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Abstract: Combined cooling, heating, and power (CCHP) systems is a distributed energy system that
uses the power station or heat engine to generate electricity and useful heat simultaneously. Due to its
wide range of advantages including efficiency, ecological, and financial, the CCHP will be the main
direction of the integrated system. The accurate prediction of heating, gas, and electrical loads plays an
essential role in energy management in CCHP systems. This paper combined long short-term memory
(LSTM) network and convolutional neural network (CNN) to design a novel hybrid neural network
for short-term loads forecasting considering their correlation. Pearson correlation coefficient will be
utilized to measure the temporal correlation between current load and historical loads, and analyze
the coupling between heating, gas and electrical loads. The dropout technique is proposed to solve
the over-fitting of the network due to the lack of data diversity and network parameter redundancy.
The case study shows that considering the coupling between heating, gas and electrical loads can
effectively improve the forecasting accuracy, the performance of the proposed approach is better than
that of the traditional methods.

Keywords: short-term loads forecasting; CCHP systems; convolutional neural network; short-term
memory network; dropout layer

1. Introduction

With the rapid development of industry, the consumption of energy and other natural resources
has increased substantially. How to rationally utilize energy resources and improve the efficiency of
energy utilization has become a common concern of all countries in the world. The combined cooling
heating, and power system is one of the distributed energy systems, which uses a power station or
heat engine to generate useful heat and electricity at the same time. It is arranged near the users on a
small scale, decentralized, and targeted manner, and delivers heating energy and electric energy to
nearby users according to the users’ different needs [1,2]. Compared with conventional centralized
power systems, the combined cooling, heating, and power (CCHP) system has lower energy costs,
higher energy efficiency, and higher energy availability. Therefore, the CCHP system will become the
main form of the integrated energy system [3].

The traditional power system, heating system, and natural gas system are independent of each
other, which greatly limits the operating efficiency of these three energy systems. The CCHP system
uses gas as an energy source and recycles hot water and high-temperature exhaust gas to improve
the comprehensive utilization efficiency of energy [4]. In this case, the power system, heating system,
and natural gas system will have a strong correlation, which requires the intelligent control of these
three systems at the same time. Accurate prediction of heating, gas, and electrical loads is the basic
premise of energy management in CCHP systems and has important theoretical and practical value.

Energies 2019, 12, 3308; doi:10.3390/en12173308 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
http://www.mdpi.com/1996-1073/12/17/3308?type=check_update&version=1
http://dx.doi.org/10.3390/en12173308
http://www.mdpi.com/journal/energies


Energies 2019, 12, 3308 2 of 18

Conventionally, heating, gas and electrical loads forecasting are conducted separately, and this is
not suitable for CCHP system where the heating, gas, and electrical loads have strong correlations.
Therefore, it is necessary to propose a novel load forecasting approach for the CCHP system that
accounts for the correlation of these three loads.

Recently, as an important branch of the field of artificial intelligence, the deep learning
technology, has been applied to all popular artificial intelligence areas, including speech recognition,
image recognition, big data analysis, etc. [5–7]. Especially, the convolutional neural network (CNN),
which is well-known for its strong ability to extract features, has gained enormous attention in the
field of image classification and image recognition. The CNN with global spatial information was
designed to divide white matter hyperintensities in [8]. To realize image classification, the CNN
with five convolutional layers and three fully connected layers was designed to improve the accuracy
in [9]. The phase-functioned network, a maximum posteriori framework and a local regression model
were proposed respectively to control real-time data-driven character such as human locomotion
in [10–12]. Heungil et al. combined the hidden Markov model and automatic encoder to model the
underlying functional dynamics inherent in rs-fMRI [13]. At present, the application of CNN on the
regression task is very limited. In addition, the long short-term memory network is often used to
process time series, for it can establish the correlation between the previous information and the current
circumstances [14,15]. To the best of our knowledge, there is no report about combining CNN and
LSTM network to predict heating, gas, and electrical loads while considering their correlation.

In this paper, we aim to forecast heating, gas, and electrical loads by combining CNN and LSTM
network. Firstly, the Pearson correlation coefficient will be utilized to analyze the temporal correlation
between historical loads and current loads, which give the reason for using the LSTM network. Then,
a deep learning method composed of CNN and LSTM network could be designed. In addition,
the dropout layer is proposed to handle the over-fitting. Finally, the real-world data of CCHP system
is used to test the performance of our proposed approaches.

