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Abstract: Electric servo system (ESS) is a servo mechanism in a control system of an aircraft, a ship, etc.,
which controls efficiency and directly affects the energy consumption and the dynamic characteristics
of the system. However, the control performance of the ESS is affected by uncertainties such as friction,
clearance, and component aging. In order to improve the control performance of the ESS, a control
technology combining particle swarm optimization (PSO) and finite time servo system control
(FTSSC) was introduced into ESS. In fact, it is difficult to know the uncertain physical parameters
of the real ESS. In this paper, the genetic algorithm (GA) was introduced into PSO and the inertia
weight was improved, which increased the parameter optimization precision and convergence speed.
A new feedback controller is proposed to improve response speed and reduce errors by using FTSSC
theory. The performance of the controller based on PSO identification algorithm was verified by
co-simulation experiments based on Automatic Dynamic Analysis of Mechanical Systems (ADAMS)
(MSC software, Los Angeles, CA, USA) and matrix laboratory (MATLAB)/Simulink (MathWorks,
Natick, MA, USA). Meanwhile, the proposed strategy was validated on the servo test platform in the
laboratory. Compared with the existing control strategy, the control error was reduced by 75% and
the steady-state accuracy was increased by at least 50%.
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1. Introduction

Electric servo system (ESS) is a one kind of high precision position control system, for which
control performance directly affects the stability and rapid response [1]. It is widely used in all-electric
aircrafts and spacecrafts due to its high reliability and low energy consumption compared to hydraulic
and pneumatic steering gears. Figure 1 shows the structure of an electric steering gear, which consists
of a motor, a reduction gear, a screw, and a rocker arm. However, the difficulty of ESS is that its
control performance is adversely affected by uncertainties such as friction, clearance, and part aging.
Due to the complexity of the ESS, it is difficult to obtain accurate parameters directly from the actual
system and the accuracy of system parameters is an important basis for accurate design and efficient
application of the controller. Therefore, the premise for obtaining a high performance controller is to
obtain accurate model parameters of ESS through optimization criteria. In this paper, the optimization
criterion of ESS was to study the parameter identification strategy to find the optimal solution of the
system model parameters in a dimensional space, so as to design an ESS controller with small control
error, high steady-state accuracy, and low energy consumption. In order to solve the influence of
uncertain parameters in the design of ESS controller, the optimization criteria of this study has made
efforts from two aspects.
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of this study has made efforts from two aspects. 

 
Figure 1. Internal schematic of the electric servo. 

On the one hand, identification techniques were introduced to determine the actual physical 
parameters of the ESS. Since the mechanical structure of ESS is affected by uncertain factors such as 
friction and clearance, we cannot design the controller according to the theoretical parameters in 
practical applications. Therefore, the identification method based on the optimization algorithm has 
been widely used in ESS systems. For example, classic optimization algorithms have a large number 
of applications in system identification [2–4]. In [5], the classical recursive extended least squares 
(RELS) method was used to identify the model parameters of the ESS, and the experimental results 
showed that the improved least squares method can obtain accurate ESS model parameters. 
However, the least squares method must guarantee the derivation of the objective function and the 
unbiased estimation can be obtained only when the interference is white noise. Meanwhile, in view 
of the shortcomings and limitations of traditional system identification methods, intelligent 
optimization algorithms have been widely used in parameter optimization [6–10]. Wang developed 
an ESS model parameter identification strategy based on adaptive genetic algorithm (AGA). The 
experimental results showed that AGA can achieve better parameter optimization accuracy 
compared with other classical optimization algorithms. However, compared to other intelligent 
algorithms, this reference used a cumbersome encoding and decoding process based on binary coded 
AGA, which may lead to the complexity of the problem [11]. In addition, hybrid optimization 
algorithm is also applied to ESS because it combines the advantages of intelligent algorithms. In [12], 
Gao et al. studied a method for establishing an error model for industrial robots’ ESS in order to 
obtain accurate model parameters. The ESS physical parameters of industrial robots were identified 
by a combination of PSO and BP neural network (BPNN) algorithms. Experimental results showed 
that the hybrid algorithm can obtain more accurate ESS parameters than PSO and GA. 

On the other hand, the effects of uncertain factors are addressed by special control methods. 
Reference [13] studied the traditional proportional-integral-derivative (PID) control method and 
developed the parameter-adjustable nonlinear feedforward compensation method. However, when 
the ESS was in dynamic fast motion, the controller’s transient accuracy and static tracking 
performance was reduced. In [14], a second-order aliasing surface sliding mode controller with 
switching gain was applied to the adjustment mechanism of the gain and position tracking control of 
the ESS. The experimental results showed that the optimization accuracy and response time of the 
controller were better than the sliding mode control. Reference [15] used discontinuous robust 
adaptive control methods to suppress system interference and achieve accurate tracking of the robot’s 
ESS, but simple information fuzzy processing can reduce the control optimization accuracy and 
dynamic quality of the system. Inspired by the advantages of adaptive control and sliding mode 
control, an adaptive control method based on PID sliding mode was applied to ESS [16], the ESS 
experiment based on electronic throttling showed that the control optimization accuracy of this 
method was better than that of PID control [13] and H∞ control [17]. 

However, with the advocacy of the energy economy and the more accurate use of ESS, more 
effective control strategies have been put forward with strict requirements. The closed-loop systems 
under the above-mentioned controllers all have Lipschitz continuity and the fastest exponential form 
asymptotically converges, so these control analysis and synthesis methods are both infinitely stable 
control methods. Fortunately, from the perspective of system convergence time optimization, the 
controller based on finite-time convergence control has better control performance and is the time 
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On the one hand, identification techniques were introduced to determine the actual physical
parameters of the ESS. Since the mechanical structure of ESS is affected by uncertain factors such as
friction and clearance, we cannot design the controller according to the theoretical parameters in practical
applications. Therefore, the identification method based on the optimization algorithm has been widely
used in ESS systems. For example, classic optimization algorithms have a large number of applications in
system identification [2–4]. In [5], the classical recursive extended least squares (RELS) method was used
to identify the model parameters of the ESS, and the experimental results showed that the improved
least squares method can obtain accurate ESS model parameters. However, the least squares method
must guarantee the derivation of the objective function and the unbiased estimation can be obtained
only when the interference is white noise. Meanwhile, in view of the shortcomings and limitations of
traditional system identification methods, intelligent optimization algorithms have been widely used in
parameter optimization [6–10]. Wang developed an ESS model parameter identification strategy based
on adaptive genetic algorithm (AGA). The experimental results showed that AGA can achieve better
parameter optimization accuracy compared with other classical optimization algorithms. However,
compared to other intelligent algorithms, this reference used a cumbersome encoding and decoding
process based on binary coded AGA, which may lead to the complexity of the problem [11]. In addition,
hybrid optimization algorithm is also applied to ESS because it combines the advantages of intelligent
algorithms. In [12], Gao et al. studied a method for establishing an error model for industrial robots’ ESS
in order to obtain accurate model parameters. The ESS physical parameters of industrial robots were
identified by a combination of PSO and BP neural network (BPNN) algorithms. Experimental results
showed that the hybrid algorithm can obtain more accurate ESS parameters than PSO and GA.

