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Abstract: This paper is a continuation of the previous work, aiming to explore the influence of fillet
configurations on flow and heat transfer in a large meridional expansion turbine. The endwall of large
meridional expansion turbine stator has a large expansion angle, which leads to early separation of
the endwall boundary layer, resulting in excessive aerodynamic loss and local thermal load. In order
to improve the flow state and reduce the local high thermal load, five typical fillet distribution rules
are designed. The three-dimensional Reynolds-Averaged Navier-Stokes (RANS) solver for viscous
turbulent flows was used to investigate the different fillet configurations of the second stage stator
blades of a 1.5-stage turbine, and which fillet distribution is suitable for large meridional expansion
turbines. The influence of fillet structures on the vortex system and loss characteristics was analyzed,
and its impact on wall thermal load was studied in detail. The fillet structure mainly affects the
formation of horseshoe vortexes at the leading edge of the blade so as to reduce the loss caused
by horseshoe vortexes and passage vortexes. The fillet structure suitable for the large meridional
expansion turbine was obtained through the research. Reasonable fillet structure distribution can
not only improve the flow state but also reduce the high thermal load on the wall surface of the
meridional expansion turbine. It has a positive engineering guiding value.

Keywords: large meridional expansion; aerodynamic loss; thermal load; fillet configuration

1. Introduction

One of the main objectives of efficient modern gas turbine engine design is to reduce secondary
flow loss at any stage. Generally speaking, the gas turbine has a higher end-wall angle design in
order to achieve high-efficiency performance. The high endwall angle is designed to reduce the large
deflection angle of the blade profile and meet the requirements of the expansion ratio. Due to the
large expansion angle, the end-wall boundary layer separates early, resulting in a large secondary flow
loss. At the same time, the thermal load of the endwall is affected by the secondary flow and becomes
more complex. Numerous articles have shown that fillet structure plays an important role in reducing
secondary flow loss [1,2]. However, the fillet characteristics of the large meridional expansion turbine
stators have not been fully studied publicly. Therefore, it is of great value to study the influence of fillet
structure on the flow and heat transfer characteristics of the large meridional expansion turbine stators.

According to Sharma et al. [3], secondary flow loss can be as high as 30%~50% in the aerodynamic
loss in the stator blade row. A lot of literature shows that the detail part plays an important role in
reducing the secondary loss of flow. Thole et al. [4] found that the application of an inverted circle at the
junction between the leading edge of the turbine blade and the endwall could significantly weaken the
horseshoe vortex. Becz et al. [5] applied an inverted circle and a bulb structure to the leading edge of a
turbine cascade with a large size, a low aspect ratio, and a large angle, and found that an inverted circle
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and a smaller size bulb can effectively reduce the average total pressure loss of the area, while a larger
size bulb can increase the loss. It can be seen that the protruding structure of turbine blades is worthy
of further study for secondary flow control. Sauer et al. [6] and Gregory et al. [7] carried out numerical
simulation and experimental measurement on the blade with fillet. Results show that by modifying
the leading edge, the fillet structure can reduce the secondary loss and delay the development of
the passage vortex. Yan Shi et al. [8] believe that the fillet on the turbine stage is extremely effective
in inhibiting the flow separation near the leading edge of the rotor blade. The mechanism of the
fillet structure to reduce loss lies in that it can reduce the intensity and size of horseshoe vortexes,
thus delaying the development of passage vortices [9–11]. It can be seen that shaping at the junction
between the blade root and endwall, whether it is leading edge or surrounding the entire blade root, is
very important for the influence of passage.