The rest of this paper is organized as follows. Section 2 provides the background of load forecasting.
Section 3 analyzes the temporal correlation of the three loads and the coupling between them, and then
explains why LSTM should be added to the proposed network. Section 4 introduces the Conv1D,
MaxPooling1D, dropout and LSTM layers for load forecasting. Section 5 tests the performance of our
proposed approaches and analyses results. Section 6 summaries the conclusions.

2. Literature Review

Heating, gas, and electrical loads forecasting are essential to CCHP systems planning and
operations. In respect of time horizons, the loads forecasting can be roughly split into long-term load
forecasting, medium-term load forecasting, short-term load forecasting, and very short-term load
forecasting, among which the predicted time horizon cut-offs are years, months, hours, and minutes,
respectively. This section will provide a brief review of short-term load forecasting.

In the previous literature, several forecasting approaches were proposed for predicting heating,
gas, and electrical loads. The conventional methods mainly include autoregressive integrated moving
average (ARIMA), model support vector machine (SVM), regression analysis, grey theory (i.e., GM (1,1))
and artificial neural network (ANN).

The current state of heating, gas, and electrical loads is not only related to the surrounding
environmental factors but also influenced by past events. The ARIMA and GM (1,1) models predict
current load according to historical time series, which can fully consider the trend and transient state.
However, they ignore environmental factors. Therefore, when the surrounding environment changes
dramatically, the historical trend of the load is not smooth, and the error of these methods may become
very large [16,17].

Regression analysis fits the given mathematical formula based on historical data, but it has the
drawback that the relationship between loads and features is difficult to be accurately described by
a mathematical formula [18]. In the field of computer science, SVM is a supervised learning model,
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which is often utilized for the task of classification and regression analysis. It is good at solving a large
number of complex problems, such as nonlinear, over-fitting, high dimension, and local minimum
point. However, the SVM has a slow speed of training large-scale samples [19,20]. As a “black-box”
that relies on data and prior knowledge, the traditional ANN can fit complex nonlinear relationships,
whereas the traditional ANN also has defects of over-fitting and easy to fall into local optimum [21,22].
In addition, the above methods only account for the impact of the environmental factors on the current
loads, ignoring the role of past events.

Recently, the deep learning network has been applied to forecast heating, gas and electrical loads.
The deep belief network is designed to forecast day-ahead electricity consumption in [23]. The study
cases show that the proposed approach is suitable for short-term electrical load forecasting. In addition,
it offers better results than traditional methods. Indeed, the LSTM is good at dealing with time series
with long time spans, which is suitable for forecasting short-time loads. Kuan Lu et al. proposed a
concatenated LSTM architecture for forecasting heating loads [24]. In order to solve the forecasting
problem for the strong fluctuating household load, Weicong Kong et al. improved the household
prediction framework with automatic hyper parameter tuning based on LSTM network [14]. The CNN
is a neural network designed to process input data that has an intrinsic relationship. Generally,
the input data to CNN will have a natural structure to it such that nearby entries are correlated [25,26].
For example, this type of data includes 1-D load time series and 2-D images. The current research
mainly focuses on 2-D image recognition. The literature about using CNN to extract the features of time
series for forecasting loads is relatively limited. In order to improve the performance of the network,
researchers try to combine CNN with LSTM to form a hybrid network. A CNN-LSTM neural network
is proposed to extract temporal and spatial features to improve the forecasting accuracy of household
load in [27]. Jianfeng et al., designed a hybrid network consisting of the CNN and LSTM to improve
the performance of recognizing speech emotion [28]. Similarly, The CNN and LSTM are utilized to
automatically detect diabetes in [29]. At present, there is no report on the use of hybrid network
consisting of the CNN and LSTM to predict heating, gas, and electrical loads while considering the
correlation of these three loads for integrated energy systems.

In addition, previous studies show that the performance of multi-layer is better than that of
single-layer for all of the above deep learning models. However, some scholars have found that
over-fitting occurs as the number of layers increases. [30,31]. Therefore, it is necessary to find a way
that can increase the number of layers without over-fitting.

Taking the above analysis into consideration, it is clear that though the predecessors have made
great achievements in heating, gas and electrical loads forecasting, there are still some problems to be
solved. For example, how to combine CNN and LSTM to design a hybrid network, which can not only
extract the inherent features of the input but also consider the temporal correlation of loads? How to
solve the over-fitting? How does the coupling between heating, gas, and electrical loads affect the
forecasting results?