On the other hand, the effects of uncertain factors are addressed by special control methods.
Reference [13] studied the traditional proportional-integral-derivative (PID) control method and
developed the parameter-adjustable nonlinear feedforward compensation method. However, when
the ESS was in dynamic fast motion, the controller’s transient accuracy and static tracking performance
was reduced. In [14], a second-order aliasing surface sliding mode controller with switching gain
was applied to the adjustment mechanism of the gain and position tracking control of the ESS.
The experimental results showed that the optimization accuracy and response time of the controller
were better than the sliding mode control. Reference [15] used discontinuous robust adaptive control
methods to suppress system interference and achieve accurate tracking of the robot’s ESS, but simple
information fuzzy processing can reduce the control optimization accuracy and dynamic quality of the
system. Inspired by the advantages of adaptive control and sliding mode control, an adaptive control
method based on PID sliding mode was applied to ESS [16], the ESS experiment based on electronic
throttling showed that the control optimization accuracy of this method was better than that of PID
control [13] and H∞ control [17].

However, with the advocacy of the energy economy and the more accurate use of ESS, more
effective control strategies have been put forward with strict requirements. The closed-loop systems
under the above-mentioned controllers all have Lipschitz continuity and the fastest exponential
form asymptotically converges, so these control analysis and synthesis methods are both infinitely
stable control methods. Fortunately, from the perspective of system convergence time optimization,
the controller based on finite-time convergence control has better control performance and is
the time optimal control method [18–20]. In addition, finite-time theory has achieved results in
many aspects [21], reference [22] studied a class of adaptive finite-time feedback devices based on
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single-input/single-output (SISO). Experiments showed that the optimization accuracy of the state
convergence rate method in a given time is higher than that of the set exponential method. In [23],
a finite-time output feedback control method was applied to the position tracking system of the
servo system. Experiments showed that the proposed optimization algorithm had faster tracking
speed and higher tracking accuracy. In [24], a technique with time-varying delay based on finite-time
stability theory was applied to ESS. The results showed that the improved optimization method was
effective and feasible for theoretical application. As far as we know, it is a rare and valuable method to
design an ESS controller by combining intelligent identification technology based on optimization
algorithms with finite-time control theory. In [25], the method combining parameter identification and
finite-time theory to optimize control has been successfully applied to ESS. Experiments show that the
finite-time controller based on model parameter identification has better precision than the adaptive
PID controller. Moreover, transforming system parameter identification into parameter optimization
problem is an effective method to solve complex optimization problems by using optimized intelligent
algorithms [26–28].

Inspired by the above literature research, in this paper, firstly, the physical parameters of ESS
were identified by introducing particle swarm optimization (PSO) into genetic algorithm (GA) and
improving inertia weight. Then, the control strategy of the finite time servo system was studied and
the stability performance of the designed controller was proven. Finally, the PSO-based optimization
identification technology was combined with the finite-time theory and the effectiveness of the method
was verified by co-simulation and actual ESS test platform.

The remainder of this paper is organized as follows: Section 2 briefly illustrates the ESS
mathematical model and describes some of the lemma knowledge of controller design. In Section 3, the
recognition algorithm based on PSO and the FTSSC are given. The stability and convergence of ESS and
control strategy are proven by co-simulation experiments based on ADAMS and MATLAB/Simulink.
The experimental verification is shown in Section 4 by the experimental results carried out on the
ESS test platform for several common situations in the flight application of the ESS. At last, Section 5
presents the conclusions.

2. Model of Electric Servo System

2.1. System Description

Electric servo system is a complex closed-loop system, which mainly includes controller, drive, servo
motor, speed reduction mechanism, and feedback potentiometer. Figure 2 shows the structure of electric
steering gear. The fundamental task and function of the electric steering gear is to enable the rudder axle
to achieve aircraft attitude control according to a given speed and motion trajectory, which can ensure
that the servo system can drive the load. When the desired rudder angle is given, it is compared with the
actual rudder angle to generate a deviation signal, which is driven by the controller to drive the motor to
rotate. The motor drives the rudder blade through the reducer to deflect in the direction required; when
the actual rudder angle is equal to the desired rudder angle, the system reaches a new equilibrium state
and the motor stops rotating to achieve angular position tracking. The controlled object is the rudder
angle, the input is the desired rudder angle, and the output is the actual rudder angle.
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The servo motor is the actuator of the ESS, and its schematic diagram is shown in Figure 3. The
back EMF generated by the permanent magnet in the armature of the motor is as follows in Equation (1):

vb = Kewm (1)

where wm is the rotation speed, Ke is the Back-emf constant.
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Figure 3. Schematic of the servo motor.

As shown in Figure 3, the electric drive winding voltage balance equation is:

u = L
dia
dt

+ Ria + vb (2)

where u is the control signal voltage, ia is the armature current, R and L are the resistance and
inductance, respectively.

The torque generated by the motor is proportional to the armature current ia:

TE = Ktia (3)

where Kt is the torque constant. Therefore, the torque equation of the motor shaft and the torque
equation of the rudder shaft are Equations (4) and (5), respectively:

Jm
·

wm = TE − Bmwm − Tm (4)

Jt
·

w = T1 − Btw− Tsp(θ) − T f (w) (5)

where Tm and T1 are the input and output torques, respectively. Jm, Bm and Jt, Bt are the moment inertia
and viscous damping constant of the motor and rudder axle, respectively. θ and w are the rotation
angle and rotation speed of the servo system torque, respectively. Tf is the friction torque, Tsp is the
return-spring torque. They are as follows:

T f = Fcsgn(w) (6)

Tsp = TLHsgn(θ− θ0) + ks(θ− θ0),θmin ≤ θ ≤ θmax (7)

where Fc is the friction coefficient, TLH and ks are the offset and gain, respectively. θ0 is the default
initial deflection angle of the ESS. Sgn(.) is the sign function defined as:

sgn(s) =


1 f or s > 0
0 f or s = 0
−1 f or s < 0

. (8)

In practical applications, the physical parameters L, R, ks, TLH, Fc, J, B, Kt, Ke, and n are not fully
known and there is a large degree of uncertainty, especially, such as ks, TLH, Fc. Therefore, for cases
where system parameters are susceptible to these complex factors, mathematical model design control
methods based on system parameter identification are often used.
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Since the armature inductance value L is small, the armature current dynamics ia in Equation (2)
can be neglected, so it can be considered as u = vb = Kewm. The dynamic equation of the main body of
the ESS can be equated with the following simple state space form of the second-order system in the
controller design: 

·

θm = wm
·

θ = w
·

w = −a1(θ− θ0) − a2w + bKewm − c1sgn(θ− θ0) − c2sgn(w)

(9)

where a1 = ks
J , a2 = BR+n2KtKe

JR , b = nKt
JR , c1 = TLH

J , c2 = Fc
J , J = n2 Jm + Jt, B = n2Bm + Bt.

