken as reference. In fact, despite the relative high costs with respect to less
expensive technologies (i.e., lead-acid batteries, etc.), in the last few years lithium batteries have been
considered increasingly also for stationary applications, for their better performance in cycle-life.
In fact, being able to sustain from tens up to hundreds of charging-discharging cycles, they can require
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a very short number (or none) of substitutions during the useful life of the considered application, thus
becoming preferable to the previous technologies.

The operative state of charge is assumed to be between the 10% and the 90% of the nominal energy,
EES,nom. About storage losses, a constant round trip efficiency, ηES, is supposed, as usual in literature.
The state of charge SoCt

ES, i.e., the ratio between the charge stored inside and the battery capacity
(extractable charge) at a reference current and temperature, is evaluated at any time step as follows:

SoCt+1
ES = min

{
0.9EES,nom ; max

[
0.1EES,nom ; SoCt

ES + ∆SoCt
ES

]}
(6a)

∆SoCt
ES = min

[
ηESEt

el,oprd; PES

]
−min

[
Et

el,de f /ηES; PES

]
(6b)

Et
el,oprd = max

0; Et
PV −

Et
th,H

COPt
H

−

Et
th,C

EERt −
Et

HP,TS

COPt
TS

− Et
OU

 (6c)

Et
el,de f = max

0;
Et

th,H

COPt
H

+
Et

th,C

EERt +
Et

HP,TS

COPt
TS

+ Et
OU − Et

PV

 (6d)

Possible overloads are assumed to be dissipated, while the CHP unit provides the electrical energy
to keep the SoCES at least at 0.1 EES,nom at any time. Besides, the CHP meets the remaining electrical
load when the demand is higher than the maximum capacity of the converter.

With regard to the storage lifetime, it must be carefully verified if the considered usage of
electrochemical storage at many charging-discharging cycles could rise concerns about its life. Thus,
considering experimental data reported in literature [36–38] and from manufacturers’ indications [39],
and focusing the attention, as said, on lithium technology, an electrochemical storage subject to
such solicitation can follow the behavior as depicted in Figure 2. Different typologies are typically
available in the general category of lithium batteries, depending on the electrode typology (e.g., LFP,
lithium iron phosphate, NMC, nickel manganese cobalt, etc.). From the presented test data, the
average trend, calculated as arithmetic mean of the different allowed charging-discharging cycles
at the same abscissa, has also been reported in Figure 2, in orange color. As shown, in the case of
shallow charging-discharging cycles, battery life expectation can reach hundreds of thousands of
micro-cycles, while just few thousands are sustainable when extended depth of discharge is considered.
These results have been used to evaluate the battery allowed number of cycles, in order to finalize the
economy analysis in Section 2.5. In particular, the black curve of the “worst” case among the examined
technologies has been considered as precautionary measure. The latter curve has been discretized in a
five-step piecewise function as shown in Table 1.

The number of cycles in each bin is evaluated according to the depth of discharge (DOD), i.e., the
ratio between the extracted charge and the battery capacity (extractable charge) at a reference current
and temperature, of each charging–discharging cycle occurring during the system lifetime. Due the
reduced power typically delivered in building systems (see Section 4.2), C-rate, i.e., the amplitude of
the current solicitation, expressed as multiples of the battery capacity, and temperature are assumed to
stay around their nominal values. Therefore, for simplicity, dependency from C-rate and temperature
was not included in Equation (7), which only considers DOD. For instance, the counter #cycle1 is the
number of cycles with a relative depth of discharge ∆SoCES/EES,nom between 0.9 and 0.74, #cycle2 is
the number of cycles with a relative depth of discharge ∆SoCES/EES,nom between 0.74 and 0.58, and so
on. The cumulative damage of the ES at the t-th time step is evaluated through Equation (7). When
ESt

dam ≥ 1, the electrochemical storage is substituted and all the counters are reset to zero.

ESt
dam =

t∑
i=1

5∑
l=1

#cyclet
l/#cycle@EOLl (7)
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Figure 2. Number of allowed charging-discharging cycles vs. depth of discharge.

