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Abstract: Sodium nickelate, NaNiO2, is a candidate cathode material for sodium ion batteries due
to its high volumetric and gravimetric energy density. The use of atomistic simulation techniques
allows the examination of the defect energetics, Na-ion diffusion and dopant properties within the
crystal. Here, we show that the lowest energy intrinsic defect process is the Na-Ni anti-site. The Na
Frenkel, which introduces Na vacancies in the lattice, is found to be the second most favourable defect
process and this process is higher in energy only by 0.16 eV than the anti-site defect. Favourable
Na-ion diffusion barrier of 0.67 eV in the ab plane indicates that the Na-ion diffusion in this material is
relatively fast. Favourable divalent dopant on the Ni site is Co2+ that increases additional Na, leading
to high capacity. The formation of Na vacancies can be facilitated by doping Ti4+ on the Ni site. The
promising isovalent dopant on the Ni site is Ga3+.
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1. Introduction

In the field of energy storage, a significant amount of research activity has been devoted to Li-ion
batteries [1–10]. As the global distribution of lithium is limited and inhomogeneous, there is a necessity
to find an alternative to the lithium ion battery for the next-generation of high capacity energy storage
systems, particularly in the hybrid electric vehicles.

Rechargeable sodium ion batteries have become promising for the application in large-scale
energy storage devices due to the remarkable abundance of sodium on the earth. The performance of a
sodium ion battery (SIB) relies on several factors. Developing cathode materials exhibiting cheap, safe
and high energy density is one of the key steps for constructing promising rechargeable SIBs. A variety
of sodium-based cathode materials have been examined experimentally and a limited number of
theoretical works have been reported in the literature [4,5,11–20]. For portable applications, a few of
them can be promising as the ionic radius of Na is much larger than the ionic radius of Li. Larger size
of Na will also affect Na+ ion intercalation and diffusion leading to degradation in the specific capacity
and rate capacity [21]. Electrochemical stability would be difficult due to the volume expansion caused
by Na+ insertion. Furthermore, low potential and large atomic weight of Na lead to the specific energy
reduction in the battery [4].

Several promising cathode materials including Olivine NaMPO4 (M = Fe, Mn, Co, Ni), Maricite
NaMPO4 (M = Fe, Mn, Co, Ni), NASICON (Natrium SuperIonic CONductor) Na3V2(PO4)3 and
Layered NaxMO2 (M = Fe, Mn, Co, Ni) were proposed for Na-ion batteries [22,23]. The research
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activity on the Olivine NaMPO4 is due to the commercial use of LiFePO4 as cathode material for Li-ion
batteries [22]. The Maricite NaMPO4 was also considered as potential cathode materials due to their
high thermodynamical stability. The NASICON family of compounds have been extensively studied as
Na-ion battery cathodes due to their three-dimensional framework and large interstitial channels [22].

The “Layered” NaMO2 (M = Fe, Mn, Co, Ni) structures have received considerable attention for
their use as potential cathode materials in Na-ion batteries due to their high volumetric and gravimetric
energy densities [24–28]. Miyazaki et al. [27] reported the synthesis of monoclinic NaNiO2 and tested
this compound as a cathode material. Their study shows that initial open circuit voltage is 2.47 V
and only 0.2 Na can be extracted during the first cycle. Later Vassilaras et al. [28] re-investigated
this material and noted that there is an improvement in the initial open circuit voltage. Furthermore,
the quantities of Na de-intercalated and intercalated were reported to be 0.85 and 0.62 respectively and
their corresponding discharge and charge capacities were 147 mAh/g and 199 mAh/g. Good structural
stability was also noted for more than 20 cycles.

As there is a limited number of experimental reports available in the literature, further
understanding of this material is necessary to optimize its performance in Na-ion batteries.
Computational studies at the atomistic level can provide information on intrinsic defect energetics, ion
migration and dopant substitution [29–48]. To the best of our knowledge, there is no work reported
related to defect and diffusion properties of NaNiO2. Here we attempt to examine the defect structures,
Na-ion diffusion pathways and isovalent and aliovalent dopants in NaNiO2 by performing classical
potential simulations. This well-established simulation method has been applied to numerous oxide
materials including battery materials [29–48].