2.2. Fundamental Lemma

Since the finite time control system does not satisfy the Lipschitz continuity, the control design
tool established under the Lipschitz continuity condition is no longer suitable for the analysis and
design of the finite time control method. Therefore, it is necessary to introduce the relevant theory of
finite time control before the control design:

Lemma 1 ([20]). Assume the following non-Lipschitz continuous system

·
x = f (x), f (0) = 0, x ∈ Rn (10)

suppose there exists a continuous function V: U→ R such that the following conditions hold:

(1) V(x) is a positive definite and continuous function on the domain U.
(2) There exist real numbers c >0,α ∈ (0, 1) and an open neighborhood U0 ⊂ U containing the origin,

so that the following conditions are true

·

V + cVα(x) ≤ 0, x ∈ U0\{0}. (11)

For system (10), it is finite-time stable if it is Lyapunov stable in neighborhood U ⊂ U0 and its
state can converge to equilibrium point x = 0 within a finite time. A more precise description is that
if there is a function T(x0): U\{0}→(0,∞), so that for ∀x0 ∈ U ⊂ U0, the system is decoded as x(t, x0);
For x(t, x0)∈U\{0} and limt→

_
T(x0)

x(t, x0) = 0 when t∈[0, T(x0)], for t > T(x0), there is x(t, x0) = 0, then
the system is stable for local finite time. On the basis of this, if U = U0 = Rn, the system is global
finite-time stable.

Lemma 2 ([20]). For any real numbers xi, i = 1, . . . , n, y and 0 < q ≤ 1, the following inequalities hold:

(|x1|+ . . .+ |xn|)
q
≤ |x1|

q + . . .+ |xn|
q (12)∣∣∣xq

− yq
∣∣∣ ≤ 21−q

∣∣∣x− y
∣∣∣q (13)

when q = q1/q2 ≤ 1, q1 and q2 are odd integers.

Lemma 3 ([20]). Let c, d∈R+ and γ(x, y) > 0 be a real-valued function. Then,

|x|c
∣∣∣y∣∣∣d ≤ cγ(x, y)|x|c+d

c + d
+

dγ−c/d(x, y)
∣∣∣y∣∣∣c+d

c + d
. (14)
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3. Control Strategy Based on PSO Identification

3.1. Parameter Identification Based on PSO

PSO algorithm is an evolutionary intelligence algorithm, which originates from birds’ undirected
clustering flight model. It is proposed on the basis of the similarity between the behavior characteristics
of a bird swarm and the solution of optimization problems [26]. In the algorithm, it is assumed that
a particle population is distributed in a D dimensional search space according to a certain rule and
each particle flies at a certain initial velocity from the starting position. Select the appropriate number
of particles m as the group X. Each particle is a d-dimensional vector Xi = [xi1, xi2, . . . , xiD]

T, which
represents a solution to the optimization object.Vi = [vi1, vi2, . . . , viD]

T represents the flight speed of
the ith particle. Pi = [Pi1, Pi2, . . . , PiD]

T and Pg = [Pg1, Pg2, . . . , PgD]
T represent individual optimal

and global optimal, respectively. The individual updates its individual optimal position at any time
according to its own flight history and can obtain the global optimal information of the group at any
time according to the group information sharing. In each update iteration, the particle tracks the above
two types of optimal information to change its flight trajectory. The speed and position update formula
is as follows:  Vk+1

id = wVk
id + c1r1(Pk

id −Xk
id) + c2r2(Pk

gd −Xk
gd)

Xk+1
id = Xk

id + Vk+1
id

(15)

where d = 1, 2, . . . , D. i = 1, 2, . . . , m. k represents iteration steps, k = 0, 1, . . . , km. w is an inertia
weight. c1, c2 are non-negative constants named the acceleration factors, r1, r2 are random numbers
distributing on [0,1].

The identification diagram is shown in Figure 4. By considering the combination of identification
accuracy and optimization speed, choose m = 40, km = 120, and Xi = [L, R, ks, TLH, Fc, J, B, nKt, nKe]T.
The fitness function is selected by the ISE criterion. The fitness function is defined as follows:

ISE =

∫
(θa − θi)

2dt (16)

where θa and θi represent the real and identified angle of the ESS, respectively. The smaller the fitness
value, the closer the model consisting of the identification parameters is to the actual system model.
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3.2. Improvements on PSO

According to the above description, it can be known that the particles in the PSO only share
information through the current search to the best point, which will cause the particles (the identified
system parameters) to fall into the local optimum. When Pg maintains the same value for five iterations
in the iterative process but the criterion is not within the allowable error, GA is used to improve the
search range and search ability of PSO, thus avoiding particles that are “premature”. In order to
avoid the misunderstanding of the proposed solution (optimization process), which is only for specific
laboratory cases, we explain the value: if this value is too small, then the optimization speed cannot be
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guaranteed and there will be a phenomenon whereby PSO is not “premature” but frequently uses GA
for extensive search; if this value is too large, then the optimization accuracy cannot be guaranteed and
there will be multiple invalid cycles of PSO, but GA cannot help to enhance the search ability.

3.2.1. Introducing GA into PSO

The principle of GA is like natural evolution. According to the rules of the survival of the
fittest, only the genes of individuals adapting to the environment can survive and pass on to the next
generation, and the individual gradually develops into an excellent individual [29]. The procedure is
as follows:

(1) Crossover. It is assumed that the crossover probability is Pc in the entire population and the
crossover operations are performed between individuals when the crossover probability is greater
than the set value. The offspring Xk+1

i and Xk+1
j of randomly chosen parents Xk

i and Xk
j are:

i f rand1 > Pc then Xk+1
i = Xk

i + rand×
(
Xk

j −Xk
i

)
Xk+1

j = Xk
j + rand×

(
Xk

i −Xk
j

)
;

else Xk+1
i = Xk

i Xk+1
j = Xk

j ;
(17)

where rand and rand1 represent random numbers that obey the uniform distribution.
(2) Mutation. Assume that the crossover probability Pm is greater than the set value. The offspring

population is generated according to Equation (18):

i f rand2 > Pm then
i f r < 0.5 then Xk+1

i = Xk
i + λ(Uk − Lk) else Xk+1

i = Xk
i − λ(Uk − Lk);

else Xk+1
i = Xk

i ;
(18)

where rand2, r, and λ represent random numbers that obey the uniform distribution, the element
Xk

i ∈ [Lk, Uk].