To solve these problems for heating, gas, and electrical loads forecasting, a new framework based
on deep learning is proposed. The key contributions of this paper can be summarized as follows:

(1) The heating, gas, and electrical loads of the CCHP system are highly coupled. Although there is a
lot of literature focusing on load forecasting, the prediction of multiple loads considering their
coupling has not been found in the literature. This is the first time to design a network to forecast
loads, considering the coupling between them.

(2) Pearson correlation coefficient will be utilized to measure the temporal correlation between
historical loads and current loads, to give the reason for using the LSTM network.

(3) The Conv1D layer and MaxPooling1D layer are utilized to inherent features that affect heating,
gas, and electrical loads. To prevent over-fitting, the dropout is added between LSTM layers.
The LSTM network which could take the influence of previous information into account is
adopted to forecast these loads.
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3. Analysis of Temporal Correlation

As we all know, loads have temporal correlations, especially electrical loads. For example, if the
air conditioner is turned on at the moment, the air conditioning load will continue for some time in the
future. Furthermore, there are many methods, such as the GM (1,1) model, that predict next loads based
on the trend of historical load series. In the past, heating, gas, and electrical loads systems operated
independently and their coupling was not strong. Therefore, few people study the temporal correlation
between multiple loads. The heating, gas, and electrical loads can be converted in real-time through
related devices in CCHP systems, which lead to a strong temporal correlation of these three loads.

Pearson correlation coefficient whose value ranges from −1 to +1 is able to measure the linear
correlation of two variables. In this paper, the Pearson coefficient will be utilized to evaluate the
temporal correlation of these three loads. The Pearson correlation coefficient can be expressed as
follows [32]:

rxy =

n∑
i=1

(xi − x)(yi − y)√
n∑

i=1
(xi − x)2

√
n∑

i=1
(yi − y)2

(1)

where x stands for the mean of x and y stands for the mean of y.
In this study, the dataset comes from a hospital in Beijing, China, which contains hourly data

from 1 January, 2015 to 31 December, 2015. The main features include environmental factors, such as
moisture content, humidifying capacity, dry bulb temperature, and total radiation. The Pearson
coefficient is used to analyze the relationship between current heating, gas, and electrical load (loads at
time t) and their historical loads (loads from t-24 to t-1). The results are shown in Figure 1.
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On the other hand, both the gas load and the electrical load have strong coupling with themselves. 
Besides, there is a strong coupling between the current gas load and the historical electrical load 
which ranges from t-1 to t-5. Electrical loads also have a similar conclusion that there is a strong 
coupling between the current electrical load and the historical gas load which ranges from t-1 to t-4. 

As can be seen from the above simulation, the heating, gas, and electrical loads have strong 
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factors. 
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Figure 1. The temporal correlation of heating, gas and electrical loads. (a) Heating load, (b) gas load,
(c) electrical load.

On one hand, the Pearson coefficient between the current heating loads and the historical
heating loads is large, i.e., the heating load itself has a strong temporal correlation. In addition,
the Pearson coefficients between the heating loads and the electrical loads and the gas loads are small,
which indicates that there is weak coupling between heating loads and the other two kinds of loads.
On the other hand, both the gas load and the electrical load have strong coupling with themselves.
Besides, there is a strong coupling between the current gas load and the historical electrical load which
ranges from t-1 to t-5. Electrical loads also have a similar conclusion that there is a strong coupling
between the current electrical load and the historical gas load which ranges from t-1 to t-4.

As can be seen from the above simulation, the heating, gas, and electrical loads have strong
temporal correlation and coupling, which requires the deep learning network to consider these factors.
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4. Deep Learning Framework for Forecast Short-Term Loads

4.1. Conv1D Layer and MaxPooling1D Layer

CNN is a neural network designed for processing input data that has an intrinsic relationship.
For example, a time series can be thought of as a one-dimensional grid sampled at fixed time intervals,
and image data can be viewed as a two-dimensional grid of pixels [33]. CNN has been widely used
in image recognition tasks with good performance. As the name implies, the main mathematical
operation of convolution neural networks is convolution that is a special linear operation. The matrix
multiplication is replaced by convolution layers in CNN.

As is known to all, the convolution is a mathematical operation on two functions of a real-valued
argument. The convolution operation can be described as follows:

s = x ∗w (2)

where w stands for the weighting function which is called kernel in CNN. x stands for the input function.
The output of convolution can be marked as s, which will be called the feature map. ∗ represents the
operation of convolution.

