Effects of a Delayed Expansion of Interconnector Capacities in a High RES-E European Electricity System
Abstract
:1. Introduction
2. Methodology and Data
- CO2 emissions.
- Electricity generation mix.
- Import, export, and transit flows.
- Variable costs of electricity generation.
2.1. General Model Description-PowerFlex EU
2.2. Electricity Market Scenarios
2.2.1. European Scenario
2.2.2. German Scenario
2.3. Interconnector Scenarios
3. Results
3.1. Import, Export, and Transit Flows
3.2. Electricity Generation Mix
3.3. CO2 Emissions
3.4. Variable Costs of Electricity Generation
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
a | annum (per year) |
ACER | Agency for the Cooperation of Energy Regulators |
bn | billion |
CHP | combined heat and power plants |
CO2 | carbon dioxide |
EC | European Commission |
ENTSO-E | European Network of Transmission System Operators for Electricity |
EU | European Union |
GAMS | General Algebraic Modeling System |
GW | gigawatt |
h | hour |
HiCon | scenario high connectivity |
KS 95 | Klimaschutzszenario 95 |
LowCon | scenario lower connectivity |
Mt | megaton (1 million tons) |
MW | megawatt |
MWh | megawatt hour |
NTCs | net transfer capacities |
PCI | Projects of Common Interest |
PV | photovoltaic |
PtG | Power-to-Gas |
RES | renewable energy source |
RES-E | electricity from a renewable energy source |
RGI | Renewables Grid Initiative |
t | ton |
TWh | terawatt hour |
TYNDP | Ten-Year Network Development Plan |
Appendix A
Data Availability
Data | Data Type | Unit | Input/Output |
---|---|---|---|
Demand | Hourly profiles | MWh | Input |
Variable RES-E | Hourly profiles | MWh | Input |
Power plant fleet | Capacities | MW | Input |
NTCs | Capacities | MW | Input |
CO2 emissions | Annual data | Mt | Output |
Variable costs of electricity generation | Annual data | M€ | Output |
Variable costs of electricity generation per generation unit | Annual data | €/MWh | Output |
Electricity generation | Annual data | TWh | Output |
Electricity export | Annual data | TWh | Output |
Electricity import | Annual data | TWh | Output |
Transit flows | Annual data | TWh | Output |
Appendix B
Fuel and CO2 Prices
2030 | 2040 | 2050 | |
---|---|---|---|
Oil (€/MWhth) | 59 | 74 | 90 |
Gas (€/MWhth) | 34 | 41 | 50 |
Coal (€/MWhth) | 12 | 14 | 16 |
CO2 Prices (€/t CO2) | 87 | 143 | 200 |
Dimensioning of Batteries and Power-to-Gas Facilities
Technologies | Charge and Discharge Capacity | Storage Capacity | Total Efficiency |
---|---|---|---|