(3) Replacement. Calculate the individual fitness values of the offspring after the crossover and
mutation, and the elite retention strategy according to Equation (19):

i f ISEXk
i
< ISEXk+1

i
then

Pg =
{
Pi

∣∣∣∣ISEXk
i
= min, i ∈ {1, 2, . . . , m}

}
else Pg =

{
Pi

∣∣∣∣∣ISEXk+1
i

= min, i ∈ {1, 2, . . . , m}
} (19)

3.2.2. Improve Inertia Weight

The schematic diagram of the improved PSO is shown in Figure 5. The inertia weight and
acceleration factors play a key role in the global and local performance of the PSO. In the early stage of
evolution, in order to speed up the search ability, a large inertia weight w is selected to expand the
optimization space. When the algorithm evolves to the later stage, the local search is strengthened
by reducing the inertia weight w to speed up the convergence. According to the above description,
gradually reducing the acceleration coefficient c1 and gradually increasing c2 meets the early and late
requirements of the algorithm optimization [30]. Therefore, choose inertial weight and acceleration
coefficient as:  w = wmin+(wmax −wmin)e−20(k/km)

6

c1 = 0.5w2 + w + 1, c2 = 2.5− c1
(20)

with wmax = 0.9 and wmin = 0.4.



Energies 2019, 12, 3578 8 of 19

Energies 2019, 12, x  8 of 20 

 

gradually reducing the acceleration coefficient c1 and gradually increasing c2 meets the early and late 
requirements of the algorithm optimization [30]. Therefore, choose inertial weight and acceleration 
coefficient as:  

620( / )
min max min

2
1 2 1

+( - )

0.5 1, 2.5

mk kw w w w e

c w w c c

− =

 = + + = −

 (20) 

with wmax = 0.9 and wmin = 0.4. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Flowchart of the improved particle swarm algorithm. 

3.3. Controller Based on Finite Time  

For an ESS, a good motor drive system must be able to control the steering gear with high 
response accuracy and response speed, and be able to resist some external disturbances. By 
identifying the results, the ESS servo controller can be designed using the finite time theory of the 
servo system based identification model. Therefore, for the model of the identified system (9), the 
following FTSSC was designed: 

3 2
1 1 1 1

2 1 2 11
1 2 2 3 3 3 2 2 1 1

q

q q q qu b a x a x k x k x k x

−

− −−
      = − − + + +       

 (21) 

where 1 ( )dtrx θ θ= − , 2 rx θ θ= − , 23 rx x wθ= = −
 

, rθ  is the desired reference input; the adjustable 

constants k1, k2, and k3 are positive; and 1 2/ (2/ 3,1)q q q= ∈ , q1＞0, and q2＞0 are odd integers, which 
satisfy the following conditions: 

Figure 5. Flowchart of the improved particle swarm algorithm.

3.3. Controller Based on Finite Time

For an ESS, a good motor drive system must be able to control the steering gear with high response
accuracy and response speed, and be able to resist some external disturbances. By identifying the
results, the ESS servo controller can be designed using the finite time theory of the servo system
based identification model. Therefore, for the model of the identified system (9), the following FTSSC
was designed:

u = b−1

−a1x2 − a2x3 + k3

[
x

1
2q−1

3 + k
1

2q−1

2

(
x

1
q
2 + k

1
q

1 x1

)]3q−2
 (21)

where x1 =
∫
(θr − θ)dt, x2 = θr − θ, x3 =

·
x2 =

·

θr −w, θr is the desired reference input; the adjustable
constants k1, k2, and k3 are positive; and q = q1/q2 ∈ (2/3, 1), q1 > 0, and q2 > 0 are odd integers, which
satisfy the following conditions:

m1 = k1 −
l(3− 2q)k1/(2q−1)

2

1 + q

[
γ522−2qqk1+1/q

1 + γ7M3
]
− 21−q

[
γ1 + γ2(2− q)k1+1/q

1

]
/(1 + q) > 0 (22)

m2 = k2 − 21−q(2− q)k1/q
1 − γ

−1/q
1 21−qq/(1 + q) − (2−q)

[
γ
−q
2 21−qk1+1/q

1 + γ322−2q
]
/(1 + q)

−
l(3−2q)k1/(2q−1)

2
1+q

[
γ422−2qqk1/q

1 + γ6M2
]
> 0

(23)
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m3 = lk3 − γ
−(2−q)/(2q−1)
3 22−2q(2q− 1)/(1 + q) −

l(γ−q
4 +γ

−q
5 k1)22−2q(3−2q)k1/q

1 k1/(2q−1)
2

1+q

−
l(3−2q)k1/(2q−1)

2
q

[
M1 +

γ
−q
6 M2
1+q +

γ
−q
7 M3
1+q

]
> 0

(24)

where l,γi(i = 1, . . . , 7) are positive adjustable constants.
According to the definition of servo controller (21) and state variable x = [x1, x2, x3]

T designed in
this paper, system (9) is described as:

·
x1 = x2
·
x2 = x3
·
x3 = −k3

[
x1/(2q−1)

3 + k1/(2q−1)
2

(
x1/q

2 + k1/q
1 x1

)]3q−2
. (25)

The time derivative V1(x1) =
1
2 x2

1 of the Lyapunov function considered for the nonlinear state
space model (25) was chosen to satisfy the following formula:

·

V1(x1) ≤
∣∣∣x1(x2 − x2d)

∣∣∣− k1x1+q
1 (26)

where x2d is the virtual control law and is constructed as x2d = −k1xq
1. For the subsystem (x1, x2) of

Equation (25), a Lyapunov function of the power integrator was chosen as follows:

V2(x1, x2) = V1(x1) +

∫ x2

x2d

(s
1
q − x

1
q

2d)
2−q

ds. (27)

Therefore, the time derivative of V2(x1, x2) is obtained as

·

V2 ≤
∣∣∣x1(x2 − x2d)

∣∣∣− k1x1+q
1 + ς

2−q
2 x3 + (2− q)k

1
q

1 x2
∫ x2

x2d
(s

1
q − x

1
q

2d)
1−qds

≤

∣∣∣x1(x2 − x2d)
∣∣∣− k1x1+q

1 + ς
2−q
2 (x3 − x3d) + ς

2−q
2 x3d + (2− q)k

1
q

1 |x2||x2 − x2d|ς
1−q
2

(28)

where ς2 = x1/q
2 − x1/q

2d , ∂(−x1/q
2d )/∂x1 = k1/q

1 are utilized. The Lemmas 2 and 3 are applied to the first
half and the second half of Inequality (28), and the final results are as follows:∣∣∣x1(x2 − x2d)