In practical problems such as load forecasting, the data of input is a multiple dimensional
vector, and the kernel is also a multiply dimensional vector of parameters which are determined by
learning method. In this case, the operation of convolution will be applied to multiple dimensions
since the kernels and inputs are multiple dimensional. Therefore, the operation of convolution for
two-dimensional inputs can be described as follows:

s(i, j) = (I ∗K)(i, j) =
∑

l

∑
m

I(l, m)K(i + l, j + m) (3)

where I is the two-dimensional data of input, and K is the two-dimensional kernel. S represents the
feature map after the operation of convolution.

As shown in Figure 2, a typical CNN consists of a set of layers. The input layer is composed
of environmental factors and historical loads. Assuming that the dimension of the input layer
is 28, five feature maps are generated after convolution operation. The pooling layers are often
inserted between the Conv1D layers. It effectively alleviates over-fitting by reducing the parameters
between layers. According to the conclusion from the literature [24], the computationally efficient
max pooling showed better results than other candidates, including average pooling and min pooling.
The MaxPooling1D layer resizes it spatially and operates on every depth slice of the data.

Generally speaking, the neural network includes one or more Conv1D and MaxPooling1D layers.
After extracting features by using Conv1D and MaxPooling1D layers, the outputs will be sent to
LSTM layers.
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4.2. LSTM Layer

The recurrent neural network (RNN) is a typical artificial neural network that establishes the
temporal correlations between the current circumstances and previous information [34]. Unlike
traditional feed forward neural network, the RNN can use their internal memory to process time series
of input data. Such characteristic of RNN makes it applicable to load forecasting, because the heating,
gas, and electrical loads are affected by environmental features and historical loads.

The common training approaches for RNN mainly include real-time recurrent learning (RTTL)
and back propagation through time (BPTT). Compared with RTRL, The BPTT algorithm has a
shorter computation time [35]. Therefore, BPTT is often used to train RNN. Because the problems of
gradient vanishing and gradient exploding, learning long-range dependencies with RNN is difficult.
These problems limit the ability to learn temporal correlations of long-term time series. The long
short-term memory (LSTM) was proposed by Hochreiter to solve these problems in 1997 [36]. Broadly
speaking, LSTM is one of the RNNs. It not only has memory and forgetting patterns to learn the
features of time series flexibly, but also solves the problem of gradient exploding and gradient
vanishing. Recently, LSTM networks have achieved great success in numerous sequence prediction
tasks, which include speech prediction, handwritten text prediction, etc. Figure 3 shows the block
structure of LSTM at a single time step.

1 
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1tx tx1tx 

th

1to  to 1to 
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1 1,t tC h 
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1th 

tC

th

 

Figure 3. The block structure of long short-term memory (LSTM).

The cell state vector ct is read and modified through the control of forget gate ft, input gate it and
output gates ot during the whole life cycle, which is the most important structure of the LSTM layer.
The current cell state vector ct will be determined by operating the output vector ht−1, input vector xt

and previous cell state vector ct−1 according to the present time steps and the outputs of the previous
time step. The formula for the relationship between the variables is as follows:

ft = σg(W f xt + U f ht−1 + b f ) (4)

it = σg(Wixt + Uiht−1 + bi) (5)

ot = σg(Woxt + Uoht−1 + bo) (6)

ct = ft ◦ ct−1 + it ◦ σc(Wcxt + Ucht−1 + bc) (7)

ht = ot ◦ σc(ct) (8)

where W ∈ Rn×d are the weight matrices. U ∈ Rn×n are bias vector parameters. The superscripts n is
the number of hidden units and d is the number of input features. σc is hyperbolic tangent functions
and σg is the sigmoid function.

The hyperparameter of the hidden unit n should be specified to train the LSTM network. Therefore,
the output vector ht and cell state vector ct are n-dimensional vectors, which are equal to 0 at the initial
time. The LSTM has three sigmoid functions whose output data range from 0 to 1. They are usually
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regarded as "soft" switches to determine which data should pass through the gate. The signal will be
blocked by the gate when the gate is equal to 0. The states of input gate it, output gate ot and forget gate
ft all rely on previous output ht−1 and the current input xt. The signal of forget gate determines what
to forget of the previous state ct−1, and the input gate decides what will be preserved in the internal
state ct. After updating the internal state, the output data of LSTM will be determined by the internal
state. Similarly, this process will be repeated for the next time steps. In general, the LSTM output of
the next time steps can be affected by the information of the previous time steps through this block
structure of LSTM.