2. Computational Methods

Classical pair-wise potential calculations for the bulk and defective NaNiO2 structures were carried
out using the General Utility Lattice Program (GULP) code [49]. In this method, total energy (lattice
energy) of the system is calculated using long range (Coulombic) and short range (electron-electron
repulsive and attractive intermolecular forces). Buckingham potentials (refer to Supplementary
Materials) were used to model short range forces. Full structural relaxations (both ion positions and
lattice constants) were performed using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [50].
In all relaxed configurations, forces on each atoms were <0.001 eV/Å. Point defects were modelled using
the Mott-Littleton method [51]. Full charge with spherical shape of ions at dilute limit can overestimate
the defect formation enthalpies. Nevertheless, the trend will be the same. Isobaric parameters were
used in the present simulation to calculate the formation and migration energies. In our previous
theoretical work, we have discussed the detailed thermodynamic relations associated with isobaric
parameters [52–54].

3. Results

3.1. Crystal Structure of NaNiO2

NaNiO2 structure crystallizes in the monoclinic C2/m space group, having lattice parameters
a = 5.3222 Å, b = 2.8458 Å, c = 5.5832 Å, α = γ = 90.0◦ and β = 110.47◦ [28]. Figure 1 exhibits the
experimentally observed crystal structure of NaNiO2. This structure has layers of edge-sharing NiO6

octahedra units. The Na ions lie between the layers forming distorted octahedra.
Equilibrium lattice constants were obtained by performing full geometry optimisation (both ion

positions and lattice constants). The calculated lattice constants are reported in Table 1. There is a
good agreement between the expertiment and calculation ensuring the choice of potentials used in
this study.
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Figure 1. Crystal structure of monoclinic-NaNiO2 (space group C/2m). 

Table 1. Calculated structural parameters and corresponding experimental values [28] reported for 
monoclinic (C/2m) NaNiO2. 

Parameter Calc. Exp. [28] |∆|(%) 
a (Å) 5.1097 5.3222 3.99 
b (Å) 2.9501 2.8458 3.66 
c (Å) 5.6092 5.5832 0.46 
α = γ (°) 90.0 90.0 0.00 
β (°) 107.68 110.47 2.52 

V (Å3) 80.56 79.22 1.69 

3.2. Intrinsic Defect Processes 

Intrinsic defects play an important role in the migration of ions in materials. Here we considered 
point defects in the form of vacancies, interstitials, and anti-sites. They were then combined to 
calculate formation energies for Frenkel and Schottky defects. Anti-site defect energies were 
calculated by interchanging the cations (Ni on Na and Na on Ni). The reaction energies for those 
defects are written by using Kröger-Vink notation [55]. Na Frenkel:  Naୟଡ଼  →  𝑉ୟᇱ + Na୧• (1) Ni Frenkel: 𝑉୧ଡ଼  →  𝑉୧ᇱᇱᇱ +  Ni୧••• (2) O Frenkel: Oଡ଼  →  𝑉•• + O୧ᇱᇱ (3) Schottky: Naୟ ଡ଼ + Ni୧ଡ଼  + 2 Oଡ଼ →  𝑉ୟᇱ + 𝑉୧ᇱᇱᇱ + 2 𝑉•• + NaNiOଶ (4) NaଶO Schottky: 2 Naୟଡ଼ +  Oଡ଼  → 2 𝑉ୟᇱ + 𝑉•• + NaଶO (5) Na/Ni antisite  (isolated): Naୟଡ଼ + Ni୧ଡ଼  → Na୧ᇱᇱ + Niୟ••   (6) Na/Ni antisite  (cluster): Naୟଡ଼ + Ni୧ଡ଼ →  {Na୧ᇱᇱ : Niୟ•• }X (7) 