∣∣∣ ≤ 21−q
|x1|

∣∣∣ςq
2

∣∣∣ ≤ 21−q(γ1x1−q
1 + γ

−1/q
1 qς1+q

2 )/(1 + q) (29)

|x2||x2 − x2d| ≤ 21−q
∣∣∣∣ς2 + x1/q

2d

∣∣∣∣q∣∣∣ςq
2

∣∣∣ ≤ 21−qς
2q
2 + 21−qk1

∣∣∣xq
1

∣∣∣∣∣∣ςq
2

∣∣∣. (30)

Then, substituting (29) and (30) into (28) yields

·

V2 ≤ 21−q(
γ1x1+q

1
1+q +

γ1
−1/qqς1+q

2
1+q ) − k1x1+q

1 + ς
2−q
2 (x3 − x3d) + 21−q(2− q)k1/q

1 ς
1+q
2

+ς
2−q
2 x3d + 21−q(2− q)k1+1/q

1

∣∣∣xq
1

∣∣∣|ς2|
(31)

Moreover, according to Lemma 3

|x1|
q
|ς2| ≤

γ2qx1+q
1

1 + q
+
γ2
−qς

1+q
2

1 + q
. (32)

Additionally, let x3d = −k2ς
2q−1
2 , Inequality (31) becomes

·

V2 ≤

[
−k2 + 21−q

[
γ1
−1/qq

1+q + (2− q)k1/q
1 (1 + γ2

−qk1
1+q )

]]
ς

1+q
2

+
[
−k1 +

21−q

1+q (γ1 + γ2q(2− q)k1+1/q
1 )

]
x1+q

1 + |ς2|
2−q
|x3 − x3d|

(33)
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The constructed Lyapunov function is as follows

V3(x) = V2(x1, x2) + l
∫ x3

x3d

(
s

1
2q−1 − x

1
2q−1

3d

)3−2q

ds. (34)

Noting that ∂(−x
1

2q−1

3d )/∂x1 = k
1
q

1 k
1

2q−1

2 , ∂(−x
1

2q−1

3d )/∂x2 = 1
q k

1
2q−1

2 x
1
q−1

2 , the time derivative of
V3(x1,x2,x3) is

·

V3(x) ≤
·

V2 + lς3−2q
3

·
x3 + l(3− 2q)k

1
2q−1

2 |x3 − x3d|ς
2−2q
3 ×

[
k

1
q

1 |x2|+
1
q

∣∣∣∣∣x 1
q−1

2

∣∣∣∣∣|x3|

]
(35)

where ς3 = x1/(2q−1)
3 − x1/(2q−1)

3d . By applying Lemmas 2 and 3, the following inequalities are established:

|ς2|
2−q
|x3 − x3d| ≤ 22−2q

|ς2|
2−q
|ς3|

2q−1
≤

22−2q

1 + q

[
γ3(2− q)ς1+q

2 + γ
−

2−q
2q−1

3 (2q− 1)ς1+q
3

]
(36)

|x2||x3 − x3d|ς
2−2q
3 ≤ 22−2q(|ς2|

q
|ς3|+ k1|x1|

q
|ς3|) ≤

22−2q

1 + q

[
γ5qk1x1+q

1 + γ4qς1+q
2 + (γ

−q
4 + γ

−q
5 k1)ς

1+q
3

]
(37)

∣∣∣∣∣x 1
q−1

2

∣∣∣∣∣|x3| ≤

1− q
q

+ k2 +
(2q− 1)k

1
q−1

1 k2

q

|ς2|
q +

(2q− 1)(1 + k
1
q−1

1 )

q
|ς3|

q +
(1− q)k

1
q−1

1 (1 + k2)

q
|x1|

q (38)

Furthermore ∣∣∣∣x1/q−1
2

∣∣∣∣|x3||x3 − x3d|ς
2−2q
3 ≤M1ς

1+q
3 + M2|ς2|

q
|ς3|+ M3|x1|

q
|ς3|

≤M1ς
1+q
3 + M2

[
γ6q
1+qς

1+q
2 +

γ6
−q

1+q ς
1+q
3

]
+ M3

[
γ7q
1+q x1+q

1 +
γ7
−q

1+q ς
1+q
3

] (39)

After that, (33), (36), (37), and (39) were substituted into (35), and at the same time, the definitions

of ς3, x3d, ς2, x2d and m1, m2, m3 of the systems (25) and (22)–(24) were considered, respectively.
·

V3

satisfies the following formulas:

·

V3(x) ≤ −m1x1+q
1 −m2ς

1+q
2 −m3ς

1+q
3 . (40)

Meanwhile, by Lemma 2 V3(x1, x2, x3) satisfies

V3(x) ≤
1
2

x2
1 + |x2 − x2d|ς

2−q
2 + |x3 − x3d|ς

3−2q
3 ≤ 2x2

1 + 2ς2
2 + 2ς2

3. (41)

Then, by Lemma 2, the following inequality holds.

·

V3(x) ≤ −2−
1+q

2 λ
(
2x2

1 + 2ς2
2 + 2ς2

3

) 1+q
2
≤ −2−

1+q
2 λV3(x1, x2, x3)

1+q
2 (42)

where λ = min{m1, m2, m3}, through the above description, and finally through Lemma 1, from (34) and

(42) it was concluded that the system (25) is stable with c = 2−
1+q

2 λ,α =
1+q

2 ∈ (0, 1) for a finite time at
the equilibrium point x = 0. In short, the proposed control strategy (21) ensures that the system (9) has
a desired angle of higher static performance x1 =

∫
(θr − θ)dt = 0, x2 = θr − θ = 0 for a limited time.

3.4. Co-Simulation

In order to prove the performance of the proposed FTSSC, co-simulation experiments based
on ADAMS and MATLAB/Simulink were implemented. As shown in Figure 6a, the mechanical
dynamics analysis software ADAMS was used to simulate the dynamics of the steering gear, and
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the motion parameters of the dynamic model were provided to Simulink. Simulink receives these
external parameters and outputs the controller model to the ADAMS. External excitation (control force
or torque) is required to control the movement of the mechanism components.