Table 1. Maximum number of charging-discharging cycles, #cycle@EOLl, depending on the depth of
discharge level, ∆SoCES/EES,nom.

l-th SoCES Bin ∆SoCES/EES,nom #cycle@EOLl

1 0.74–0.90 800
2 0.58–0.74 1000
3 0.42–0.58 3000
4 0.26–0.42 8000
5 0.1–0.26 40,000

2.5. Economic Analysis

The net present value (NPV) is assumed as the main economic indicator. For the j-th system
configuration, the NPV is calculated comparing the actual cash flow with the option of not investing
in a HRES, but using a CHP to meet both electrical and thermal energy demands (i.e., No-RES or no
renewable energy sources configuration).

NPV = TCN
No−RES − TCN

j (8)

TCt
j = C̃0

j +
t∑
i

 C̃i
rpl, j + C̃i

O&M, j − δt=NPshs, j

(1 + Rd)
i

 (9)

The total cost at the t-th year, TCt
j, is given by the total initial installation cost, C̃0

j , the operation

and maintenance (O&M) costs, C̃i
O&M, j (which includes the fuel costs), the replacement cost of the

devices that have exhausted their operational life, C̃i
rpl, j, the positive cash flows due to the possible

residual value, Pshs, j, of the components after the whole system lifetime. In other words, the Boolean
variable δt=N in Equation (9) is equal to 1 only in the N-th year.
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The initial cost for the j-th configuration is given by the sum of the installation cost of each
component, namely:

C̃0
j = c̃0

PVnPV, j + c̃0
STnST, j + c̃0

TSVTS, j + c̃0
ESEES,nom, j + c̃0

PES
PES, j + C̃0

CHP, j + C̃0
HP (10)

where c̃0
PV , c̃0

ST, c̃0
TS, c̃0

ES, c̃0
PES

are the unitary costs of the photovoltaic modules, solar thermal collectors,
thermal storage, electrochemical storage, and electrochemical storage converter, respectively. The heat
pump capacity is assumed as constant for all the tested configuration as its value only depends on
the heating and cooling design load of the building. The CHP sizing and installation cost depends
on the maximum electrical power output required in the j-th configuration during the year and it is
thus related to the number of PV modules and the electrochemical storage and converter capacities.
However, a minimum back-up power of 2.5 kWel is always installed, namely:

C̃0
CHP, j = c̃0

CHPmax
[
Pt

CHP,el, j ; 2.5
]

(11)

The operation and maintenance costs are distinguished into variable costs, proportional to the
energy use (i.e., the CHP fuel costs) and fixed costs, which include annual assurance costs, programmed
maintenance, etc. The latter is assumed proportional to the PV capacity, so the yearly O&M cost is
equal to:

C̃t
O&M, j = c̃ f ,CHPECHP,in, j + c̃O&MSPVnPV, j/SPV,kW (12)

The replacement cost, C̃i
rpl, j, is the present value of the initial installation cost of the replaced

sub-system. The main assumption under this hypothesis is that the adopted technologies are similar
over the years, so they only experience a price variation in line with the assumed inflation rate, but they
do not change their performance or operational duration. In this study, the electrochemical storage
and the CHP generator are the only components that need to be replaced during the HRES lifetime.
The replacement years for both subsystems are evaluated according to Equation (14), thus accounting
for the simulated operational conditions and time.

C̃t
rpl, j = C̃t

ES,rpl, j + C̃t
CHP,rpl, j (13)

where:

C̃t
ES,rpl, j =

 0, ESt
dam < 1

c̃0
ESEES,nom, j, ESt

dam > 1
(14a)

C̃t
CHP,rpl, j =

 0, ht
CHP,on < hCHP,max

C̃0
CHP, j, ht

CHP,on > hCHP,max
(14b)

The residual value, Pshs, j, refers to the possible value of the electrochemical storage and CHP unit
at the end of the HRES lifetime, therefore it contributes to the total cost only in the N-th year. We
consider a second-hand value of the two devices only if the last replacement respectively occurs in the
last 10 and 5 years of the system lifetime. In other words, if the last replacement occurs in the t-th year,
we have:

Pshs, j = Pshs,CHP, j + Pshs,ES, j (15)

where:

Pshs,CHP, j =


0, t < N − 10

C̃0
CHP, j −

N − t
10

C̃0
CHP, j, t ≥ N − 10

(16a)

Pshs,ES, j =


0, t < N − 5

c̃0
ESEES,nom, j −

N − t
5

c̃0
ESEES,nom, j, t ≥ N − 5

(16b)
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The other economic parameter is the internal rate of return, IRR, namely the discount rate that
makes the net present value NPV equal to zero at the end of the system lifetime.