Battery | 10% of installed PV capacity | 10% of installed PV capacity × 1 h | 95% |
Power-to-Gas (PtG) | Electrolyser capacity: 10% of PV and wind generation capacity Reconversion into electricity: 100% of peak load | 100% of total annual load | 2030: 34% 2040: 36% 2050: 38% |
Derivation of Transit Flows
Derivation of the Lower Connectivity Scenario
Appendix C
Scenario Comparison-Electricity Demand
Scenario Comparison-Renewable Generation Capacities
Scenario Comparison-Conventional Generation Capacities
Appendix D
Installed Capacities and Generation Mix 2050 per Country
Natural Gas | Wind-On | Wind-Off | PV Solar | Bio-Mass | Hydro-Run | Hydro-Turbine | Pumped Storage | Power-to-Gas | Batteries | |
---|---|---|---|---|---|---|---|---|---|---|
AT | 3.5 | 6.9 | 0.0 | 12.1 | 1.3 | 10.1 | 5.4 | 3.4 | 15.0 | 1.3 |
BA | 0.0 | 2.6 | 0.0 | 1.3 | 0.0 | 1.3 | 1.8 | 0.0 | 2.2 | 0.2 |
BE | 21.3 | 10.9 | 3.0 | 24.1 | 2.5 | 0.1 | 1.2 | 1.3 | 21.8 | 2.5 |
BG | 2.3 | 4.4 | 0.0 | 5.4 | 0.8 | 0.7 | 2.8 | 1.4 | 6.6 | 0.6 |
CH | 5.3 | 1.4 | 0.0 | 15.0 | 1.5 | 4.1 | 13.6 | 4.2 | 14.0 | 1.7 |
CZ | 0.5 | 10.2 | 0.0 | 13.0 | 1.0 | 0.6 | 1.1 | 1.2 | 12.6 | 1.3 |
DE | 3.9 | 98.3 | 27.2 | 98.6 | 0.4 | 4.3 | 6.3 | 15.7 | 79.1 | 12.3 |
DK | 0.5 | 18.7 | 25.6 | 2.0 | 3.0 | 0.0 | 0.0 | 0.0 | 7.6 | 0.2 |
EE | 0.5 | 8.1 | 0.0 | 0.8 | 0.3 | 0.0 | 0.0 | 0.5 | 2.3 | 0.1 |
ES | 29.3 | 69.4 | 0.0 | 102.5 | 5.0 | 3.6 | 19.1 | 6.0 | 84.2 | 18.6 |
FI | 5.8 | 29.5 | 0.0 | 5.8 | 3.0 | 4.1 | 1.7 | 0.0 | 14.9 | 0.6 |
FR | 16.3 | 124.2 | 0.0 | 106.9 | 7.8 | 13.6 | 11.5 | 8.5 | 130.5 | 14.0 |
GR | 3.0 | 25.9 | 0.0 | 15.1 | 1.0 | 0.4 | 3.3 | 1.6 | 12.4 | 2.7 |
HR | 1.8 | 6.3 | 0.0 | 3.8 | 0.0 | 0.5 | 2.5 | 0.3 | 4.6 | 0.4 |
HU | 4.0 | 4.9 | 0.0 | 14.0 | 1.3 | 0.3 | 0.3 | 0.0 | 10.2 | 1.6 |
IE | 1.8 | 13.6 | 0.0 | 3.8 | 0.3 | 0.4 | 0.5 | 0.5 | 7.9 | 0.3 |
IT | 46.8 | 41.3 | 0.0 | 101.0 | 8.0 | 11.4 | 8.5 | 7.7 | 70.8 | 15.8 |
LT | 3.3 | 15.2 | 0.0 | 1.3 | 0.5 | 0.3 | 1.1 | 1.1 | 4.8 | 0.1 |
LU | 0.0 | 0.7 | 0.0 | 1.0 | 0.0 | 0.2 | 1.3 | 1.1 | 1.3 | 0.1 |
LV | 1.8 | 13.8 | 0.0 | 1.1 | 0.5 | 1.6 | 0.0 | 0.0 | 3.8 | 0.1 |
ME | 0.0 | 0.5 | 0.0 | 0.5 | 0.0 | 0.0 | 1.4 | 0.0 | 0.6 | 0.1 |
MK | 1.0 | 0.4 | 0.0 | 1.4 | 0.0 | 0.6 | 0.7 | 0.0 | 1.7 | 0.2 |
NL | 26.8 | 15.0 | 15.9 | 22.2 | 2.8 | 0.0 | 0.0 | 0.0 | 26.7 | 2.1 |
NO | 0.0 | 12.2 | 3.0 | 5.4 | 0.8 | 4.2 | 48.2 | 0.0 | 18.0 | 0.5 |
PL | 3.8 | 81.9 | 0.0 | 24.2 | 2.8 | 1.0 | 0.4 | 2.5 | 30.7 | 2.4 |
PT | 6.0 | 11.9 | 0.0 | 13.8 | 1.0 | 5.1 | 2.8 | 2.0 | 13.4 | 2.5 |