As shown in Figure 6b, the ADAMS–Simulink interface module generated by ADAMS/Control
motor model and FTSSC model were combined to establish the servo control system. The pink module
in Figure 6b is a nonlinear subsystem constructed by ADAMS. The model function is to realize the
rudder angle position tracking. The actual rudder angular displacement of the servo motor output
is used as feedback and the model motion in the ADAMS is controlled by the torque output of the
motor model. For example, when a servo system input signal θ is given, firstly, the controller outputs a
voltage signal Um based on the FTSSC strategy proposed in this paper. Then, the voltage Um output by
the controller and the steering feedback rotational speed wm are used as the input to the motor, so that
the motor outputs the torque Tm. Finally, the torque drives the mechanical model structure based on
the ADAMS, thereby outputting the deflection angle θa and the rotational speed wm.
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Figure 6. Co-simulation based on ADAMS and Simulink: (a) the scheme of co-simulation; (b) the
scheme of MALTAB/Simulink.

The principle of the simulation experiment platform is introduced above. In order to verify the
superiority of our proposed strategy, we compared the controller proposed in Section 3.3 with the
existing strategy through the simulation under this environment. In [16], the robust adaptive PID
sliding mode control (RASMC) strategy was used to verify the transient performance of the system
and the robust performance, and the experimental results showed that the control performance of the
proposed RASM controller was much better than the PID controller in [13] and the H∞ controller
in [17]. Therefore, we only compared the FTSSC strategy proposed in this paper with the RASM control
strategy in [16].

In the simulation, the system model was the same as in [16] and Table 1 lists the system parameter
values in the co-simulation modeling. The parameters of the controller (21) are set as follows:

q = 96/97, k1 = 0.25, k2 = 38, k3 = 400, l = 0.00019,
γ1 = 0.03,γ2 = 1,γ3 = 20,γ4 = 1,γ5 = 15,γ6 = 10,γ7 = 54

(43)

consequently, m1 = 0.0076, m2 = 5.7595, m3 = 0.00035. Figures 7 and 8 show the response curve of the
control command of the ESS, the controller (21), and the RASMC, respectively.
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Table 1. Physical parameters of Electric servo system (ESS).

Parameters Value Unit

J 0.0031 kgm2

B 0.0098 Nm s/rad
Kt 0.0175 Nm/A
Ke 0.0295 V s/rad
ks 0.0877 Nm/rad

TLH 0.46 Nm
Fc 0.34 Nm
R 1.55 Ω
L 1.6 mH
θ0 15 ◦

n 22.26 /
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In summary, Figures 7 and 8 show two distinct advantages of the PSO-based FTSSC strategy
compared to the RASM controller. One is that the ESS has a fast response speed (response time is
less than 100 ms), which indicates that the ESS tracking speed is fast. The other is that the controller
tracking error based on FTSSC is smaller than the RASM control method, which indicates that the ESS
tracking accuracy is very high.
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4. Experimental Application and Results Analysis

This section verifies the effectiveness of applying the proposed strategy to the ESS. The experiment
was performed on the test platform of the ESS shown in Figure 9. The experiment was divided into
two parts—one was to carry out the system parameter identification experiment of ESS and the other
part was to apply the identified parameters to the FTSSC controller designed in this paper.

4.1. Parameter Identification Experiment

The experimental flow of parameter identification is as follows: Firstly, the test equipment sends
the desired angle signal and collects the feedback signal of ESS. The feedback signal is the real world
output angle θa of ESS. Then, using the algorithm programming in MATLAB environment, the control
signal data (expected angle) are input into the preset identification model to get the identification angle
θi. According to the definition of the fitness value of Equation (16), the ESS parameters are continuously
optimized by the improved PSO proposed in this paper to make it close to the physical parameters of
real-world real systems. Finally, the parameter identification performance of four different algorithms
are compared. Therefore, as in the simulation experiment, the parameter identification optimization
criterion of the actual system in this paper is also carried out through the definition of Equation (16).

Energies 2019, 12, x  14 of 20 

 

1

1 100%
D ii

k i

X X
APE

D X

∧

=

−
= ×  (45) 

where Xi is the parameter in actual system,
iX

∧
is the parameter in identified system, D is the dimension 

of Xi. 
Figure 10 shows the identification process of different algorithms. In order to avoid being misled 

by Figure 10, this paper only compared the optimization results of each algorithm, so that they can 
avoid the irrelevant relationship caused by random data (at initialization). The results show that the 
IPSO2 has the advantages of higher convergence accuracy (smaller fitness value) and fewer iteration 
steps compared with the other three algorithms. Meanwhile, it can be seen from Table 2 that the 
maximum PE of IPSO2 is only 5%, far lower than the 18% of GA and 25% of PSO, which indicates 
that the improvement strategy, such as the introducing GA into PSO and improved inertia weight, 
can effectively improve the convergence accuracy and optimization speed of the algorithm. 

 
Figure 9. Electric servo system (ESS) hardware-in-loop test platform. 

 
Figure 10. Identification process of different algorithms. 

Table 2. ESS physical parameter identification results. 

Parameters Theoretical Value 

Mean Value of the Identification Parameter (30 Trials) 
GA PSO IPSO1 IPSO2 

iX
∧

 PE 
iX

∧

 PE 
iX

∧

 PE 
iX

∧

 PE 

L 0.005 0.0041 0.18 0.0045 0.1 0.0047 0.06 0.0049 0.02 
R 1.5 1.53 0.02 1.55 0.033 1.52 0.013 1.508 0.005 
ks 0.1 0.080 0.2 0.075 0.25 0.088 0.12 0.098 0.02 

TLH 0.1 0.095 0.05 0.092 0.08 0.095 0.05 0.098 0.02 

0 20 40 60 80 100 120 140 160 180 200
Iteration

0

0.5

1

1.5

2

2.5

Fi
tn

es
s 

va
lu

e

GA
PSO
IPSO1
IPSO2

Figure 9. Electric servo system (ESS) hardware-in-loop test platform.

In order to verify the effectiveness of the proposed PSO, the other three optimization algorithms
GA, PSO, and IPSO1 were compared with the improved PSO. Among the four algorithms, IPSO1 is a
PSO algorithm without GA but with improved inertia weight, and IPSO2 is the proposed algorithm in
this paper. For fair comparison, the basic parameters of all algorithms were set according to Section 3
and these four algorithms were compared with the fitness values defined in (16). In addition, the
parameter error (PE) and the average parameter error (APE) were employed in this study to evaluate
the parameter identification accuracy of system. The PE and APE were calculated as follows:

PE =

∣∣∣∣∣∣∣∣Xi −
∧

Xi
Xi

∣∣∣∣∣∣∣∣× 100%, i = 1, 2, . . . , D (44)

APE =
1
D

D∑
k=1

∣∣∣∣∣∣∣∣Xi −
∧

Xi
Xi

∣∣∣∣∣∣∣∣× 100% (45)

where Xi is the parameter in actual system,
∧

Xi is the parameter in identified system, D is the dimension
of Xi.