4.3. Dropout Layer

Previous studies have shown that increasing the number of layers in the neural network does not
effectively improve forecasting accuracy. The number of internal parameters of the network increases
exponentially when the number of network layers increases. It is prone to over-fitting. After training
the network, the network will be created perfectly, but just for the training set. Dropout is a technique
that addresses over-fitting [37,38]. As shown in Figure 4, some units are selected randomly and their
incoming and outgoing connections are discarded from the network. At each training phase, each unit
"exits" the network with a probability p to reduce the parameters of the network. Only the reduced
network will be trained in the stage, and the removed units will be reinserted into the network with
their original weights.

The probability of discarding hidden units is set to 0.5. In term of input units, the probability
should be much lower because if the input units are ignored, the information will be lost directly.
By avoiding training all units of the network, the dropout layer can decrease over-fitting. Especially
for deep neural networks, dropout technique can significantly shorten the training time.
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4.4. Framework for Multiple Loads Forecasting Based Deep Learning

Figure 5 shows the framework of short-term loads forecasting based on deep learning. The process
of load forecasting is as follows:

(1) The input data include historical loads and environmental factors such as moisture content,
humidifying capacity, dry bulb temperature, and total radiation. The min-max normalization is
used to bring all input data into the range from 0 to 1.

(2) Next step is to determine the structure of network and parameters, such as the number of LSTM
layer, the number of unit in each LSTM layer, the number of CNN layer, the size of kernel weight,
the size of pooling, epochs and the size of each batch.

(3) The input data will be sent to Conv1D layers. The MaxPooling1D layer is added between the two
Conv1D layers. It extracts the maximum value of the filters and provides useful features while
reducing computational cost thanks to data reduction.
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(4) In the LSTM layer, the time steps are sent to relevant LSTM block. The number of LSTM layers
can be revised arbitrarily because of the sequential character of the output of the LSTM layer.

The output data of the LSTM layer are used as input of the full connection layer, and the predicted
load is output by the full connection layer.
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After designing the structure of the neural network, it is necessary to determine the training
method. Now, the main training methods of recurrent neural networks, such as LSTM, include real-time
recurrent learning (RTRL) and back propagation through time (BPTT). Compared with BPTT, RTRL has
lower computational efficiency and longer computing time [33]. Hence, the proposed network will be
trained by BPTT. Moreover, previous research suggests Adam approach can achieve better performance
than other optimizers, such as Adagrad, Adadelta, RMSProp, and SGD [34]. Therefore, the optimizer
for the training proposed approach is Adam. The loss function is MAE.

The main steps of the proposed method can be summarized as follows: (1) Define the CNN-LSTM
network, (2) compile the CNN-LSTM network, (3) fit the CNN-LSTM network, (4) predict the loads.
The part of the code for the proposed method is shown in Table 1.

Table 1. The code for the proposed method.

Program: A part of codes for building the CNN-LSTM network

#1 Define the CNN-LSTM Network
model = Sequential()
model.add(Conv1D(filters=10, kernel_size=3, padding=’same’, strides=1, activation=’relu’,input_shape=(1,
Input_num)));
model.add(MaxPooling1D(pool_size=2))
model.add(Dropout(rate=0.25))
model.add(Conv1D(filters=20, kernel_size=3, padding=’same’, strides=1, activation=’relu’))
model.add(MaxPooling1D(pool_size=2))
model.add(Dropout(rate=0.25))
model.add(LSTM(units=24,return_sequences=True))
model.add(LSTM(units=16,return_sequences=True))
model.add(LSTM(units=32,return_sequences=True))
model.add(LSTM(units=16,return_sequences=True))
model.add(LSTM(units=16,return_sequences=True))
model.add(LSTM(units=16))
model.add(Dense(units=1, kernel_initializer=’normal’,activation=’sigmoid’))
#2 Compile the CNN-LSTM network
model.compile(loss=’mae’, optimizer=’adam’)
#3 Fit the CNN-LSTM network
history = model.fit(trainX,trainY, epochs=100, batch_size=50,validation_data=(valid3DX, validY), verbose=2,
shuffle=False)
#4 Predict the loads
Predicted_Load = model.predict(testX)
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4.5. Indicators for Evaluating Result

To measure the predictive effect from various perspectives, mean absolute percentage error
(MAPE) will be adopted in this paper. The mathematical formula is as follows:

MAPE =
1
n

n∑
i=1

∣∣∣∣∣ ŷi − yi

yi

∣∣∣∣∣ (9)

where n stands for the number of test sets. ŷi is the forecasting load and yi is the real load.