RO | 5.8 | 4.8 | 0.0 | 11.0 | 1.5 | 3.8 | 4.0 | 0.0 | 12.9 | 1.2 |
RS | 1.5 | 1.4 | 0.0 | 5.0 | 0.3 | 3.0 | 0.4 | 0.6 | 5.9 | 0.6 |
SE | 0.0 | 24.2 | 3.0 | 8.9 | 2.8 | 0.0 | 18.5 | 0.0 | 23.8 | 0.9 |
SI | 0.5 | 0.5 | 0.0 | 2.3 | 0.3 | 1.2 | 0.2 | 0.2 | 2.6 | 0.3 |
SK | 1.8 | 5.2 | 0.0 | 6.9 | 0.5 | 1.8 | 0.4 | 1.3 | 4.4 | 0.7 |
UK | 13.3 | 93.1 | 37.2 | 59.9 | 4.3 | 7.4 | 0.0 | 0.0 | 79.9 | 5.3 |
Sum | 211.4 | 757.4 | 114.9 | 690.3 | 54.6 | 85.7 | 159.0 | 60.9 | 727.2 | 91.5 |
Natural gas | Wind-Onshore | Wind-Offshore | PV Solar | Bio-Mass | Hydro-run | Hydro-Turbine | Pumped Storage | Power-to-Gas | Batteries | |
---|---|---|---|---|---|---|---|---|---|---|
AT | 0.0 | 13.6 | 0.0 | 13.4 | 7.5 | 40.1 | 6.6 | 3.6 | 1.1 | 0.4 |
BA | 0.0 | 3.4 | 0.0 | 1.6 | 0.0 | 3.6 | 2.1 | 0.0 | 0.3 | 0.1 |
BE | 1.1 | 24.2 | 10.7 | 24.8 | 14.5 | 0.3 | 1.2 | 1.7 | 3.0 | 0.8 |
BG | 0.1 | 7.5 | 0.0 | 6.4 | 4.9 | 5.4 | 5.0 | 2.4 | 0.7 | 0.2 |
CH | 0.0 | 0.9 | 0.0 | 17.5 | 9.6 | 26.3 | 24.4 | 6.9 | 1.8 | 0.6 |
CZ | 0.1 | 20.4 | 0.0 | 13.3 | 6.0 | 1.0 | 1.3 | 1.3 | 1.5 | 0.4 |
DE | 10.6 | 386.9 | 163.7 | 123.4 | 1.6 | 24.7 | 0.0 | 13.6 | 43.9 | 3.2 |
DK | 0.0 | 53.2 | 55.2 | 2.1 | 3.4 | 0.0 | 0.0 | 0.0 | 9.1 | 0.0 |
EE | 0.0 | 15.6 | 0.0 | 0.9 | 0.9 | 0.0 | 0.0 | 0.5 | 0.9 | 0.0 |
ES | 16.2 | 145.0 | 0.0 | 186.1 | 32.4 | 13.5 | 24.5 | 10.0 | 15.8 | 5.4 |
FI | 0.0 | 63.5 | 1.1 | 6.0 | 8.6 | 19.4 | 7.7 | 0.0 | 3.5 | 0.2 |
FR | 1.8 | 272.7 | 3.6 | 140.1 | 48.6 | 43.6 | 17.1 | 13.9 | 25.3 | 4.6 |
GR | 0.3 | 63.1 | 0.0 | 26.7 | 6.3 | 3.0 | 5.4 | 3.2 | 4.1 | 0.9 |
HR | 0.3 | 8.5 | 0.0 | 4.3 | 0.0 | 4.1 | 3.6 | 0.5 | 0.8 | 0.1 |
HU | 0.7 | 10.9 | 0.0 | 16.2 | 8.2 | 1.0 | 0.9 | 0.0 | 1.3 | 0.5 |
IE | 0.1 | 40.8 | 0.0 | 3.3 | 1.4 | 1.0 | 0.9 | 0.8 | 2.3 | 0.1 |
IT | 3.2 | 72.8 | 0.1 | 158.0 | 51.5 | 42.8 | 15.8 | 14.5 | 11.9 | 5.2 |
LT | 0.0 | 31.8 | 0.0 | 1.3 | 2.4 | 0.9 | 2.1 | 1.2 | 1.9 | 0.0 |
LU | 0.0 | 1.3 | 0.0 | 1.0 | 0.0 | 0.8 | 2.4 | 1.0 | 0.1 | 0.0 |
LV | 0.1 | 25.0 | 0.0 | 1.2 | 1.8 | 4.3 | 0.0 | 0.0 | 1.4 | 0.0 |
ME | 0.0 | 0.7 | 0.0 | 0.6 | 0.0 | 0.2 | 1.6 | 0.0 | 0.1 | 0.0 |
MK | 0.2 | 0.4 | 0.0 | 1.7 | 0.0 | 1.8 | 2.9 | 0.0 | 0.1 | 0.1 |
NL | 0.0 | 47.8 | 59.7 | 20.6 | 15.5 | 0.1 | 0.0 | 0.0 | 6.3 | 0.6 |
NO | 0.0 | 48.6 | 12.8 | 5.3 | 1.0 | 18.7 | 214.6 | 0.0 | 0.6 | 0.1 |
PL | 0.2 | 128.9 | 0.0 | 23.6 | 14.5 | 4.8 | 0.7 | 2.7 | 9.7 | 0.7 |
PT | 1.0 | 31.6 | 0.1 | 25.4 | 6.4 | 13.6 | 3.5 | 3.4 | 2.4 | 0.8 |
RO | 0.8 | 7.5 | 0.0 | 12.4 | 9.8 | 14.6 | 6.0 | 0.0 | 1.1 | 0.4 |