In order to improve turbine efficiency, increasing inlet temperature is a very important measure.
This measure makes the first two stages of turbine blades bear higher temperature continuously,
and the inlet temperature is obviously higher than the melting point of the metal. Therefore, blade
cooling technology is critical. However, the prerequisite to achieve efficient and reliable cooling blade
design is to fully study the characteristics of thermal load distribution of the channel and endwall
without cooling structure. The fillet structure of turbine blades plays an active role in weakening the
high-thermal load area of blades and endwalls. Shih et al. [12] carried out a numerical simulation
study on the leading edge fillet structure of turbine blades, and the results showed that the leading
edge fillet structure was helpful to reduce the heat transfer coefficient of the blade surface and endwall.
Acharya [13] et al. studied the flow field and heat transfer results of different fillet structures, and found
that the parabolic fillet contour was helpful to weaken the heat transfer of the endwall. Goldstein and
Han et al. [14,15] used mass transfer measurements to reveal the effect of filet structure on blade heat
transfer through experiments.

The flow and heat transfer characteristics of stator blades in large meridional expansion turbines
have been fully described in previous studies [16], but the influence of fillet structure on it is still unclear.
In this paper, the flow and heat transfer of the stator blades in the second stage of a large meridional
expansion turbine is analyzed by numerical simulation with five different typical chamfered structures.
The influence of fillet structures on inlet flow field structure, vortex development, and heat transfer
characteristics was studied by steady-state three-dimensional Reynolds-Averaged Navier-Stokes
(RANS) simulation. The experimental data was used for experimental validation. It is of engineering
significance for the design of large meridional expansion turbine.

2. Numerical Methods and Validation

2.1. 5-Stage Turbine in Study and Boundary Conditions

The model studied in this paper is a 1.5-stage high-pressure turbine, including guide vanes
(S1), rotor blades (R1) of the first stage, and stator blades (S2) of the second stage. The model is
sufficiently extended in the inlet and outlet sections. The extension is 1.5 times the average chord length.
The meridional section of the model is shown in Figure 1. It can be seen from Figure 1 that the shroud
and hub endwalls of the S2 blade have an obvious large expansion angle in the meridian direction.
Its average shroud expansion angle (α1) is 22◦ and hub expansion angle (α2) is 13◦. The S2 blade has
completed the experimental study of aerodynamic performance under low working conditions [17].
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method. In addition, the fully implicit mesh coupling method is also used to solve the continuity 
equation and the momentum equation at the same time, which has good convergence performance 
and numerical accuracy. For the numerical calculation in this paper, Reynolds-averaged Navier-
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and wall heat transfer, so the selected turbulence model should capture the flow state near the wall 
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flow state near the wall. Therefore, capturing the flow details near the wall is conducive to the 
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of the turbulence models of k-ε, k-ω, SST, and v2-f and summarized their advantages and 
disadvantages. The results are as follows: the SST model combines the advantages of the k-ε model 

Figure 1. Meridional passage of the 1.5-stage turbine.

Detailed design parameters and working conditions of the 1.5-stage turbine are shown in Table 1.
The boundary conditions at the inlet are given as the average total pressure and the average total
temperature, and that at the outlet is given as the total pressure. The inlet flow angle is 0◦. The hub/tip
radius ratio of the blade and the mass flow rate at the design point are given. The number of blades
in S1, R1, and S2 were 40, 86, and 45, respectively. The wall temperature boundary condition is set
as isothermal, which can be obtained according to the temperature ratio of the mainstream gas and
the isothermal wall (Tg/Tw) is equal to 1.5. The setting of this ratio was given in detail in the papers
of Imran Qureshi et al. [18] and Ameni et al. [19]. It is shown in the papers that for the heat transfer
simulation of turbines, the boundary conditions of non-adiabatic are usually determined by the heat
transfer between the wall surface and the main flow. However, when Nu number is used to analyze
the wall heat transfer coefficient, if the wall temperature does not change dramatically, it is generally
considered to be independent of the wall temperature. Periodic boundary conditions are adopted on
both sides of the channel, and the wall surfaces are set as a non-slip boundary.

Table 1. Design parameters and boundary conditions of the 1.5-stage turbine.