5. Case Study

5.1. Experimental Environment and Parameters

The dataset comes from a hospital in Beijing, China, which contains 8760 samples from 1 January
2015 to 31 December 2015. The sample interval was one hour. The loads and corresponding features
from 1 January 2015 to 19 October 2015 were used for the training set and the data from 20 October
2015 to 25 November 2015 were used for the validation set. The other data were considered as testing
data. The equipment of the integrated energy system mainly included gas boiler, gas-combustion
generator, waste-heat recovery system, electric refrigeration unit, lithium bromide refrigeration unit,
storage battery and heat storage system. All the proposed methods were conducted using Keras on a
notebook computer equipped with Intel (R) Core (TM) i5-6500 CPU @ 3.20 GHz processor and 8 GB
of RAM.

In order to verify the validity of the proposed algorithm, the proposed algorithm was compared
with the traditional methods (BP network, ARIMA, SVM, LSTM, CNN). The parameters of each
algorithm were tested several times in order to achieve optimal performance. However, not all results
will be shown here. After many trials, the optimal structure and parameters of each algorithm arweree
set as follows:

BP network: The epochs were set to 100. The middle layer consisted of two fully connected layers
with 10 and 15 neurons respectively.

ARIMA: The degree of difference was two and the number of autoregressive terms was four.
The number of lagged forecast errors was four.

SVM: The kernel function of SVM used the radial basis function (RBF).
LSTM: The neurons’ number in the input layer equaled the number of features, and the neurons’

number in the output layer was 1. After many trials, the best choice was to use six LSTM layers.
The neurons’ number in each layer was 32, 16, 32, 16, 16, and 8, respectively.

CNN: After many trials, the best solution of CNN was to use two Conv1D layer and MaxPooling1D
layer. The filters were 10 and kernel size was three in the first Conv1D layer. The filters were 20 and
kernel size was three in the second Conv1D layer. Both pool sizes of MaxPooling1D were equal to two.

CNN-LSTM: After many trials, the best solution of CNN was to use two Conv1D layer and
MaxPooling1D layer. The filters were 10 and kernel size was three in the first Conv1D layer. The filters
were 20 and kernel size was threw in the second Conv1D layer. Both pool sizes of MaxPooling1D were
equal to two. The best choice was to use six LSTM layers. The neurons’ number in each layer was 24,
16, 32, 16, 16, and 16, respectively. Both rates of the dropout were set to 0.25.

This section mainly consists of the following four points: (1) The performance for forecasting
heating, gas, and electrical loads was tested in different time steps, (2) the influence of the coupling
of heating, gas, and electrical loads on the accuracy of prediction was analyzed, (3) the relationship
between the forecasting results and the layers’ number of the network is explored, and the influence
of the dropout layer on the forecasting accuracy were analyzed, (4) the performance of proposed
approaches is compared to traditional methods to validate the efficacy.
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5.2. Performance in Different Time Steps

The LSTM network forecasts the loads by using the environmental factors and historical load
series whose length can be changed arbitrarily theoretically. If the time steps of power load are too
short, it may lead to the insufficiency of learning historical trend. In contrast, if the time steps of power
load are too long, it may aggravate the complexity of the proposed methods, which may make the
accuracy worse.

To explore how many historical load series are applied to LSTM network for forecasting loads,
multiple cases with different time steps which range from 0 to 10 were tested. The average MAPE was
calculated by testing the data set 50 times independently. Figures 6–8 show the result of MAPE in
different time steps.

As the time steps increase, the overall trend of the heating load of MAPE decreases.
This phenomenon suggests that there is a strong temporal correlation between the current heat
load and the historical heat load from t-1 to t-10, which is consistent with the conclusions drawn in
Figure 1 above. The current gas and electrical loads also have a strong temporal correlation with
historical loads from t-1 to t-2, and a weak temporal with historical loads from t-3 to t-10. In this data
set, two look-back time steps can achieve the best accuracy for forecasting gas and electrical loads.