RS | 0.0 | 1.7 | 0.0 | 5.7 | 1.7 | 8.9 | 1.9 | 1.1 | 0.4 | 0.2 |
SE | 0.0 | 49.6 | 12.5 | 8.8 | 14.0 | 0.0 | 76.3 | 0.0 | 1.5 | 0.2 |
SI | 0.0 | 0.6 | 0.0 | 2.7 | 1.6 | 4.4 | 0.3 | 0.3 | 0.3 | 0.1 |
SK | 0.2 | 7.0 | 0.0 | 7.4 | 3.3 | 5.4 | 0.8 | 2.3 | 1.1 | 0.3 |
UK | 0.0 | 333.1 | 143.7 | 52.8 | 21.5 | 22.3 | 0.0 | 0.0 | 27.4 | 1.9 |
Sum | 36.9 | 1918.4 | 463.1 | 914.4 | 298.5 | 330.7 | 429.6 | 84.9 | 181.5 | 28.1 |
Natural Gas | Wind-Onshore | Wind-Offshore | PV Solar | Bio-Mass | Hydro-Run | Hydro-Turbine | Pumped Storage | Power-to-Gas | Batteries | |
---|---|---|---|---|---|---|---|---|---|---|
AT | 0.0 | 13.6 | 0.0 | 13.4 | 7.6 | 40.1 | 6.6 | 4.0 | 1.4 | 0.4 |
BA | 0.0 | 3.4 | 0.0 | 1.6 | 0.0 | 3.6 | 2.1 | 0.0 | 0.2 | 0.0 |
BE | 1.9 | 24.2 | 10.7 | 24.8 | 14.4 | 0.3 | 1.2 | 1.9 | 4.0 | 0.8 |
BG | 1.5 | 7.5 | 0.0 | 6.4 | 5.1 | 5.4 | 5.0 | 1.9 | 0.4 | 0.2 |
CH | 0.0 | 0.9 | 0.0 | 17.5 | 9.9 | 26.3 | 24.4 | 5.9 | 1.0 | 0.5 |
CZ | 0.1 | 20.4 | 0.0 | 13.3 | 6.3 | 1.0 | 1.3 | 1.4 | 1.9 | 0.4 |
DE | 10.0 | 380.2 | 151.5 | 123.4 | 1.6 | 24.7 | 0.0 | 14.4 | 57.0 | 3.2 |
DK | 0.0 | 51.6 | 42.4 | 2.1 | 0.1 | 0.0 | 0.0 | 0.0 | 8.9 | 0.0 |
EE | 0.0 | 14.9 | 0.0 | 0.9 | 0.3 | 0.0 | 0.0 | 0.5 | 1.1 | 0.0 |
ES | 74.0 | 144.3 | 0.0 | 186.1 | 32.7 | 13.5 | 24.5 | 8.7 | 9.0 | 5.0 |
FI | 0.0 | 61.1 | 0.9 | 6.0 | 2.7 | 19.4 | 7.7 | 0.0 | 4.1 | 0.2 |
FR | 21.7 | 272.3 | 3.5 | 140.1 | 50.0 | 43.6 | 17.1 | 12.1 | 17.4 | 4.0 |
GR | 0.3 | 60.5 | 0.0 | 26.7 | 5.7 | 3.0 | 5.4 | 3.0 | 4.4 | 0.9 |
HR | 4.3 | 8.5 | 0.0 | 4.3 | 0.0 | 4.1 | 3.6 | 0.4 | 0.5 | 0.1 |
HU | 6.1 | 10.9 | 0.0 | 16.2 | 8.4 | 1.0 | 0.9 | 0.0 | 0.8 | 0.4 |
IE | 0.6 | 40.1 | 0.0 | 3.3 | 1.2 | 1.0 | 0.9 | 0.8 | 2.2 | 0.1 |
IT | 34.7 | 72.4 | 0.1 | 158.0 | 52.7 | 42.8 | 15.8 | 12.4 | 7.9 | 4.6 |
LT | 0.6 | 30.3 | 0.0 | 1.3 | 2.0 | 0.9 | 2.1 | 1.4 | 2.5 | 0.1 |
LU | 0.0 | 1.3 | 0.0 | 1.0 | 0.0 | 0.8 | 2.4 | 1.1 | 0.1 | 0.0 |
LV | 0.0 | 22.4 | 0.0 | 1.2 | 1.2 | 4.3 | 0.0 | 0.0 | 2.0 | 0.0 |
ME | 0.0 | 0.7 | 0.0 | 0.6 | 0.0 | 0.2 | 1.6 | 0.0 | 0.1 | 0.0 |
MK | 2.0 | 0.4 | 0.0 | 1.7 | 0.0 | 1.8 | 2.9 | 0.0 | 0.1 | 0.1 |
NL | 0.4 | 47.8 | 59.6 | 20.6 | 14.1 | 0.1 | 0.0 | 0.0 | 7.4 | 0.7 |
NO | 0.0 | 26.9 | 0.0 | 5.3 | 0.0 | 18.7 | 214.6 | 0.0 | 0.0 | 0.0 |
PL | 0.8 | 122.3 | 0.0 | 23.6 | 14.4 | 4.8 | 0.7 | 3.0 | 12.0 | 0.7 |
PT | 3.6 | 31.5 | 0.1 | 25.4 | 6.5 | 13.6 | 3.5 | 3.1 | 1.7 | 0.7 |
RO | 15.2 | 7.5 | 0.0 | 12.3 | 10.1 | 14.6 | 6.0 | 0.0 | 0.7 | 0.3 |
RS | 0.0 | 1.7 | 0.0 | 5.7 | 1.7 | 8.9 | 1.9 | 0.9 | 0.3 | 0.2 |