Figure 2 shows the defect reaction energies per defect. The present calculations show that the Na-
Ni anti-site defect cluster is the most favourable defect (1.86 eV). This suggests that there is a 
possibility of a small amount of Na on Ni sites (Na୧ᇱᇱ ) and Ni on Na sites (Niୟ⦁⦁ ). This defect has been 
identified theoretically as a most promising defect in a variety of oxide materials [31–42]. During the 
preparation of as-prepared battery materials and the charge-discharge process, the presence of this 
defect was noted [35, 56–59]. The Na Frenkel is the second most thermodynamically favourable defect 
process and the defect energy is only 0.16 eV higher than the anti-site defect energy. In the Na Frenkel 
process, Na vacancies would be created and this process would facilitate vacancy mediated Na-ion 
diffusion in NaNiO2. The reaction energy for the formation of Na2O Schottky (relation 5) is 2.16 
eV/defect. This process is also competitive as the defect energy is close to the defect energy calculated 

Figure 1. Crystal structure of monoclinic-NaNiO2 (space group C/2m).

Table 1. Calculated structural parameters and corresponding experimental values [28] reported for
monoclinic (C/2m) NaNiO2.

Parameter Calc. Exp. [28] |∆|(%)

a (Å) 5.1097 5.3222 3.99
b (Å) 2.9501 2.8458 3.66
c (Å) 5.6092 5.5832 0.46
α = γ (◦) 90.0 90.0 0.00
β (◦) 107.68 110.47 2.52

V (Å3) 80.56 79.22 1.69

3.2. Intrinsic Defect Processes

Intrinsic defects play an important role in the migration of ions in materials. Here we considered
point defects in the form of vacancies, interstitials, and anti-sites. They were then combined to calculate
formation energies for Frenkel and Schottky defects. Anti-site defect energies were calculated by
interchanging the cations (Ni on Na and Na on Ni). The reaction energies for those defects are written
by using Kröger-Vink notation [55].

Na Frenkel : NaX
Na → V′Na + Na•i (1)

Ni Frenkel : VX
Ni → V′′′Ni + Ni•••i (2)

O Frenkel : OX
O → V••O + O′′i (3)

Schottky : NaX
Na + NiXNi + 2 OX

O → V′Na + V′′′Ni + 2 V••O + NaNiO2 (4)

Na2O Schottky : 2NaX
Na + OX

O → 2 V′Na + V••O + Na2O (5)

Na/Ni antisite (isolated) : NaX
Na + NiXNi → Na′′Ni + Ni••Na (6)

Na/Ni antisite (cluster) : NaX
Na + NiXNi →

{
Na′′Ni : Ni••Na

}X
(7)

Figure 2 shows the defect reaction energies per defect. The present calculations show that the
Na-Ni anti-site defect cluster is the most favourable defect (1.86 eV). This suggests that there is a
possibility of a small amount of Na on Ni sites (Na′′Ni) and Ni on Na sites (Ni••Na). This defect has been
identified theoretically as a most promising defect in a variety of oxide materials [31–42]. During
the preparation of as-prepared battery materials and the charge-discharge process, the presence of
this defect was noted [35,56–59]. The Na Frenkel is the second most thermodynamically favourable
defect process and the defect energy is only 0.16 eV higher than the anti-site defect energy. In the Na
Frenkel process, Na vacancies would be created and this process would facilitate vacancy mediated
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Na-ion diffusion in NaNiO2. The reaction energy for the formation of Na2O Schottky (relation 5)
is 2.16 eV/defect. This process is also competitive as the defect energy is close to the defect energy
calculated for the anti-site and the Na Frenkel. The formation of further V′Na and V••O can be enhanced
by the Na2O Schottky process at moderate temperatures.
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3.3. Sodium Ion Diffusion