When time steps are equal to 0, the MAPE of the heating, gas, and electrical loads are equal to
0.145, 0.158, and 0.143, respectively. In general, considering historical load series can significantly
reduce the error for predicting heating, gas, and electrical loads. It shows the need to find a network
that can account for temporal correlations to predict heating, gas, and electrical loads, which explains
why the LSTM layer is used in the proposed approach.
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5.3. The Influence of the Coupling of Heating, Gas and Electrical Loads on the Results

To analyze the impact of the coupling of heating, gas and electrical loads on the forecasting results,
eight cases, as shown in Table 2, were designed for simulation. Each case ran 50 times independently
to obtain the average MAPE, and the result is shown in Tables 3–5.

The results in Tables 3–5 indicate that:

(1) In terms of heating loads, it is obvious that the forecasting accuracy of Case 2 is higher than
that of Case 1, which reveals that the heating loads have a strong temporal correlation and
considering temporal correlation helps improve the accuracy of the prediction. By comparing
the MAPE of Case 1 and Case 2, it is found that taking the gas load as input will reduce the
accuracy for forecasting heating load. Similarly, the conclusion is the same for heating load and
electrical load. This is because the coupling between the heating load and the other loads is weak,
which is consistent with the conclusions of the previous analysis. The addition of the gas load
and the electrical load will interfere with features of the input, which makes the accuracy of the
prediction worse.

(2) As far as gas load is concerned, it can be found from Case 3 that the gas load also has a strong
temporal correlation. Compared with Case 3 and Case 5, it is evident that the correlation between
gas load and heating load is very weak. The input of heating load will lead to a decrease in
forecasting accuracy of gas load. On the contrary, the coupling between gas load and electrical
load is very strong. Adding electrical load as input is helpful to improve accuracy.

(3) The result of Case 4 from Table 4 shows that there is a strong temporal of electrical load. The input
of heating load will lead to a decrease in forecasting accuracy of electrical load. The addition of
gas load helps to improve the forecasting accuracy of the electrical load. In general, the best input
for forecasting electrical load includes environmental factors, gas and electrical loads.

Table 2. Different case for simulation.

Scenes Input of Network

Case 1 Environmental features
Case 2 Environmental Feature, heating loads
Case 3 Environmental features, gas loads
Case 4 Environmental features, electrical loads
Case 5 Environmental feature heating and gas loads
Case 6 Environmental features heating and electrical loads
Case 7 Environmental features gas and electrical loads
Case 8 Environmental features heating, gas and electrical loads
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Table 3. The average MAPE of heating loads.

Scenes Case 1 Case 2 Case 5 Case 6 Case 8

MAPE 0.145 0.057 0.065 0.062 0.073

Table 4. The average MAPE of gas loads.

Scenes Case 1 Case 3 Case 5 Case 7 Case 8

MAPE 0.158 0.060 0.772 0.055 0.064

Table 5. The average MAPE of electrical loads.

Scenes Case 1 Case 4 Case 6 Case 7 Case 8

MAPE 0.143 0.086 0.092 0.083 0.085

5.4. The Performance of the Dropout Layers

To analyze the relationship between forecasting results and network depth, a sensitive analysis
was performed. The number of LSTM layers was increased in turn and the other parameters were
kept consistent. Each case ran 50 times independently to obtain the average MAPE, and the results are
shown in Figures 9–11.
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As can be seen from the above figures, if there is no dropout layer, the network will achieve the
best performance when the number of LSTM layers is three or four. If the number of LSTM layers is
further increased, there will be an over-fitting and the MAPE of the loads decreases as the number of
LSTM layers increases. The reason for over-fitting is that parameter redundancy of the network rises as
the number of LSTM layers increases. In addition, the lack of data diversity also leads to over-fitting.

To tackle the phenomenon of over-fitting, the proposed dropout layers were inlaid to the network.
Obviously, when the dropout layers were inlaid to the network, the MAPE of the heating loads and
the electrical loads decreased further with the increase of the LSTM layers, which indicates that the
dropout layer has the effect of avoiding the over-fitting. Unfortunately, Figure 10 shows that the effect
of dropout layers is limited, and it does not completely solve the phenomenon of over-fitting.

5.5. Benchmarking of Short-Term Load Forecasting Methods

To validate the effectiveness of the proposed CNN-LSTM, five loads forecasting methods, including
BP network, SVM, ARIMA, CNN, and LSTM were taken as a comparison and assessed under preceding
mentioned benchmark (MAPE). Each method ran 50 times independently to obtain the average MAPE
of the test set, and the results are shown in Figures 12–14 and Table 6.

Table 6. The MAPE of different algorithms.