Figure 10 shows the identification process of different algorithms. In order to avoid being misled
by Figure 10, this paper only compared the optimization results of each algorithm, so that they can
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avoid the irrelevant relationship caused by random data (at initialization). The results show that the
IPSO2 has the advantages of higher convergence accuracy (smaller fitness value) and fewer iteration
steps compared with the other three algorithms. Meanwhile, it can be seen from Table 2 that the
maximum PE of IPSO2 is only 5%, far lower than the 18% of GA and 25% of PSO, which indicates that
the improvement strategy, such as the introducing GA into PSO and improved inertia weight, can
effectively improve the convergence accuracy and optimization speed of the algorithm.
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Table 2. ESS physical parameter identification results.

Parameters Theoretical
Value

Mean Value of the Identification Parameter (30 Trials)

GA PSO IPSO1 IPSO2
∧

Xi
PE ∧

Xi
PE ∧

Xi
PE ∧

Xi
PE

L 0.005 0.0041 0.18 0.0045 0.1 0.0047 0.06 0.0049 0.02
R 1.5 1.53 0.02 1.55 0.033 1.52 0.013 1.508 0.005
ks 0.1 0.080 0.2 0.075 0.25 0.088 0.12 0.098 0.02

TLH 0.1 0.095 0.05 0.092 0.08 0.095 0.05 0.098 0.02
Fc 0.01 0.008 0.2 0.008 0.2 0.009 0.1 0.0098 0.02
J 0.004 0.0032 0.2 0.0035 0.125 0.0037 0.075 0.0038 0.05
B 0.8 0.769 0.039 0.751 0.061 0.772 0.035 0.783 0.021
Kt 0.93 0.89 0.043 0.902 0.03 0.925 0.005 0.934 0.004
Ke 0.005 0.0044 0.12 0.0042 0.16 0.0045 0.1 0.0049 0.02

APE 0.117 0.115 0.062 0.02

4.2. Controller Verification

The physical parameters of ESS were obtained by Section 4.1. In order to verify the transient
response speed and steady-state accuracy of the proposed controller in practical application.
We compared this with the existing feedforward PID control [13] and H∞ control law [17] as follows:

uPID = −5x2 − 1.2x1 − 0.1x3 + τ f a0 + τspa0 (46)

uH∞ = 0.15
··

θr + 0.5
·

θ− 14x2 − 0.6x3 (47)

where τ f a =
Fcsgn(w)R

nKt
,τspa =

[TLHsgn(θ−θ0)+ks(θ−θ0)]R
nKt

.
Through the above identification experiment of ESS, since the actual physical parameters are

different from the co-simulation model, the parameters of the controller (21) were set as follows:



Energies 2019, 12, 3578 15 of 19

q = 96/97, k1 = 0.1, k2 = 16, k3 = 233, l = 0.00015,
γ1 = 0.14,γ2 = 1,γ3 = 19,γ4 = 1,γ5 = 15,γ6 = 10,γ7 = 10
m1 = 0.0185, m2 = 1.6428, m3 = 0.001

(48)

The experiment applied three different reference signals to the ESS on the actual hardware test
equipment of the ESS. The experimental conditions are as follows:

Experiment 1. Up–down stair signals were applied to the ESS that responds to the fast acceleration
and deceleration processes over different angular control ranges, as shown in Figure 11a.

Experiment 2. Trapezium signals with a slope of 30 deg/s were applied to the ESS to verify the response
speed of the servo during constant acceleration and deceleration, as shown in Figure 12a.

Experiment 3. A chirp signal varying from 1 Hz to 10 Hz was applied to the ESS to verify the dynamics
and tracking performance of the servo system during dynamic motion process, as shown in Figure 13a.

Energies 2019, 12, x  15 of 20 

 

Fc 0.01 0.008 0.2 0.008 0.2 0.009 0.1 0.0098 0.02 
J 0.004 0.0032 0.2 0.0035 0.125 0.0037 0.075 0.0038 0.05 
B 0.8 0.769 0.039 0.751 0.061 0.772 0.035 0.783 0.021 
Kt 0.93 0.89 0.043 0.902 0.03 0.925 0.005 0.934 0.004 
Ke 0.005 0.0044 0.12 0.0042 0.16 0.0045 0.1 0.0049 0.02 

APE 0.117 0.115 0.062 0.02 

4.2. Controller Verification 

The physical parameters of ESS were obtained by Section 4.1. In order to verify the transient 
response speed and steady-state accuracy of the proposed controller in practical application. We 
compared this with the existing feedforward PID control [13] and H∞ control law [17] as follows:  

2 1 3 0 05 1.2 0.1PID fa spau x x x= − − − + +τ τ  (46) 

2 30.15 0.5 14 0.6rHu x x∞ = + − −
 

θ θ  (47) 

where 
( )c

fa
t

F sgn w R
nK

=τ , 0 0( ) ( )LH s
spa

t

T sgn k R
nK

 − + −  =
θ θ θ θ

τ . 

Through the above identification experiment of ESS, since the actual physical parameters are 
different from the co-simulation model, the parameters of the controller (21) were set as follows: 

1 2 3

1 2 3 4 5 6 7

1 2 3

96 / 97, 0.1, 16, 233, 0.00015,
0.14, 1, 19, 1, 15, 10, 10
0.0185, 1.6428, 0.001

q k k k l
γ γ γ γ γ γ γ
m m m

= = = = =
= = = = = = =
= = =

 (48)

The experiment applied three different reference signals to the ESS on the actual hardware test 
equipment of the ESS. The experimental conditions are as follows: 

Experiment 1. Up–down stair signals were applied to the ESS that responds to the fast acceleration 
and deceleration processes over different angular control ranges, as shown in Figure 11a.  

Experiment 2. Trapezium signals with a slope of 30 deg/s were applied to the ESS to verify the 
response speed of the servo during constant acceleration and deceleration, as shown in Figure 12a. 

Experiment 3. A chirp signal varying from 1 Hz to 10 Hz was applied to the ESS to verify the 
dynamics and tracking performance of the servo system during dynamic motion process, as shown 
in Figure 13a. 

 
(a) (b) 

Figure 11. Experiment 1 result: (a) actual output; (b) tracking error. Figure 11. Experiment 1 result: (a) actual output; (b) tracking error.Energies 2019, 12, x  16 of 20 

 

 
(a) (b) 

Figure 12. Experiment 2 result: (a) actual output; (b) tracking error. 

  
(a) (b) 

Figure 13. Experiment 3 result: (a) actual output; (b) tracking error. 

From Figures 11a–13a, it can be seen that compared with the existing PID control and H∞ control 
law, the FTSSC strategy proposed in this paper can follow the given signal quickly and accurately, 
whether in the rapid acceleration and deceleration process in different signal ranges, the acceleration 
and deceleration process changing at a constant angle, or during dynamic motion process. Figures 
11b–13b show that the control error of FTSSC was reduced by 75% compared to PID and H∞ control 
law, which verifies the effectiveness of the proposed strategy. 