As Na-ion diffusion rate strongly influences the cathode performance, it is necessary to examine
the sodium ion diffusion pathways together with activation energies. Experimental characterisation of
diffusion pathways can be quite challenging. Current simulation techniques enabled us to identify the
Na-ion diffusion pathways with activation energies at the atomic level. We identified a promising Na
local hop with the Na-Na seperation of 2.95 Å. Its activation energy of migration is calculated to be
0.67 eV. Figure 3 shows the long range Na-ion difussion pathway constructed by connecting local Na
hops and the corresponding energy profile diagram for the local Na hop.
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The long range Na-ion diffusion pathway is in the ab plane exhibiting a non-linear pattern with
overall activation energy of 0.67 eV. The present simulation results show that Na-ion diffusion will be
significant in this material.

3.4. Solution of Divalent Dopants

Additional Na in the as-prepared NaNiO2 material would increase the capacity and the rate of
Na-ion diffusion. The later is due to the shorter Na-Na distances arising from additional Na in the
material than those present in the defect-free structure. Divalent doping on the Ni site is a promising
stratergy to introduce Na interstitials as explained in the equation 8. A similar stratergy was applied to
Li, Na, and Mg-ion battery materials in our previous theoretical studies [36–47]. The solution of MO
(M = Mg, Co, Fe, Ca, Sr and Ba) was considered using the following reaction:

2MO + 2NiXNi + Na2O → 2M′Ni + 2 Na•i + Ni2O3 (8)

Solution enthalpies are reported in Figure 4. In all cases solution enthalpies are endoergic
suggesting that this process should be carried out under thermal condition. The lowest solution
enthalpy is calculated for Co2+(3.89 eV). It should be noted that the solution enthalpies of MgO
(3.93 eV) and FeO (4.00 eV) are closer to the values calculated for CoO indicating that Mg2+ and
Fe2+ are also candidate dopants. The possible formula for the Co-doped composite is NaCoxNi1−xO2

(0.00 < x < 1.00). The exact value of x can be determined by experiments. There is a gradual increase in
the solution enthalpies from Ca to Ba. Solution enthalpies of CaO and SrO are 5.01 eV and 7.36 eV
respectively. Solution enthalpy of BaO is highly positive (~10 eV) meaning that this process cannot be
executed at operating temperatures.
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3.5. Solution of Trivalent Dopants

Here, a wide range of trivalent dopants (M = Al, Ga, Fe, In, Sc, Y, Gd, and La) were considered
at the Ni site. These dopants are isovalent to Ni because the oxidation state of Ni in NaNiO2 is
+3. Isovalent doping process is important as it can control the point defects and tune the electronic
properties of this material. The following reaction equation was used to calculate the solution enthalpy.

M2O3 + 2NiXNi → 2MX
Ni + Ni2O3 (9)

The results reveal that Ga3+ is the most favourable dopant at the Ni site (refer to Figure 5).
Its solution enthalpy is 0.05 eV. The second most favourable dopant is Al3+ having the solution enthalpy
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of 0.12 eV. We further predict that Fe3+ is also worth investigating as its solution enthalpy (0.14 eV) is
very close to the solution enthalpies calculated for Ga3+ and Al3+. The solution enthalpy for In2O3 is
1.17 eV. There is a reduction in the solution enthalpy for Sc2O3 though the ionic radius of Sc is larger
than that of In. There is a gradual increase in the solution enthalpy from Y to La. As they exhibit
relatively high solution enthalpies, they are highly unlikely to substitute the Ni.Energies 2019, 12, x FOR PEER REVIEW 6 of 10 
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3.6. Solution of Tetravalent Dopants

We also considered tetravalent dopants (M = Si, Ge, Ti, Sn, Zr, and Ce) at the Ni site. This process
required the creation of Na vacancies according to the following reaction equation:

2MO2 + 2NiXNi + 2NaX
Na → 2M•Ni + 2V′Na + Ni2O3 + Na2O (10)