Parameters Name Value

Inlet total pressure (kPa) 1947.4
Inlet total temperature (K) 1543.9
Exit static pressure (kPa) 396.7

Inlet flow angle (◦) 0
Design mass flow rate (kg/s) 76.5

Inlet hub/tip radius ratio (S1,R1,S2) 0.864, 0.886, 0.863
Exit hub/tip radius ratio (S1,R1,S2) 0.886, 0.868, 0.797
Pitch at midspan (mm) (S1,R1,S2) 71, 36, 61

Number of vanes (S1,R1,S2) 40, 86, 45
Tg/Tw 1.5
Tw (K) 1030

2.2. Numerical Solver and Mesh Settings

In this paper, the turbine flow field is calculated by the high-performance commercial
hydrodynamics software CFX 17.0 [20]. The software adopts the finite volume method based
on the finite element method and absorbs the accuracy of the numerical solution of the finite element
method. In addition, the fully implicit mesh coupling method is also used to solve the continuity
equation and the momentum equation at the same time, which has good convergence performance
and numerical accuracy. For the numerical calculation in this paper, Reynolds-averaged Navier-Stokes
equations in generalized coordinates are solved by the finite volume space dispersion technique.
The spatial discrete scheme is the “high-precision” scheme of commercial software CFX, and the time
discrete scheme is the second-order backward difference Euler scheme.
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This paper focuses on the detailed study of the chamfered structure on the turbine flow field
and wall heat transfer, so the selected turbulence model should capture the flow state near the wall
as much as possible. Meanwhile, the heat transfer coefficient of the wall is mainly determined by
the flow state near the wall. Therefore, capturing the flow details near the wall is conducive to the
accurate simulation of wall heat load. In the research of Krishnababu et al. [21], it is shown that the
Shear-Stress Transport (SST) k-ω turbulence model has a good performance in capturing the complex
flows and flow details of the turbomachine. Zuckerman et al. [22,23] carried out a detailed analysis of
the turbulence models of k-ε, k-ω, SST, and v2-f and summarized their advantages and disadvantages.
The results are as follows: the SST model combines the advantages of the k-ε model and the k-ω model
and has good simulation results for the whole complex flow. In addition, the SST model uses the
variant equation to calculate the turbulent viscosity [24], so it has excellent results in simulating the
adverse pressure gradient. Moreover, the accuracy of the SST model on the prediction of the wall heat
transfer coefficient is also better than that of the k-ε and v2-f models. So, the SST turbulence model is
adopted for fluid calculation in this study.

In this paper, the turbine blade passage grid is divided by IGG/Autogrid5, a preprocessing module
developed by NUMECA company for generating multi-block structured grids. Figure 2 shows the
grid diagram of 1.5-stage turbines with filleted S2. Figure 3 shows the topological structure of the
cross-section of the S2 blade grid model. Structural hexahedral meshes are used in all the computational
meshes. In order to improve the quality of the whole computational grid, O-type grids are used for
blade surface and rotor blade clearance area, and H-type grids are used for inlet and outlet areas and
the mainstream area. In the paper of Montomoli et al. [25], the wall heat transfer coefficient of turbine
blades were studied in detail, indicating that the use of 20-layer grids near the wall can meet the
requirements for the capture of boundary layer flows and wall heat transfer. Therefore, 20 meshes are
used to divide the near-wall surface meshes in this paper. The final total number of cells is 13 million.
In order to meet the requirements of the SST turbulence model, the average non-dimensional near-wall
distance of y plus value is less than 1, so the height of the first grid of the grid model is 0.2 µm. All the
computational models in this paper adopt the same topology model and grid setup.
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For the numerical simulation in this paper, when the residual error of the momentum equation,
energy equation, and turbulence model is less than 10−5 orders of magnitude, and the difference
between inlet and outlet flow is less than 0.1%, the calculation can be considered as convergence.