SE | 0.0 | 49.5 | 12.4 | 8.8 | 0.9 | 0.0 | 76.3 | 0.0 | 2.0 | 0.1 |
SI | 0.0 | 0.6 | 0.0 | 2.7 | 1.7 | 4.4 | 0.3 | 0.3 | 0.1 | 0.1 |
SK | 0.6 | 7.0 | 0.0 | 7.4 | 3.3 | 5.4 | 0.8 | 1.8 | 0.7 | 0.2 |
UK | 0.7 | 329.1 | 118.0 | 52.8 | 17.4 | 22.3 | 0.0 | 0.0 | 30.9 | 1.9 |
Sum | 179.0 | 1865.4 | 399.1 | 914.4 | 272.0 | 330.7 | 429.6 | 78.9 | 182.5 | 26.0 |
References
- United Nations (UN). Status 7. d Paris Agreement. Available online: https://treaties.un.org/Pages/ViewDetails.aspx?src=TREATY&mtdsg_no=XXVII-7-d&Section=27&clang=_en#EndDec (accessed on 17 May 2019).
- United Nations Framework Convention on Climate Change (UNFCCC). Paris Agreement; UNFCCC: Bonn, Germany, 2015. [Google Scholar]
- European Commission (EC). 2050 Long-Term Strategy. 2018. Available online: https://ec.europa.eu/clima/policies/strategies/2050_en (accessed on 17 May 2019).
- European Commission (EC). In-Depth Analysis in support of the commission communication com (2018) 773. A Clean Planet for All. A European Long-Term Strategic Vision for a Prosperous, Modern, Competitive and Climate Neutral Economy, Brussels. 2018. Available online: https://ec.europa.eu/clima/sites/clima/files/docs/pages/com_2018_733_analysis_in_support_en_0.pdf (accessed on 17 May 2019).
- ENTSO-E. TYNDP 2018 Scenario Report. Data Set, Brussels. 2018. Available online: https://tyndp.entsoe.eu/maps-data/ (accessed on 8 February 2019).
- Andersky, T.; Sanchis, G.; Betraoui, B. e-HIGHWAY 2050—Modular Development Plan of the Pan-European Transmission System 2050. Deliverable 2.1. Available online: https://www.dena.de/fileadmin/dena/Dokumente/Pdf/9013_MOB_Brochure_ehighway2050_englisch.pdf (accessed on 3 September 2018).
- Tafarte, P.; Eichhorn, M.; Thrän, D. Capacity Expansion Pathways for a Wind and Solar Based Power Supply and the Impact of Advanced Technology—A Case Study for Germany. Energies 2019, 12, 324. [Google Scholar] [CrossRef]
- Schlachtberger, D.P.; Brown, T.; Schramm, S.; Greiner, M. The benefits of cooperation in a highly renewable European electricity network. Energy 2017, 134, 469–481. [Google Scholar] [CrossRef] [Green Version]
- Kost, C.; Längle, S. The Spatial Dimension of the Energy Transition: European Renewable Energy Sources. Local Resources and International Exchange; The European Dimension of Germany’s Energy Transition. Opportunities and Conflicts. Available online: https://www.springer.com/de/book/9783030033736#otherversion=9783030033743 (accessed on 29 May 2019).