3. Formulation of the Reduced Multi-Objective Optimization Problem

3.1. Objective Functions and Design Variables

We seek the best size for all the HRES components in terms of two objective functions: the net
present value at the end of the assumed lifetime and the No-RES primary energy per building floor area.
The conversion factor from diesel energy to No-RES primary energy is equal to one. The NPV value
and the No-RES primary energy need per floor area are evaluated through Equation (17) (Equation
(17b) repeats Equation (8)).

PrEnSB =
1

SB

N∑
t=1

Et
CHP,in (17a)

NPV = TCN
No−RES − TCN (17b)

The considered optimization variables are:

1. Number of PV modules, nPV;
2. Number of ST collectors, nST;
3. Thermal storage volume, VTS;
4. Nominal electrochemical storage energy, EES,nom;
5. Ratio between nominal energy of the electrochemical storage and converter nominal power,

EES,nom/PES;
6. Thermal storage water temperature for switching off the heat pump from direct heating mode,

TTS,up.

According to [40], the mathematical form of this multi-objective optimization problem reads:

Find X =
{
nPV, nST, VTS, EES,nom, EES,nom/PES, TTS,up

}
which minimize PrEnSB(X), NPV(X)

subject to:
Xlb ≤ X ≤ Xub

where the two objective functions PrEnSB(X) and NPV(X) are evaluated according to Equation (17)
and the simulation model described in Section 2, as a function of the design vector X. The lower and
upper boundaries of the vector X depend on the specific problem and are presented in Section 4 for the
presented case study. The problem does not have additional constraints for the state variables, but the
ones included in the system model.

3.2. Reduction of the Optimization Problem through the Screening Design Methodology

The proposed screening design methodology consists of finding the main design variables affecting
the objective function, to limit the optimization analysis to only those parameters. This reduction
approach is at the basis of the design-of-experiments technique, where the design variables correspond
to the experiment factors, the simulation of the operative performance corresponds to the experiment,
and the proposed relevance analysis corresponds to the “factor screening” or “characterization” [25].

In this work, we chose the classical correlation coefficient to quantify the dependence between the
design variable X and objective function Y. The correlation coefficient is defined as the square root of
the ratio between the explained variation and the total variation.

According to the classical sampling theory of correlation, the correlation coefficient between the
design variable X and objective function Y can be estimated with a given confidence and accuracy
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through a random sample [41]. We refer to this coefficient as rX→Y, when it is evaluated for the
sample, and ρX→Y when evaluated for the whole population. In other words, rX→Y is a guessing
value of ρX→Y. Then, the optimization problem can be reduced to only those variables with a high
correlation coefficient. The value of the minor design variables can be found through traditional
design methodologies.

The procedure reads:

1. Choose the desired estimation range, ±∆ρX→Y, for the coefficient ρX→Y. A suggested value is
0.05;

2. Choose the desired level of confidence and the corresponding zc value from Table 2 (after [41]). A
suggested value is 95%, corresponding to zc = 1.96;

3. Table 2 shows the required simulation runs (i.e., the random samples, Ns), to obtain the chosen
estimation range, ±∆ρX→Y, with the chosen level of accuracy, zc. The proposed Ns value has been
evaluated for rX→Y = 0.5 according to the sampling theory of correlation presented in [41]. For a
given Ns, higher and lower rX→Y values result in slightly thinner and wider ∆ρX→Y, respectively;

4. Run Ns simulations randomly selecting the design/control variables;
5. Evaluate the ranges of the correlation coefficients rX→Y between each design variable X and

objective function Y through the statistics ZX→Y:

ZX→Y =
1
2

ln
(

1 + rX→Y
1− rX→Y

)
= arctanh(rX→Y) (18)

Equation (18) is called Fisher z-transformation [41] and is approximately normally distributed with
mean and standard error equal to:

µZX→Y =
1
2

ln
(

1 + ρX→Y

1− ρX→Y

)
(19a)