As shown in Table 2, in order to exclude the influence of the computational grid number on
the aerodynamic and heat transfer results of the numerical simulation, the author conducted grid
independence verification of the total pressure loss coefficient and the shroud heat flux of the model
without fillet in the paper [16]. It is pointed out that when the total number of nodes in the computational
grid exceeds 11 million, the numerical results are no longer dependent on the grid number. Therefore,
in order to ensure that the computational grid is no longer sensitive and can accurately predict the
flow characteristics near the endwall, the number of grids used in this paper is between 12 million
and 13 million.

Table 2. Mesh sensitivity analysis of S2 without fillet.

Grid Node Number (million) Cp Area-Averaged Shroud Heat Flux (w/m2)

Mesh-1 3.09 0.130955 378,156

Mesh-2 7.26 0.126102 385,201

Mesh-3 11.32 0.126082 383,153

2.3. Experimental Validation of Stator Blades (S2)

In order to verify the reliability of the numerical calculation method and grid generation in
this paper, aerodynamic and heat transfer tests were carried out according to the existing open
experimental results. In the experimental results published so far, there is no experimental data about
the transonic expansion turbine at large meridional. Therefore, this paper verifies the accuracy of
numerical calculation by comparing the Mach number distribution and Nu number distribution results
of similar blade shapes under the condition of transonic velocity. This verification has been discussed
in the previous paper [16]. In the paper of Imran Qureshi et al. [18], sufficient experimental studies
on aerodynamic and heat transfer related to MT1 turbine blades have been carried out, and the data
are worth believing. The blade profile and turning angle of the MT1 turbine are very similar to those
of the S2 blade studied in this paper, and both of them work under transonic conditions. Therefore,
the verification of numerical simulation in this paper uses the experimental data made by Imran
Qureshi et al. [18] on MT1 turbines. Since the S2 blade concerned in this paper is characterized by
large meridional expansion, the isentropic Mach number of the blade near the shroud endwall and
Nu distribution of the shroud endwall are compared. In the verification and simulation of the MT1
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turbine, the grid model, topology, and turbulence model set are consistent with the turbine model
set in this paper. Figure 4 shows the comparison of isentropic Mach number between experimental
data and numerical simulation results at the position of 90% blade height. Figure 5 shows the Nu
distribution of the circumferential mean of the upper endwall. It can be seen from Figure 4 that the
numerical simulation method adopted in this paper has a good effect on the aerodynamic simulation
of the near-endwall of the turbine blade. Figure 5 shows that the difference between numerical data
and experimental data is 9.62% in the simulation of heat transfer. The numerical simulation method
can accurately predict the heat transfer trend of the shroud. The difference between the leading edge
and the trailing edge is theoretically reasonable. Therefore, the heat transfer prediction in this paper
can meet the research needs. It can be seen from the above analysis that the numerical simulation
method and the grid model adopted in this paper are accurate and reasonable considering the errors
caused by the experiment.Energies 2019, 12, x FOR PEER REVIEW 6 of 18 
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2.4. Fillet Configuration

Six different fillet structure models of S1 are designed in this paper based on the parameters fillet
radius (R) and included an angle (θ). The specific design parameters are shown in Table 3. As shown
in geometric design Figure 6 for fillet, a chamfering circle is not completely tangent to the endwall but
has a minimum θ to rearrange itself in the wall. When the fillet and endwall are completely tangent,
it will cause a sharp decline in the grid orthogonality near the endwall, which can lead to producing
a very big error in the process of numerical simulation. For this reason, θ is set to 10◦ in this article.
Therefore, in the setting of the grid structure, the fillet is determined by two parameters. When the R
changes along the axis, there are five representative trends, that is, the radius size is constant along the
axis, monotone minus, monotone increase, first decrease then increase, first increase then decrease.
Therefore, this paper designs five types of fillet and non-fillet blades, which are circular structures at
the root and the top. At the same axial position, the radius of the suction pressure surface is the same,
that is, the distribution is symmetric. At present, there is no uniform regulation on the limitation of the
blade fillet radius, but due to the limitation of channel size, the radius cannot be enlarged indefinitely.
According to the existing literature, the largest radius of the fillet in the blade is in the research of the
Becz et al. [5], and in the turbo blade, the maximum radius is about 25% of the width of the throat.
When the radius of the blade root rounding continues to be enlarged, in practical applications, the flow
loss of the blade will rise sharply, which is unfavorable to the aerodynamic performance of the engine.
Therefore, the sum of the radius of the suction surface and pressure surface at the same axial position
shall not exceed 50% of the minimum width of the cascade channel. That is, the radius size relationship
is determined by the following formula:

Rps
∣∣∣
z +Rss|z ≤

tmin|z
2

(1)

where, the subscripts ps, ss, min, and z respectively represent the pressure surface, suction surface,
minimum value, and an axial position, and t represents the channel width of the cascade.

R ≤
tmin

4
(2)

Table 3. Fillet configuration parameters and codes.

Schemes Parameter Setting Value (mm) Code

Case1 R = 0% t 0 R1 = 0% t

Case2 R = 25% t 6 R2 = 25% t

Case3
R(LE) = 25% t 6 R3 = (25–8)% t
R(TE) = 8% t 2

Case4
R(LE) = 8% t 2

R4 = (8–25)% t
R(TE) = 25% t 6

Case5

R(LE) = 25% t 6

R5 = (25–8–25)% tR(MD) = 8% t 2

R(TE) = 25% t 6

Case6

R(LE) = 8% t 2

R6 = (8–25–8)% tR(MD) = 25% t 6

R(TE) = 8% t 2
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According to the limitation of formula (2), R is calculated to be less than 6 mm, and the maximum
radius is about 1/2 of the thickness of the inlet boundary layer. In this paper, according to the actual
processing requirements, the minimum R is selected as 8% t, and the value is equal to 2 mm.

Figure 7 shows the distribution diagram of 6 typical fillets (each form has numerous distributions,
but the mechanism of the influence on the flow field is similar, which will be analyzed below and
the reasons will be given). The curve represents the projection of the inverted circle contour on the
meridian plane, the abscissa is axial, the starting point and ending point correspond to the leading
edge (LE) and trailing edge (TE) of the S2 respectively, and the ordinate is radial. Figure 8 shows the
three-dimensional (3D) schematic diagram of 6 cases, which is conducive to a better understanding of
their distribution rules.
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3. Results and Analysis

3.1. Aerodynamic Analysis of S2 with Different Fillet Structures

The formation of the horseshoe vortex (HV) at the leading edge of the blade is first affected by
the fillet structure. Figure 9 is the limiting flow diagram at the hub of the S2 leading edge, showing
the position and structure of HV. Results show that the HV at the leading edge is only affected by
R of the leading edge fillet and not by the downstream structure of the fillet. The fillet influences
the radial development of HV at the leading edge. With the increase of R at the leading edge, HV
develops upward along the fillet and is closer to the blade. This change is due to the concavity of the
fillet surface, which results in a low acceleration of the flow. This reduces the intensity of the adverse
pressure gradient applied by the leading edge of the blade, which is the main driving force for the
formation of HV. In addition, it leads to a decrease in the shape of the passage vortex (PV), which will
be discussed in the next section.
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For the static pressure coefficients (Cps) at different blade heights, the load distribution and
aerodynamic performance of the blades can be well expressed. The blade profile load distribution
of the turbine blade directly affects the intensity of downstream secondary flows (Marchal and
Sieverding et al. [26] and Benner et al. [27]).
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Figure 10 shows the pressure distribution of the 1%, 50%, and 99% blade height of S2, in which
the positions of 1% and 99% blade height are located on the fillet structure. The magnitude of the
adverse-pressure region of the suction surface is represented by h, and a histogram is drawn. Combined
with Figure 10a–c, it can be seen that the fillet structure only affects the pressure distribution near the
endwall but has little impact on the middle of the blade height. Therefore, the research in this paper
focuses on the vicinity of the endwall. Combined with Figure 10a,c, it can be seen that fillet mainly
affects the pressure distribution of the front half of the blade suction and the trailing edge of the pressure
surface. When R = 25% t of the leading fillet radius is compared with R = 8% t, the adverse-pressure
region decreases by about 50%. So the large leading fillet radius is helpful to improve the flow state of
the suction surface. Near the trailing edge of the pressure surface, the small fillet radius (R = 8% t) is
used to reduce the fluctuation, so as to improve the outlet flow state of the near endwall.Energies 2019, 12, x FOR PEER REVIEW 10 of 18 
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The relative total pressure loss coefficient is defined as:

YP =
(
pt,in − pt

)
/
(
pt,in − ps,out

)
(3)

where, pt,in is the average relative total pressure at the inlet of S2, pt is local relative total pressure,
and ps,out is the average static pressure at the outlet of S2.
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The fillet structure initially affects the development of HV at the leading edge of the blade.
Therefore, Figure 11 shows the development charts of HV and PV at the leading edge and channel
under the six chamfered structures. The HVPS and HVSS of the S2 are clearly visible, where they
flow downstream and form a strong PV after the intersection of the suction surface. According to
Figure 11b,c,e, the leading edge radius R = 25% t is conducive to the reduction of HVPS and PV. With
the increase of R in the middle of the channel, the attachment position of HVSS on the suction surface
moves up and its strength decreases. Therefore, a larger R is adopted in the middle of the channel,
which is conducive to improving the local flow of the suction surface.Energies 2019, 12, x FOR PEER REVIEW 11 of 18 
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In order to illustrate the influence of the fillet structure on shed vortices and passage vortices,
Figure 12 shows the entropy-increase isoline at 110% axial chord length of S2. As can be seen from
Figure 12a–f, the fillet mainly affects the flow loss at the outlet near the hub but has little impact on the
other parts of the blade. Compared with the case without fillet in Figure 12a, the large radius fillet
(R = 25% t) significantly increases the shed vortex (SV) loss at the outlet near the hub. The SV loss
at the hub position at the outlet can be significantly reduced by using the appropriate small radius
fillet (R = 8% t) at the blade trailing edge. Therefore, the appropriate small radius fillet at the outlet of
the blade is helpful for improving the flow state. In order to quantitatively compare the loss changes
at the outlet from the numerical perspective, Figure 13 shows the entropy-increase curves after the
circumference average. While the fillet structure mainly affects the loss near the hub, it also affects the
loss of SV and PV at the exit. As can be seen from the partial magnification, the loss of the SV and PV
is increased by the enlargement of the fillet radius. At the same time, fillet structures also affect the
radial position of the vortices. The loss near the shroud at the exit was reduced by about 8% by using
large radius fillet (R = 25% t) at the trailing edge. However, it increased the loss near the hub by 9%.
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3.2. Heat Transfer Analysis of S2 with Different Fillet Structures

The heat transfer of the wall surface can be expressed by the Nusselt number (Nu). Nu is the
dimensionless heat transfer coefficient. This working with Salvadori Simone et al. [28] and Imran
Qureshi et al. [18] research defined the same, is defined as:

Nu =

.
qC

(Taw − Tw)kT01
(4)

where, the parameter
.
q is the heat flux, C is the average chord length of blades, kT01 is the thermal

conductivity of the air referring to the average total inlet temperature.
According to the flow performance analysis, as the shroud expansion angle of the S2 is larger,

the flow separation caused by it is more serious. Therefore, Figure 14 shows the Nu distribution of the
S2 shroud. The maximum thermal load area (a) of the shroud is located at the leading edge of the blade,
which is caused by the saddle point of the airflow at the leading edge. In the rear part of the suction
surface, due to the separation of airflow, there is a minimum thermal load area (b). The relatively high
thermal load area is located at the rear part of the pressure side (c). In the trailing edge part, due to the
influence of trailing edge shedding vortexes, there is a local high thermal load area (d). Combined with
Figure 14a–f, it can be easily seen that the existence of the fillet structure can significantly eliminate the
maximum thermal load area (a). Whether it increases the thermal load at the leading edge fillet will be
discussed in the next section. Fillet structure has little effect on regions (b) and (c). It can be seen from
Figure 14c,f that appropriate small radius fillet (R = 8% t) at the trailing edge can eliminate the local
high thermal load area (d). However, if the fillet radius of the trailing edge is too large (R = 25% t),
the heat transfer coefficient of the area (d) will be significantly increased.
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In order to further study the influence of fillet structure on the thermal load distribution on
the blade surface, Figure 15 shows the Nu distribution of the S2 suction surface with different fillet
structures. Since it has little influence on the thermal load on the pressure surface, the Nu distribution
on the pressure surface is not given. It can be clearly seen from Figure 15a that the high thermal load
area of the blade is located on the suction surface near the shroud, which is jointly caused by the
passage vortex and the upstream leakage vortex. As can be seen from Figure 15b,c,e, the high thermal
load area (PV region) on the suction surface can be significantly weakened by the use of large radius
fillet (R = 25% t) at the leading edge of the blade. And the SV separation position will be postponed
correspondingly. However, the fillet with a small radius (R = 8% t) at the leading edge does not reduce
the high thermal load area (PV region). The variation laws of the fillet along the chord length and the
radius of the fillet at the trailing edge have little influence on the distribution of thermal load on the
blade surface.
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In order to more accurately show the influence of the fillet on the heat transfer coefficient
distribution of the blade surface, Nu distribution of three blade sections (90% span, 50% span, and 10%
span) is drawn in Figure 16. Through the analysis of Figure 16a–c, it can be concluded that fillet
mainly affects Nu distribution of the suction surface near the shroud and hub of the blade, but has little
influence on the middle part of the blade. The maximum thermal load on the blade surface is located
at the leading edge of the S2, 2.5 times of the average heat load. As can be seen from Figure 16a, at the
position of 90% span sections of the S2, the thermal load on the suction surface is significantly higher
than that on the pressure surface, which is twice as high. The maximum thermal load can be reduced by
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about 28% by using the large radius fillet (R = 25% t) at the leading edge of the S2. In addition, a large
radius fillet (R = 25% t) designed in the middle of the blade chord length can reduce the heat load on
the suction surface. At the trailing edge of the blade, the fillet structure has no obvious influence on
the heat load distribution. As can be seen from Figure 16c, fillet structure has little influence on the
maximum heat load near the hub region but has a great influence on its fluctuation on the suction
surface. Similarly, large radius fillet (R = 25% t) in the middle of blade chord length is conducive to
reducing the thermal load near the hub.Energies 2019, 12, x FOR PEER REVIEW 15 of 18 
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3.3. Comparison of Aerodynamic and Heat Transfer Performance of S2

Table 4 shows the influence of fillet structure on the overall aerodynamic performance parameters
and thermal load parameters of the S2 blade. For the loss coefficient, Cp, no matter what form of fillet
structure is adopted, it will be conducive to the improvement of the overall flow state of the S2 with a
large meridional expansion endwall. In the case of R3, it can be seen that the leading edge is filleted
with an appropriate large radius (R = 25% t) and the trailing edge is filleted with an appropriate small
radius (R = 8% t), so as to minimize the loss coefficient of the S2 and reduce 0.8% for the case without
fillet. By comparing cases R2 and R3, it can be concluded that a small-radius fillet at trailing edge
is conducive to improving the flow state. Correspondingly, by comparing cases R2 and R4, it can
be concluded that a large-radius fillet at the leading edge is conducive to improving the flow state.
The total thermal load can be reflected by the area-averaged heat flux. It can be seen that the thermal
load of shroud and blade decreases with the fillet structure. Area-averaged shroud heat flux is reduced
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by 3.1% by using the fillet distribution of R3. Use case R2’s fillet radius distribution, reducing the
area-averaged blade heat flux by 2.7%. Therefore, it can be concluded that the use of the large leading
edge radius fillet and the small trailing edge radius fillet is conducive to the improvement of the flow
state and the reduction of the overall thermal load of the large meridional expansion turbine.