- Hagspiel, S.; Jägemann, C.; Lindenberger, D.; Brown, T.; Cherevatskiy, S.; Tröster, E. Cost-Optimal Power System Extension under Flow-based Market Coupling; EWI Working Paper No 13/09. 2013. Available online: https://www.ewi.uni-koeln.de/cms/wp-content/uploads/2015/12/EWI_WP_13_09.pdf (accessed on 4 June 2019).
- European Commission (EC). Energy Union and Climate: Making Energy more Secure, Affordable and Sustainable. Available online: https://ec.europa.eu/commission/priorities/energy-union-and-climate_en (accessed on 3 September 2018).
- European Commission (EC). EU Budget: Commission Proposes Increased Funding to Invest in Connecting Europeans with High-Performance Infrastructure, Brussels. 2018. Available online: http://europa.eu/rapid/press-release_IP-18-4029_en.htm (accessed on 17 May 2019).
- European Commission (EC). Progress Towards Completing the Internal Energy Market; EC: Brussels, Belgium, 2014. [Google Scholar]
- Schmid, E.; Knopf, B. Quantifying the long-term economic benefits of European electricity system integration. Energy Policy 2015, 87, 260–269. [Google Scholar] [CrossRef] [Green Version]
- Bauknecht, D.; Heinemann, C.; Koch, M.; Ritter, D.; Harthan, R.; Sachs, A.; Vogel, M.; Tröster, E.; Langanke, S. Systematischer Vergleich von Flexibilitäts- und Speicheroptionen im deutschen Stromsystem zur Integration von erneuerbaren Energien und Analyse entsprechender Rahmenbedingungen, Freiburg, Darmstadt. 2016. Available online: https://www.oeko.de/fileadmin/oekodoc/Systematischer_Vergleich_Flexibilitaetsoptionen.pdf (accessed on 19 January 2017).
- DNV GL.; Imperial College London; NERA Economic Consulting. Integration of Renewable Energy in Europe; Final Report; EC: Brussels, Belgium, 2014. [Google Scholar]
- Child, M.; Kemfert, C.; Bogdanov, D.; Breyer, C. Flexible electricity generation, grid exchange and storage for the transition to a 100% renewable energy system in Europe. Renew. Energy 2019, 139, 80–101. [Google Scholar] [CrossRef]
- Fuersch, M.; Hagspiel, S.; Jägemann, C.; Nagl, S.; Lindenberger, D.; Tröster, E. The role of grid extensions in a cost-efficient transformation of the European electricity system until 2050. Appl. Energy 2013, 104, 642–652. [Google Scholar] [CrossRef] [Green Version]
- Roland Berger. The Structuring and Financing of Energy Infrastructure Projects, Financing Gaps and Recommendations Regarding the New TEN-E Financial Instrument; Final Report to the European Commission; EC: Brussels, Belgium, 2011. [Google Scholar]
- Battaglini, A.; Komendantova, N.; Brtnik, P.; Patt, A. Perception of barriers for expansion of electricity grids in the European Union. Energy Policy 2012, 47, 254–259. [Google Scholar] [CrossRef]
- Agency for the Cooperation of Energy Regulators (ACER). Consolidated Report on the Progess of Electricity and Gas Projects of Common Interest for the Year 2015; ACER: Ljubljana, Slovenia, 2016. [Google Scholar]
- Rodríguez, R.A.; Becker, S.; Andresen, G.B.; Heide, D.; Greiner, M. Transmission needs across a fully renewable European power system. Renew. Energy 2014, 63, 467–476. [Google Scholar] [CrossRef] [Green Version]
- Becker, S.; Rodriguez, R.A.; Andresen, G.B.; Schramm, S.; Greiner, M. Transmission grid extensions during the build-up of a fully renewable pan-European electricity supply. Energy 2014, 64, 404–418. [Google Scholar] [CrossRef]
- ENTSO-E. European Power System 2040 Completing the Map. The Ten-Year Network Development Plan (TYNDP) 2018 System Needs Analysis, Brussels. 2018. Available online: https://docstore.entsoe.eu/Documents/TYNDP%20documents/TYNDP2018/european_power_system_2040.pdf (accessed on 24 May 2019).