σZX→Y =
1

√
Ns − 3

(19b)

Thus, the confidence region corresponding to µZX→Y can be evaluated as:

ZX→Y − zcσZX→Y < µZX→Y ≤ ZX→Y + zc σZX→Y (20)

and
ρX→Y,lb < ρX→Y ≤ ρX→Y,ub

ρX→Y,lb = tanh
(
ZX→Y − zcσZX→Y

)
ρX→Y,ub = tanh

(
ZX→Y + zcσZX→Y

) (21)

6. Rank the variables according to the corresponding ρX→Y;
7. Run the optimization routine only considering the main variables chosen in the previous

step. The value of the other design/control variables can be evaluated through classical
design methodologies.

The proposed approach is somewhat similar to the well-known lexicographic method [40], but
our method ranks the design variables instead of objective functions.
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Table 2. Number of Monte Carlo simulations, Ns (i.e., sample size), depending on desired accuracy
and level of confidence, with rX→Y ≈ 0.5 [41].

Level of Confidence

Probability 99% 95% 90% 80%
zc 2.58 1.96 1.645 1.28

∆ρ

0.005 150,000 86,500 61,000 36,900
0.01 37,500 21,600 15,200 9220
0.025 6000 3500 2450 1500
0.05 1500 870 610 370
0.1 375 220 155 95

4. HRES Test Case: An Off-Grid Farm-Hostel

4.1. Validation of the Proposed Reduction Methodology

In this paper, we refer to the off-grid system described in Section 2. For the test case, we chose the
typical meteorological year of Enna (Southern Italy), using external temperature, relative humidity, and
solar irradiance provided by [42]. Both system models and optimization routines were implemented
in MATLAB (R2018a, The MathWorks, Inc., Natick, MA, USA), with a specifically developed in-house
tool. The range of the optimization variables are shown in Table 3. The other parameters and input
data are presented in Table 4.

Table 3. Ranges for the six design variables.

nPV nST VTS −m3 EES,nom− kWh EES,nom/PES− h TTS,up−
◦C

10 : 10 : 200 0 : 2 : 10 1 : 1 : 5 25, 50 : 50 : 500 2 : 2 : 20 50 : 5 : 70

Table 4. Parameters used in the case study.

Parameter Symbol Value

Purchasing price of the reversible heat pump C̃0
HP 12, 000 €

Unitary price of the PV panels c̃0
PV 500 €/panel

Unitary price of the solar thermal collectors c̃0
ST 1580 €/collector

Unitary price of the thermal storage c̃0
TS 1 000 €/m3

Unitary price of the electrochemical storage c̃ES 600 €/kWh
Unitary price of the electrochemical storage converter c̃0

PES
200 €/kW

Unitary price of the CHP c̃0
CHP 2000 €/kWel

CHP fuel price c̃ f ,CHP 0.13 €/kWh
Maintenance costs c̃O&M 22.11 €/

(
yr kWp

)
HRES lifetime N 20 years
Real discount rate Rd 5%

Design heating load PH 15 kW
Design cooling load PC 15 kW
Design heating temperature Tdes,H −3 ◦C
Design cooling sol-air temperature T∗des,C 47 ◦C
Switching-off temperature for the heating system To f f ,H 14 ◦C
Switching-off temperature for the cooling system To f f ,C 26 ◦C

Heating capacity of the heat pump PHP,nom,H 20 kW
Cooling capacity of the heat pump PHP,nom,C 15 kW
Second-law efficiency for the heat pump (heating service) ηII

H 0.45
Second-law efficiency for the heat pump (cooling service) ηII

C 0.35
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Table 4. Cont.