In addition, in order to verify the advantages of the proposed controller in energy consumption, 
Figure 14 shows the control voltage consumption of the controller under different conditions in 
Experiments 1–3. It can be seen that ESS based on FTSSC controller has lower energy consumption 
than the other two controllers. Therefore, the proposed control strategy is economical and efficient. 

Figure 12. Experiment 2 result: (a) actual output; (b) tracking error.

From Figures 11a, 12a and 13a, it can be seen that compared with the existing PID control and
H∞ control law, the FTSSC strategy proposed in this paper can follow the given signal quickly and
accurately, whether in the rapid acceleration and deceleration process in different signal ranges, the
acceleration and deceleration process changing at a constant angle, or during dynamic motion process.
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Figure 11b, Figure 12b, Figure 13b show that the control error of FTSSC was reduced by 75% compared
to PID and H∞ control law, which verifies the effectiveness of the proposed strategy.

Energies 2019, 12, x  16 of 20 

 

 
(a) (b) 

Figure 12. Experiment 2 result: (a) actual output; (b) tracking error. 

  
(a) (b) 

Figure 13. Experiment 3 result: (a) actual output; (b) tracking error. 

From Figures 11a–13a, it can be seen that compared with the existing PID control and H∞ control 
law, the FTSSC strategy proposed in this paper can follow the given signal quickly and accurately, 
whether in the rapid acceleration and deceleration process in different signal ranges, the acceleration 
and deceleration process changing at a constant angle, or during dynamic motion process. Figures 
11b–13b show that the control error of FTSSC was reduced by 75% compared to PID and H∞ control 
law, which verifies the effectiveness of the proposed strategy. 

In addition, in order to verify the advantages of the proposed controller in energy consumption, 
Figure 14 shows the control voltage consumption of the controller under different conditions in 
Experiments 1–3. It can be seen that ESS based on FTSSC controller has lower energy consumption 
than the other two controllers. Therefore, the proposed control strategy is economical and efficient. 

Figure 13. Experiment 3 result: (a) actual output; (b) tracking error.

In addition, in order to verify the advantages of the proposed controller in energy consumption,
Figure 14 shows the control voltage consumption of the controller under different conditions in
Experiments 1–3. It can be seen that ESS based on FTSSC controller has lower energy consumption
than the other two controllers. Therefore, the proposed control strategy is economical and efficient.Energies 2019, 12, x  17 of 20 

 

 
Figure 14. Energy consumption results of different control strategies: (a) experiment 1; (b) experiment 
2; (c) experiment 3. 

Table 3 summarizes the dynamic and static performance response results of Experiment 1–2, 
including setting time ts, overshoot σp%, and steady state error ess. As can be seen from Table 3 and 
the histogram of Figure 15, all steady-state times were within 100 ms, while all overshoots during 
acceleration and deceleration were less than 3%. Compared with the other two control methods, the 
control accuracy was improved by at least 50%, which indicates that the proposed control strategy 
can effectively and accurately achieve rudder angle tracking, thus meeting the requirements of 
transient and static performance under actual operating conditions. 

Table 3. Analysis and summary of experimental results. 

Experiment Reference/° ts/ms %pσ  sse  

1 

−40 to −20 up 70 2% 0.5 
−20 to 0 up 65 1.7% 0.4 
0 to 20 up 68 2.5% 0.2 
20 to 40 up 80 1.9% 0.3 

2 
−45 to 45 ramp 90 1.5% 0.5 
45 to −45 ramp 95 1% 0.6 

 
 
 
 
 
 
 

Figure 14. Energy consumption results of different control strategies: (a) experiment 1; (b) experiment 2;
(c) experiment 3.



Energies 2019, 12, 3578 17 of 19

Table 3 summarizes the dynamic and static performance response results of Experiment 1–2,
including setting time ts, overshoot σp%, and steady state error ess. As can be seen from Table 3 and
the histogram of Figure 15, all steady-state times were within 100 ms, while all overshoots during
acceleration and deceleration were less than 3%. Compared with the other two control methods, the
control accuracy was improved by at least 50%, which indicates that the proposed control strategy can
effectively and accurately achieve rudder angle tracking, thus meeting the requirements of transient
and static performance under actual operating conditions.

Table 3. Analysis and summary of experimental results.

Experiment Reference/◦ ts/ms σp% ess

1

−40 to −20 up 70 2% 0.5
−20 to 0 up 65 1.7% 0.4
0 to 20 up 68 2.5% 0.2
20 to 40 up 80 1.9% 0.3

2
−45 to 45 ramp 90 1.5% 0.5
45 to −45 ramp 95 1% 0.6Energies 2019, 12, x  18 of 20 

 

 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

 

 (b) 

Figure 15. Performance comparison of different control strategies: (a) experiment 1; (b) experiment 2. 

5. Conclusions  

In this paper, the difficult problem of improving ESS resp onse accuracy and response speed 
was influenced by uncertainties related to friction, clearance, and component aging. In order to 
overcome these difficulties, the system controller design and the actual physical parameters of the 
ESS can be accurately and quickly identified. The GA algorithm was introduced into the PSO 
algorithm and the inertia weight of the PSO was improved to obtain the accurate mathematics of the 
ESS. A finite-time servo controller for ESS was designed based on the finite-time stability of the 
model, which converges faster than the asymptotic stability. Co-simulation experiments based on 
ADAMS and MATLAB/Simulink showed that this strategy can ensure satisfactory tracking accuracy 
and speed. Meanwhile, the electric steering gear under different conditions was tested on the ESS test 
platform to verify the effectiveness and practicability of the control strategy. However, in the current 
work, online identification and tracking of ESS parameters in dynamic environments remains to be 
further studied. 
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5. Conclusions

In this paper, the difficult problem of improving ESS resp onse accuracy and response speed
was influenced by uncertainties related to friction, clearance, and component aging. In order to
overcome these difficulties, the system controller design and the actual physical parameters of the ESS
can be accurately and quickly identified. The GA algorithm was introduced into the PSO algorithm
and the inertia weight of the PSO was improved to obtain the accurate mathematics of the ESS.
A finite-time servo controller for ESS was designed based on the finite-time stability of the model,
which converges faster than the asymptotic stability. Co-simulation experiments based on ADAMS
and MATLAB/Simulink showed that this strategy can ensure satisfactory tracking accuracy and speed.
Meanwhile, the electric steering gear under different conditions was tested on the ESS test platform to
verify the effectiveness and practicability of the control strategy. However, in the current work, online
identification and tracking of ESS parameters in dynamic environments remains to be further studied.
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