Table 4. Loss Coefficient and area-averaged Shroud/Blade Heat Flux.

Case Cp
Area-Averaged Shroud

Heat Flux (w/m2)
Area-Averaged Blade

Heat Flux (w/m2)

R1 = 0% t 0.135743 465,863 480,512
R2 = 25% t 0.129324 462,693 465,802

R3 = (25–8)% t 0.127721 454,382 467,598
R4 = (8–25)% t 0.13342 463,625 472,427

R5 = (25 –8–25)% t 0.131389 462,550 469,499
R6 = (8–25–8)% t 0.131663 460,239 478,626

4. Conclusions

In this paper, a 1.5-stage large meridional expansion turbine was numerically simulated, and the
influence of the fillet structures on the flow and heat transfer of the large meridional expansion vane
under the influence of upstream wakes and leakage vortices was analyzed. The results show that the
flow performance of the large meridional expansion vane can be improved and the thermal load can
be reduced by proper arrangement of fillet radius.

1. The fillet structure with the concave surface property at the leading edge of the blade can reduce
the strength of the adverse pressure gradient on the suction surface of the leading edge. This is
mainly achieved by increasing the radial position of the leading edge horseshoe vortex.

2. An increase in the fillet radius of the leading edge within a reasonable range will reduce the
adverse pressure gradient strength of the suction surface, and the strength of the pressure surface
branches of the horseshoe vortex and the passage vortex can be reduced. Contrary to the influence
of the leading edge, a smaller fillet radius at the trailing edge can reduce the intensity of the
trailing edge vortex and the shed vortex near the endwall.

3. The effect of fillet structure on wall thermal load is consistent with that on flow performance.
The large fillet radius at the leading edge of the blade can significantly reduce the high thermal
load of the endwall and the suction surface of the blade. The small fillet radius can reduce the
high thermal load caused by the shed vortex at the trailing edge.

4. Based on comprehensive analysis, it is found that the structure with the large fillet radius at
the leading edge and the small fillet radius at the trailing edge is conducive to improving
flow performance and reducing the high thermal load for the vane of the large meridional
expansion turbine.
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Nomenclature

Romans and Greeks
Nu = Nusselt number
p = pressure, kPa
q = heat flux, kW/m2

T = temperature, K
Taw = adiabatic wall temperature, K
Tg = gas temperature, K
Tw = isothermal wall temperature, K
u = velocity, m/s
T01 = inlet temperature, K
Ω = rotation tensor
S = strain tensor
C = vane midspan true chord
k = thermal conductivity
pt,out = average relative total pressure at the outlet, kPa
pt,in = average relative total pressure at the inlet, kPa
pt = local relative total pressure, kPa
ps,out = average static pressure at the outlet, kPa
Cps = static pressure coefficient
Cp = total pressure loss coefficient
R = fillet radius
Yp = relative total pressure loss coefficient
Subscripts, Superscripts, Abbreviations
R1 = first rotor
S1 = first stator
S2 = second stator
Exp = experimental
PS, SS = pressure side, suction side
CFD = Computational Fluid Dynamics
HTC = Heat Transfer Coefficient
SST = shear stress transport
TLV = tip-leakage vortex
SV = shed vortex
RANS = Reynolds-Averaged Navier-Stokes
LE = leading edge
TE = trailing edge
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