Parameter Symbol Value

PV surface per peak capacity SPV,kW 8 m2/kW
Nominal operating cell temperature NOCTPV 45 ◦C
Reference PV efficiency ηPV,re f 0.13
Surface of the PV panel SPV 1.5 m2

Heat recovery coefficient of the electrical overproduction ηrec 0.6

Transmittance-absorptance product for normal-incidence irradiance (τα)n 0.7
ST removal factor FR 0.8
ST frontal losses coefficient UL 5 W/

(
m2 K

)
Incidence angle modifier coefficient for single-cover ST collectors b0 0.1
Surface of the ST collector SST 3.0 m2

Setpoint temperature of the thermal storage TTS,set 50 ◦C
Thermal conductivity of the TS insulation material λTS 0.04 W/(m K)
Thickness of the TS insulation material sTS 0.08 m

ES round-trip efficiency ηES 0.92

Operative lifetime of the CHP hCHP,max 30, 000
Electrical power generation efficiency of the CHP ηCHP,el 0.3
Thermal efficiency of the CHP ηCHP,th 0.6

According to the methodology described in Section 3, we analyzed a sample of 870 random
configurations among the 330,000 possible alternatives. Table 5 shows the ranges of the correlation
coefficients, ρlb ≤ ρ ≤ ρub, evaluated through the simulations of the 870 random configurations, with a
level of confidence equal to 95%. Table 5 also shows the actual value of the correlation coefficient, ρ,
evaluated through all the 330,000 possible alternatives.

Table 5. Correlation coefficients among the design variables and the objective functions.

Objective Function No-RES Primary Energy per Floor Area NPV

Design Variable r ρlb ρ ρub r ρlb ρ ρub

nPV 0.77 0.74 0.76 0.79 0.07 −0.01 0.05 0.14
nST 0.03 −0.04 0.02 0.09 0.07 0.00 0.05 0.14
VTS 0.02 −0.05 0.01 0.09 0.03 −0.03 0.02 0.10

EES,nom 0.10 0.03 0.10 0.16 0.93 0.92 0.93 0.94
EES,nom/PES 0.02 −0.05 0.00 0.08 0.02 −0.05 0.06 0.08

TTS,up 0.02 −0.05 0.01 0.08 0.05 −0.01 0.00 0.12

According to Table 5, in this case study, the main design variables are the PV number and the
nominal electrochemical storage energy. Therefore, it is possible to reduce the number of the design
variables to two and the total alternatives to 220. The nPV value has the main effect on the No-RES
primary energy consumption as the solar power production determines the operational hours of the
back-up CHP diesel-engine. The EES,nom. value has the main effect on the NPV value, as a larger battery
reduces the number of expensive battery renovations during the considered 20-year period (more
details on this aspect can be found in Section 4.2). The correlation analysis shows the importance of
the multi-objective approach in HRES design: a single-objective optimization, e.g., economic goal,
would not consider the PV system sizing as a design variable to be optimized, thus disregarding the
significant effect of this variable on the energy system.

An exhaustive-enumeration technique is employed to obtain a Pareto frontier between the No-RES
primary energy consumption and NPV value for both original and reduced optimization problems.
In the latter case, the number of the solar collectors is equal to 2, according to the established f-chart
design method [32]; the TS volume is equal to 1000 L, according to the assumed daily DHW consumption;
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the ES converter nominal capacity is set equal to the nominal capacity of the PV system; and the switch
temperature TTS,up is set equal to 60 ◦C.

Figure 3 shows the two Pareto frontiers, excluding the configurations with NPV < 0: the original
and the reduced problems have 477 and 15 equally optimal configurations, respectively. These optimal
designs will be deeply analyzed in Section 4.2. Here, we note that the two frontiers practically overlap,
proving that the full and reduced optimization problems lead to equivalent optimal designs. Any
multi-objective method or decision criterion can now be referred to the reduced problem.Energies 2019, 12, x FOR PEER REVIEW 13 of 25 
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4.2. Results Analysis and Discussion

All 15 configurations on the Pareto frontier have a PrEnSB significantly lower than the No-RES
configuration (107.7 kWh/m2/yr). Seven solutions have an energy consumption lower than 1 kWh/m2/yr,
which means that the HRES is totally fed by the solar energy.

The reduced Pareto frontier allows an easier analysis of the operating features of the optimal
configurations and the correlation between the two design variables and the objective functions.
The nPV assumes all the value between 30 and 190 units (see Figure 4). Higher PV numbers would
results in an uneconomical electrical overproduction (i.e., PrEnSB < 0) The sizes of the electrical storage
are 50, 100, and 150 kWh, respectively (see Figure 5), increasing with the PV number. Considering
8 m2/kWp as the typical surface per nominal power of mono-Si technology, our optimization procedure
suggests a range of 4 to 8 h as the optimal design ratio between PV and battery capacity.