- Koch, M.; Bauknecht, D.; Heinemann, C.; Ritter, D.; Vogel, M.; Tröster, E. Modellgestützte Bewertung von Netzausbau im europäischen Netzverbund und Flexibilitätsoptionen im deutschen Stromsystem im Zeitraum 2020–2050. Zeitschrift für Energiewirtschaft 2015, 39, 1–17. [Google Scholar] [CrossRef]
- Koch, M.; Flachsbarth, F.; Bauknecht, D.; Heinemann, C.; Ritter, D.; Winger, C.; Timpe, C.; Gandor, M.; Klingenberg, T.; Tröschel, M. Dispatch of Flexibility Options, Grid Infrastructure and Integration of Renewable Energies Within a Decentralized Electricity System. In Advances in Energy System Optimization: Proceedings of the first International Symposium on Energy System Optimization; Bertsch, V., Fichtner, W., Heuveline, V., Leibfried, T., Eds.; Birkhäuser: Cham, Switzerland, 2017; pp. 67–86. ISBN 978-3-319-51794-0. [Google Scholar]
- Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit (BMU). Projektionsbericht 2019 für Deutschland gemäß Verordnung (EU) Nr. 525/2013, 2019. Available online: https://cdr.eionet.europa.eu/de/eu/mmr/art04-13-14_lcds_pams_projections/projections/envxnw7wq/ (accessed on 25 June 2019).
- Repenning, J.; Hermann, H.; Emele, L.; Jörß, W.; Blanck, R.; Loreck, C.; Böttcher, H.; Ludig, S.; Dehoust, G.; Matthes, F.C.; et al. Klimaschutzszenario 2050. 2. Modellierungsrunde, Berlin. 2015. Available online: https://www.oeko.de/oekodoc/2451/2015-608-de.pdf (accessed on 15 May 2017).
- Andersky, T.; Sanchis, G.; Betraoui, B. e-Highway 2050—Database Per Country; Excel-Sheet; EC: Brussels, Belgium, 2016. [Google Scholar]
- Matthes, F.C.; Blanck, R.; Greiner, B.; Zimmer, D.W. The Vision Scenario for the European Union. 2017 Update for the EU-28; Greens/EFA Group in the European Parliament: Brussels, Belgium, 2018. [Google Scholar]
- European Commission (EC). EU Reference Scenario 2016. Energy, Transport and GHG Emissions—Trends to 2050; EC: Brussels, Belgium, 2016. [Google Scholar]
- Eurostat. Supply, Transformation and Consumption of Electricity—Annual Data. nrg 105a. Available online: http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=nrg_105a&lang=en (accessed on 20 May 2019).
- Eurostat. Infrastructure—Electricity—Annual Data. nrg113a. Available online: http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=nrg_113a (accessed on 20 May 2019).
- Gesetz über die friedliche Verwendung der Kernenergie und den Schutz gegen ihre Gefahren; Atomgesetz; German Federal Ministry of Justice and for Consumer Protection: Berlin, Germany, 2018.
- ENTSO-E. Transparency Platform. Available online: https://transparency.entsoe.eu/ (accessed on 29 May 2019).
- Roland Berger. Permitting Procedures for Energy Infrastructure Projects in the EU: Evaluation and Legal Recommendations; Final Report to the European Commission; EC: Brussels, Belgium, 2011. [Google Scholar]
- ENTSO-E. TYNDP 2016. Market Modelling Data. 2015. Available online: https://tyndp.entsoe.eu/maps-data/ (accessed on 3 September 2018).
- Agency for the Cooperation of Energy Regulators (ACER). Recommendation of the ACER No 02/2016 on the Common Capacity Calculation and Redispatching and Countertrading Cost Sharing Methodologies; ACER: Ljubljana, Slovenia, 2016. [Google Scholar]
- European Commission (EC). Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions: Communication on Strengthening Europe’s Energy Networks; EC: Brussels, Belgium, 2017. [Google Scholar]
- Sandbag. EU ETS Dashboard. Available online: http://sandbag-climate.github.io/EU_ETS_Dashboard.html (accessed on 29 May 2019).
- United Nations Framework Convention on Climate Change (UNFCCC). Member States’ CRF Submissions to UNFCCC. 2018. Available online: https://unfccc.int/process/transparency-and-reporting/reporting-and-review-under-the-convention/greenhouse-gas-inventories-annex-i-parties/national-inventory-submissions-2018 (accessed on 29 May 2019).