The formation of Na vacancies would facilitate Na ion migration in this material. Figure 6 reports
the solution enthalpies of MO2. The promising candidate for this process is Ti4+ as this dopant exhibits
the lowest solution enthalpy (+0.05 eV). As there is a very small enthalpy difference between the Ge4+,
and Ti4+, Ge4+ can also be considered for experimental verification. High solution enthalpy for SiO2

can be due to the smaller radius of Si4+ (0.40 Å) ion compared to that of Ni3+ (0.56 Å). Solution enthalpy
increases with ionic radius from Sn to Ce. The highest solution enthalpy (5.38 eV) is observed for Ce
implying it could be an important dopant only at high temperatures.
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3.7. Diffusion of Na-Ion in the Presence of Dopants

Here we calculate the activation energies for Na-ion diffusion when promising dopants (Co2+,
Ga3+ and Ti4+) are present on the Ni site. Figure 7 shows the energy profile diagrams for Na hops in
each cases.Energies 2019, 12, x FOR PEER REVIEW 7 of 10 
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The present atomistic simulation study enabled us to gain insights into the defect chemistry, Na-
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ab plane with the activation energy of 0.67 eV. This suggests that there will be a significant Na-ion 
conduction in this material. Doping of Co2+ and Ti4+ at the Ni site would increase the concentration of 
Na interstitials and Na vacancies respectively. The most favourable isovalent dopant at the Ni site is 
Ga3+. Considering the solution enthalpies and activation energies for the promising dopants, it is 
found that Ga3+ doping at the Ti site is the most favourable. This theoretical prediction should 
motivate future experimental work on this potentially important material. 
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In the case of Co2+ there is a reduction (by 0.10 eV) in the activation energy. This is due to the
reduction in the Na-Na distance (2.91 Å) compared to that of pure crystal structure (2.95 Å). This
perturbation in the distance can be due to the Co2+ occupying the Ni3+ (charge mismatch). Doping of
Ga on the Ni site does not affect the activation energy as there is no change in the Na-Na distance.
This is due to the similar charge (+3) of Ga and Ni. There is a slight elongation noted in the Na-Na
distance when Ti4+ is present on the Ni site. This reflects in the increment of activation energy by
0.14 eV. The ionic radii of Ni3+, Co2+, Ga3+ and Ti4+ are 0.56 Å, 0.58 Å, 0.47 Å and 0.61 Å respectively.
It is also noted that the contribution of ionic radius mismatch in the activation energy is less significant.

Considering the solution enthalpies and activation energies for the promising dopants, it is noted
that Ga3+ doping at the Ti site is the most favourable as this dopant exhibits the lowest solution
enthalpy of 0.05 eV and the same activation energy of 0.67 eV for Na-ion diffusion calculated in the
un-doped NaNiO2. The second most favourable dopant is Ti4+ as its solution enthalpy is 0.06 eV and
this dopant increases the activation energy by 0.14 eV. Though there is a reduction in the activation
energy (by 0.10 eV) upon Co2+ doping, the solution enthalpy is significantly high (3.89 eV) meaning
that this dopant is not promising.

4. Conclusions

The present atomistic simulation study enabled us to gain insights into the defect chemistry, Na-ion
diffusion pathways with activation energies, and dopant properties in NaNiO2. The lowest energy
defect is the Na-Ni anti-site, in which Na and Ni would exchange their positions at low concentration.
The Na Frenkel is the second most favourable defect process. Long range Na-ion diffusion is in the
ab plane with the activation energy of 0.67 eV. This suggests that there will be a significant Na-ion
conduction in this material. Doping of Co2+ and Ti4+ at the Ni site would increase the concentration
of Na interstitials and Na vacancies respectively. The most favourable isovalent dopant at the Ni
site is Ga3+. Considering the solution enthalpies and activation energies for the promising dopants,
it is found that Ga3+ doping at the Ti site is the most favourable. This theoretical prediction should
motivate future experimental work on this potentially important material.
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