Figures 6–9 show the good correlation between the two design variables, the objective functions,
and other two economy indexes: the internal rate of return (IRR) and the initial investment C̃0.
According to its investment availability, energy or economic targets the designer can easily select the
best design through these maps. For instance, if one wants to reach an energy consumption lower
than 15 kWh/(m2yr), the most economical design consists of 60 PV panels and 100 kWh of electrical
storages. Globally, the investment needs 120 k€ for the initial expenditure, resulting in a NPV of 65 k€
(IRR is 14%).

Regarding, technical features, the configurations on the Pareto frontier are characterized by the
following operative features:

1. The heating service is mainly met by the heat pump directly (see Figure 10);
2. The thermal storage is mainly heated up by the recovered PV overproduction (see Figure 11),

followed by CHP and thermal solar contributions;
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3. The main part of the energy entering the thermal storage is dissipated as thermal overproduction
(see Figure 12). This results in a high temperature level of the storage with a good heating
contribution in the winter season;

4. The electricity is mainly produced by the PV system (see Figure 13);
5. The electrochemical storage is kept at about 75% of SoCES for most of the time (see median

distributions Figure 14) with relatively small discharges between 10% and 20% of the nominal ES
size. This means that the optimization procedure tends to maximize the operational life of the
battery that experiences one or zero replacements during the 20-year of system lifetime;

6. The produced electrical energy mainly results in an overproduction (see point 3) and electrical
appliances. The high performances of the reversible heat pump limit the electrical consumption
of this device (see Figure 15).

We can conclude that, in this case study, the optimal design configurations tend to oversize the PV
system rather than avoiding overproductions. A larger electrochemical storage is not economical under
the assumed economy scenario; therefore, in Section 5, we analyze the effect of different c̃0

ES values.
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Figure 6. Energy consumption and net present value as a function of the number of PV modules on the
Pareto frontier.
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Pareto frontier.
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Figure 8. Internal rate of return (IRR) and initial cost as a function of the number of PV modules number.
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5. Sensitivity Analysis to the Unitary Price of the Electrochemical Storage

In this Section, we perform a sensitivity analysis of the Pareto frontier as a function of the unitary
price of the electrochemical storage. The latter parameter is the most uncertain one, as it depends
on the considered ES technology and unclear cost evolution. In Section 4.2, we showed that the
electrochemical storage is the most relevant variables for economy performance. Finally, in Section 4.2,
we observed a great dissipation of the electrical energy; therefore, it is interesting to understand
whether a cheaper price would allow the installation of higher storage capacities, potentially reducing
the aforementioned electrical overproduction.

As said, different lithium-based technologies are today available: as example, lithium iron
phosphate (LFP) batteries are quite cheap, and their price can be assumed, from the authors’
experience [43] and market data [44,45], at about 300 €/kWh. On the other hand, nickel manganese
cobalt (NMC) ones are much more expensive, at about 600 €/kWh. From predictions today available,
these costs will probably further decrease. In this way, it is possible to predict one levelling in the range
300–400 €/kWh in the next years.

Figures 16 and 17 show the correlation coefficient for PrEnSB and NPV depending on four
different c̃0

ES. The reduced prices do not change the relevance ranking of the variables; thus, the
reduced two-variable optimization problem still applies. Figure 18 shows the four different Pareto
frontiers: a lower c̃0

ES introduces many other configurations close to the null value of the No-RES energy
consumption. In other words, many high-efficiency configurations have become economically viable
due to a lower initial investment. Table 6 shows the distribution of the two main design variables, nPV

and C̃0
ES, as a function of the electrochemical storage price. As mentioned above, a lower c̃0

ES moves the
distribution towards higher values of both PV modules and electrochemical storage size.

The ES unitary price does not affect much the optimal range of the ratio between the nominal
electrochemical storage capacity and the PV capacity (see Figure 19). Only the lowest price scenario,
c̃0

ES = 300 €/kWh, makes the installation of larger ES viable. However, the general criterion of 4–8 h
seems a robust guideline.