- Bossavy, A.; Bossmann, T.; Fournié, L.; Humberset, L.; Khallouf, P. METIS Studies. Study S1: Optimal Flexibility Portfolios for a High-RES 2050 Scenario. 2018. Available online: https://publications.europa.eu/en/publication-detail/-/publication/f26e4340-67fd-11e9-9f05-01aa75ed71a1/language-en/format-PDF/source-96288622 (accessed on 4 June 2019).
- Bovet, J. The Electricity Transmission Line Planning Process at European Level. Legal Framework and Need for Reforms; The European Dimension of Germany’s Energy Transition. Opportunities and Conflicts. Available online: https://www.springer.com/de/book/9783030033736#otherversion=9783030033743 (accessed on 29 May 2019).
- ENTSO-E.; Renewables Grid Initiative (RGI). Working Paper May 2019: Value of Timely Implementation of “Better Projects”. 2019. Available online: https://docstore.entsoe.eu/Documents/Publications/Position%20papers%20and%20reports/20190517_RGI_ENTSOE_working_paper_better_projects.pdf (accessed on 24 May 2019).
- Bundesnetzagentur (BNetzA). Genehmigung des Szenariorahmens 2019–2030; BNetzA: Bonn, Germany, 2018. [Google Scholar]
- Agora Verkehrswende; Agora Energiewende. Die zukünftigen Kosten strombasierter synthetischer Brennstoffe, Berlin. 2018. Available online: https://www.agora-energiewende.de/fileadmin2/Projekte/2017/SynKost_2050/Agora_SynCost-Studie_WEB.pdf (accessed on 23 May 2018).
2030 | 2040 | 2050 | ||||
---|---|---|---|---|---|---|
LowCon | HiCon | LowCon | HiCon | LowCon | HiCon | |
RES-E share of demand (%) | 62% | 63% | 81% | 84% | 96% | 99% |
RES-E curtailment (TWh) | 13 | 2 | 58 | 11 | 238 | 121 |
2016 | 2030 | 2040 | 2050 | |
---|---|---|---|---|
2016 | 1020 | |||
LowCon (Mt/a) | 317 | 177 | 72 | |
HiCon (Mt/a) | 299 | 140 | 35 | |
LowCon-HiCon (Mt/a) | 18.5 | 36.9 | 37.4 | |
LowCon vs. 2016 (%) | 69% | 83% | 93% | |
HiCon vs. 2016 (%) | 71% | 86% | 97% |
(bn €/a) | 2030 | 2040 | 2050 |
---|---|---|---|
LowCon | 77.4 | 71.8 | 42.6 |
HiCon | 73.9 | 59.7 | 22.2 |
LowCon-HiCon | 3.5 | 12.1 | 20.5 |
(€/MWh) | 2030 | 2040 | 2050 |
---|---|---|---|
LowCon | 20.9 | 17.4 | 9.1 |
HiCon | 20.0 | 14.5 | 4.7 |
LowCon-HiCon | 0.9 | 3.0 | 4.4 |
Year | RES-E Share | NTC Reduction in the “No Grid” and Lower Connectivity Scenarios, Respectively | |
---|---|---|---|
TYNDP 2018 | 2040 | 64%–80% | 40%–47% |
This study | 2030 | 63% | 27% |
2040 | 84% | 32% | |
2050 | 99% | 37% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ritter, D.; Meyer, R.; Koch, M.; Haller, M.; Bauknecht, D.; Heinemann, C. Effects of a Delayed Expansion of Interconnector Capacities in a High RES-E European Electricity System. Energies 2019, 12, 3098. https://doi.org/10.3390/en12163098
Ritter D, Meyer R, Koch M, Haller M, Bauknecht D, Heinemann C. Effects of a Delayed Expansion of Interconnector Capacities in a High RES-E European Electricity System. Energies. 2019; 12(16):3098. https://doi.org/10.3390/en12163098
Chicago/Turabian StyleRitter, David, Roland Meyer, Matthias Koch, Markus Haller, Dierk Bauknecht, and Christoph Heinemann. 2019. "Effects of a Delayed Expansion of Interconnector Capacities in a High RES-E European Electricity System" Energies 12, no. 16: 3098. https://doi.org/10.3390/en12163098
APA StyleRitter, D., Meyer, R., Koch, M., Haller, M., Bauknecht, D., & Heinemann, C. (2019). Effects of a Delayed Expansion of Interconnector Capacities in a High RES-E European Electricity System. Energies, 12(16), 3098. https://doi.org/10.3390/en12163098