Algorithms Heating Load Gas Load Electrical Load

BP 0.067 0.064 0.099
SVM 0.065 0.062 0.096

ARIMA 0.071 0.067 0.131
CNN 0.062 0.060 0.092
LSTM 0.060 0.057 0.088

CNN-LSTM 0.056 0.055 0.082
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Figure 14. The unfolded topological graph of electrical loads.

The results in figures and Table 6 indicate that:

(1) The MAPE of the electrical load is greater than that of the heating and gas load, implying that the
electrical load has relatively strong volatility compared with other loads. The heating and gas load
are more regular and easier to predict. In this data set, the MAPE of heating, gas, and electrical
load is 5.6%, 5.5%, and 8.2%, respectively.

(2) ARIMA has the worst performance because it predicts the load based on the trend of the
historical series, without considering the influence of environmental factors. Especially when
the environment changes drastically, the forecasting accuracy at the inflection point is very
poor. The forecasting accuracy of BP network and SVM is low because of the limitations of
their models that make it impossible to pre-learn complex data through unsupervised training.
Compared with the deep learning network such as CNN and LSTM, the performance of BP
network and SVM is relatively poor. CNN can effectively extract the characteristics of input data,
and the forecasting accuracy is higher than that of BP network and SVM. However, CNN cannot
deal with the temporal correlation of heating, gas, and electrical loads, which leads to the
limitation of forecasting accuracy. Combining CNN and LSTM to construct a hybrid model, it can
not only effectively extract the features of input data, but also take into account the temporal
correlation of loads. Compared with other traditional methods, CNN-LSTM has the highest
forecasting accuracy.

(3) Figures 12–14 demonstrate the real loads and forecasted loads by different methods on a random
day, 11 December 2015. As shown in the figures, the proposed approach has a good performance
at spikes and troughs. Taking heating load as an example, during peak and trough periods,
the heating load has strong volatility and uncertainty, which makes traditional algorithms unable
to accurately predict the load during these periods. However, the morning peak at 7:00 a.m. and
afternoon valley at 4:00 p.m. are accurately captured by the proposed approach, which further
reflects the superiority of the proposed approach.
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6. Conclusions

This paper tries to explore the performance of the CNN-LSTM network for load forecasting
considering the coupling of heating, gas, and electrical loads. A novel dropout layer is proposed
to successfully solve the phenomenon of over-fitting due to the lack of data diversity and network
parameter redundancy. The proposed approach can not only effectively extract the features of input
data, but also take temporal correlation of heating, gas, and electrical loads into account. The case
study provides the following conclusions:

(1) For heating, gas, and electrical loads, there is a strong temporal correlation between the current
loads and historical loads. The case study shows that considering historical load series can reduce
the error for predicting heating, gas, and electrical loads.

(2) The coupling between the heating loads and the other loads is weak. Taking the gas loads and
the electrical loads as input will make the accuracy of the heating loads worse. The coupling
between gas loads and electrical loads is very strong. Adding electrical load as input is helpful to
improve the accuracy of gas loads. Similarly, adding gas loads to input data is helpful to improve
the forecasting accuracy of electrical loads.

(3) The dropout layer can avoid over-fitting to a certain extent, as well as improve the accuracy
for predicting heating, gas, and electrical loads. The dropout layer cannot completely solve the
over-fitting where the number of network layers is too large.

(4) Compared with other algorithms (BP network, SVM, ARIMA, CNN, and LSTM), the proposed
approach has higher forecasting accuracy and can accurately predict the load during peak and
trough periods.

For future work, we can try to expand the work of this article from the following three directions:

(1) We could try to find a technique that can completely solve the over-fitting.
(2) The other deep learning frameworks such as generative adversarial networks (GAN) [39], restricted

Boltzmann machines (RBM) [40–42], hidden Markov models [43], dilated convolutional neural
network [44,45] and graphical models [46], are also used to forecast heating, gas, and electrical
loads. These frameworks are widely used in image recognition, signal processing, and image
generation. How to apply these frameworks to load forecasting needs further research. Generally
speaking, the function of CNN is to extract the features of input data. Different tasks can be
accomplished by using the extracted features as input data of classifiers, predictors, and generators.
For example, the GAN’s generator consisting of convolution layers can model the power load
profiles, and the GAN’s discriminator consisting of convolution layers can classify the power load.

(3) Due to the limitations of the data set, this paper only considers the influence of environmental
factors and historical data on prediction accuracy. The multimedia features can be taken into
account in the future [47,48].
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