Figure 20 shows that the electrical overproduction does not reduce with lower c̃0
ES, as the more

favorable economic context increases the size of the electrochemical storage, but also increases the
number of PV modules. Figure 21 shows the median value of the SoCES of the configurations on the
Pareto frontier, as a function of the ES unitary price. We observe that the notable amount of installed
PV reduces the deficit of electrical energy (Equation (6d)), resulting in low values of ∆SoCES and high
values of SoCES. The latter operative condition also ensures the lifetime of the electrochemical storage,
which is never replaced during the 20 years considered.



Energies 2019, 12, 3026 19 of 25Energies 2019, 12, x FOR PEER REVIEW 19 of 25 

 

 
Figure 16. Correlation coefficient between the design variables and the No-RES (renewable energy 
sources) primary energy consumption, depending on ES unitary price. 

 
Figure 17. Correlation coefficient between the design variables and the net present value, depending 
on ES unitary price. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

n_PV

n_ST

V_TS

E_ES,nom

E_ES,nom/P_ES

T_TS,up

300 €/kWh 400 €/kWh 500 €/kWh 600 €/kWh

TTS,up

EES,nom

EES,nom/PES

VTS

nST

nPV

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

n_PV

n_ST

V_TS

E_ES,nom

E_ES,nom/P_ES

T_TS,up

300 €/kWh 400 €/kWh 500 €/kWh 600 €/kWh

TTS,up

EES,nom

EES,nom/PES

VTS

nST

nPV

Figure 16. Correlation coefficient between the design variables and the No-RES (renewable energy
sources) primary energy consumption, depending on ES unitary price.
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on ES unitary price.
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Table 6. Percentiles of the number of PV collectors and nominal ES capacity as a function of the unitary
cost of the electrochemical storage.

Unitary Cost of the
Electrochemical

Storage

Number of
Configurations on the

Pareto Frontier

1st, 2nd, 3rd, and 4th
Percentiles of nPV

1st, 2nd, 3rd, and 4th
Percentiles of EES,nom kWh

600 €/kWh 15 72.5 120 157.5 190 100 150 150 150
500 €/kWh 19 90 140 162.5 200 112.5 150 150 200
400 €/kWh 22 90 145 160 180 150 150 200 250
300 €/kWh 36 125 150 165 200 150 250 300 400

1 

 

 

 

Figure 19. Ratio between the nominal electrochemical storage capacity and the PV capacity depending
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6. Conclusions

In this work, we optimized a HRES system serving a reference off-grid small-to-medium
accommodation facility, according to a multi-objective perspective: the minimization of No-RES
energy consumption and maximization of NPV at the end of system lifetime. After describing
both energy and economic models, we showed how the multi-variable optimization problem can be
simplified through a correlation analysis of a random sample of possible configurations, to identify the
design variables that mainly affect the objective functions.

The methodology has been applied to a test case including air-to-water heat pumps, a combined
heat-power generator, photovoltaic modules, solar thermal collectors, and electrochemical and thermal
storages. The design variables have been reduced from 6 to 2 (i.e., PV number and nominal energy
of the electrochemical storage) and the design alternatives from 330,000 to 220. We showed how the
reduced problem does not exclude optimal configurations, since the new Pareto frontier overlaps that
obtained considering all the 6 variables.

Achievable energy savings go from ~57% to ~100%, and the corresponding NPV and IRR after
20 years of operation go from ~4 k€ to ~70 k€ and from 5.2% to ~27%. Finally, we found a simple
rule of thumb to design PV capacity and ES size for similar PV-driven off-grid buildings: the best
ratio between the two quantities goes from 4 to 8 h, regardless the cost of the electrochemical storage.
A lower price makes economically viable configurations with higher PV capacity and ES size, thus
reducing the use of No-RES generators. However, the electrical overproduction is not reduced, as the
optimal ratio between PV capacity and electrical storage capacity does not vary.

Next studies will concern a more detailed stochastic analysis of both technical and economic
parameters, to figure out the probability distributions of the selected objective functions and thus the
statistically expected performances and the worst-case scenarios, for risk-management purposes.
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Nomenclature

Acronyms Symbols–Greek Letters

CHP combined heat and power system βT
PV penalization factor
depending on technology

COPid
ideal coefficient of performance
(Reversed Carnot cycle)

δ Kronecker delta

COP coefficient of performance η efficiency

DHW domestic hot water ηrec

fraction of electrical
overproduction recovered as
thermal energy

DOD depth of discharge θ

angle between the beam
radiation and the normal to
the solar collectors

EERid
ideal energy efficiency ratio
(Reversed Carnot Cycle)

λ thermal conductivity

EER energy efficiency ratio µZX→Y mean of Z distribution
ES electrochemical storage ρ density

HP heat pump ρX→Y
correlation coefficient based
on the population analysis

HRES hybrid renewable energy systems σZX→Y

standard deviation of Z
distribution

IRR internal rate of return (τα)n

transmittance-absorptance
product for normal-incidence
irradiance

NPV net present value
PV photovoltaic system Superscripts
RES renewable energy source * sol-air temperature

ST solar thermal system
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Nomenclature    

Acronyms Symbols–Greek Letters 𝐶𝐻𝑃 combined heat and power 
system 

் PV penalization factor depending 
on technology 𝐶𝑂𝑃௜ௗ 

ideal coefficient of 
performance (Reversed 
Carnot cycle) 

𝛿 Kronecker delta 𝐶𝑂𝑃 coefficient of performance 𝜂 efficiency 𝐷𝐻𝑊 domestic hot water 𝜂௥௘௖ fraction of electrical overproduction 
recovered as thermal energy 𝐷𝑂𝐷 depth of discharge 𝜃 
angle between the beam radiation 
and the normal to the solar 
collectors 𝐸𝐸𝑅௜ௗ ideal energy efficiency ratio 

(Reversed Carnot Cycle) 
𝜆 thermal conductivity 𝐸𝐸𝑅 energy efficiency ratio 𝜇௓೉→ೊ mean of Z distribution 𝐸𝑆 electrochemical storage 𝜌 density 𝐻𝑃 heat pump 𝜌௑→௒ correlation coefficient based on the 

population analysis 𝐻𝑅𝐸𝑆 hybrid renewable energy 
systems 

𝜎௓೉→ೊ standard deviation of Z distribution 𝐼𝑅𝑅 internal rate of return ሺሻ௡ transmittance-absorptance product 
for normal-incidence irradiance 𝑁𝑃𝑉 net present value   𝑃𝑉 photovoltaic system Superscripts 𝑅𝐸𝑆 renewable energy source * sol-air temperature 𝑆𝑇 solar thermal system ഥ  mean value 𝑇𝑆 thermal storage 𝐼𝐼 second-law parameter 

  𝐶 Cooling 
Symbols 𝑡 generic year #𝑐𝑦𝑐𝑙𝑒௟ number of cycles with a   

mean value

TS thermal storage II second-law parameter
C Cooling

Symbols t generic year

#cyclel

number of cycles with a relative
depth of discharge in the l-th SoCES
bin

#cycle@EOLl

Maximum number of
charging-discharging cycles for the
l-th SoCES bin

b0
incidence angle modifier coefficient
for single-cover ST collectors

Subscripts

C̃0 initial/installation cost B Building

C̃O&M Operation & Maintenance Costs cond/eva
referred to the condenser or
evaporator of the heat pump

C̃rpl replacement cost of the devices dam Damage
c̃ specific cost de f deficit/underproduction
c specific heat capacity des Design
E Energy el Electrical

FR ST removal factor ext External
h Hours f Fuel

Isol global solar irradiance H Heating
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Kt hourly clearness index in Inlet

N end of the HRES lifetime inv
electronic converter and other
PV system components

Ns sample size l Losses
NOCTPV nominal operating cell temperature lb lower bound

P peak load nom nominal

Pshs
positive cash flows due to residual
life of components

oprd overproduction

PrEnSB

No-RES primary energy per floor
area

OU other electrical uses/appliances

Rd real discount rate re f reference

rX→Y
correlation coefficient based on the
sample analysis

th thermal

S surface ub upper bound

SoCES
State of Charge of the
electrochemical storage

w water

SPV,kWPV surface per installed capacity

sTS
thickness of the TS insulation
material

T temperature
TC total cost

To f f switch-off temperature

TTS,UP

temperature at which the heat pump
is switched-off from direct heating
mode

UL ST frontal losses coefficient
V volume
zc confidence coefficient

ZX→Y Fisher z-transformation
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