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Abstract: Innovations play a significant role in the primary sector (i.e., agriculture, fisheries and
forestry), ensuring a greater performance towards bioeconomy and sustainability. Innovation is being
progressively applied to examining the organization of joint technological, social, and institutional
modernizations in the primary sector. Exploring the governance of actor relations, potential policies,
and support structures is crucial in the phase of innovation, e.g., during research activities, often
applied at the national or sectorial scale. However, when opposing normative guidelines for
alternative systems of agriculture arise (e.g., the industrial agriculture paradigm), modernizations in
agricultural and forestry may contribute to outlining more sustainable systems. To date, innovations
in the primary sector do not seem as advanced as in other sectors, apart from industrial agriculture,
which sometimes appears to be the most encouraged. The present review aims to shed light on
innovations that have been identified and promoted in recent years in the primary sector, including
agriculture and forestry. The need to pursue sustainable development in this sector requires the
inclusion of a fourth dimension, namely energy. In fact, energy sustainability is an issue that has
been much discussed in recent years. However, the need for progressive technological progress is
indispensable to ensure long-lasting energy efficiency. The aim is to understand what innovations
have been implemented recently, highlighting opportunities and limitations for the primary sector.
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1. Introduction

Innovations play a significant role in the primary sector (i.e., agriculture, fisheries and forestry),
ensuring a greater performance towards bioeconomy and sustainability [1–3]. Innovation has been
progressively applied to examine the organization of joint technological, social and institutional
modernizations in the primary sector [4–6]. Exploring the governance of actor relations, potential
policies, and support structures is crucial in the phase of innovation, e.g., during research activities [7],
often applied at the national or sectorial scale [5,7]. However, when opposing normative guidelines
for alternative systems of agriculture arise (e.g., the industrial agriculture paradigm), modernizations
in agriculture and forestry may contribute to outlining more sustainable systems [5,8–12]. To date,
innovations in the primary sector do not seem as advanced as in other sectors, apart from industrial
agriculture, which sometimes appears to be the most encouraged nowadays [10]. This leads to the
need (i) to adopt a multifunctional approach to agriculture, (ii) to focus explicitly on ecological aspects,
and (iii) to take on technological advances that involve different disciplines [5,13,14].

Innovations in the primary sector can enable a cooperative achievement emerging from different
actors (frequently in new mixtures), providing innovative modes of production and new organizational
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structures and activities to better support widespread learning, adapting, and adjusting [5,15].
By permitting relations across different stakeholders (e.g., professional, sectoral, organizational,
or cultural), the involved actors can (i) experiment together, (ii) propose new technologies, practices,
and institutions, and (iii) support evolution towards a more sustainable agriculture [5,15]. Thanks to the
interactions among different actors, changes to more sustainable agriculture comprise the development
of modernization [15,16].

Complex challenges facing an evolution towards more sustainable agricultural and forestry systems
are often connected to resource competition (e.g., energy, water, land, biodiversity), socio-economic
apprehensions (e.g., community development, rural livelihoods, emerging markets), and environmental
integrity (e.g., climate change) [17–20]. Such challenges characteristically span numerous natural
resource management systems (e.g., agriculture and forestry, but also water, conservation and
energy) and related ecosystem services (including the provision, regulatory, cultural and support
services) [5,21,22]. Agriculture-related fields identify the requirement for better adoptive relationships
across scales and sectors to report multifaceted sustainability trials [13,23]. Consequently, more
networked methods are required to move toward innovation and sustainable agriculture, with the aim to
simplify the boundary crossing and to coordinate actors across different spatial scales [5]. With reference
to crossing scales, changes toward sustainability require the skill to move innovation processes ahead
by working across scales [14,24]. Correspondingly, landscape approaches have the latent character to
mature more combined approaches for sustainable agriculture and to enable the compulsory connections
among the systems, services and, sectors interested in agricultural and forestry areas [16,25,26].
For instance, multifunctionality and circular economies are some of the main ideas in sustainable
agricultural and forestry systems [5]. Multifunctionality includes production, environmental, and
human features of agriculture, which are crucial to sustainability [19,27,28]. Sectoral divisions
(e.g., agriculture versus energy) or sub-sectoral divides within agriculture owing to specialization
(e.g., separation of crop and livestock sectors) have long delayed endorsing multifunctional methods
in agriculture and practical crossovers with non-agricultural sectors [5,27,29–31].

The present review aims to shed light on innovations that have been identified and promoted in
recent years in the primary sector, including agriculture and forestry. The need to pursue sustainable
development in this sector perceives the requirement to include a fourth dimension, namely energy [32].
Examining one of the recent notions of ‘sustainability’, energy can be assumed as the fourth dimension
of sustainability. With the four sustainable dimensions (energy, economy, society and environment),
rural districts can provide greater maintainable growth, also focusing on a sustainable (energy) future,
which in literature is perceived by the “agro-energy districts” [32–36]. However, very often such
innovative realities present their intrinsic limits. For this reason, today, the need for progressive
technological progress is indispensable to ensure long-lasting energy efficiency. The general aim of
the present review is to understand what innovations have been carried out recently, highlighting
opportunities and limitations for the primary sector.

2. Energy for a Sustainable Development in the Primary Sector

Agriculture is one of the most significant sectors, which is characterized by the greatest potential
for sustainable economic development [5,7,9,16,28–39]. Specifically, renewable sources represent
good alternatives to fossil resources in the primary sector, which are inadequate in quantity and are
prone to exhaustion [31,38,40–43]. Development of renewable energy as a main global resource of
clean energy is one of the main global purposes of current policies, which, in the overall outline of
sustainable development, is intended to reduce energy consumption and increase the security of
supply, environmental protection, and maintainable technology development [38].

Forest and agricultural resources are conspicuous sources of energy that may be indispensable
for greater local and technological development [23,41,44–47]. For this reason, recent scientific and
technical research has sought to mature innovations that allow the larger reuse of resources with clean
energy and low environmental impact [2,3,6,12,14,17].
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To become economically sustainable, undeveloped renewable resource-based technologies must
progress along the learning curve, finally influencing competitiveness with fossil resource-based
options [8,48,49]. Furthermore, innovations are fundamental for ensuring environmental sustainability
that decreases the potential impacts of renewable resource use on ecosystems [49,50]. The employment
of a circular flow economy needs original technological, organizational and product solutions, and
improved resource efficiency [1,47]. On the supply side, innovations should focus on technologies
and products, while from the user side, main concern should be given to consumption and waste
generation patterns [49,51].

The innovation lies in the fact that the advancement of energy efficiency is achieved through a
gradual move from fossil energy sources to more environmentally friendly and renewable energy
sources, endorsing energy efficiency through improved performance technologies and schemes [8,52,53]
and affording a combined method reliable with the expansion of the liberalized market. For this
purpose, today, a scheme that can assimilate advanced and innovative essentials of tariff control and
direct control of the market should be implemented [43].

With the regards a prospective future changeover towards a sustainable bioeconomy, today,
policy interventions, technology and product markets results are inadequate in offering suitable
encouragements [49,54,55]. Furthermore, compulsory fossil resource-based technologies profit from
past learning properties, increasing returns, and network externalities, all of which interrelate with the
dedicated nature of investments to produce a technological path reliance [49]. Such a framework can be
strengthened by a co-evolutionary growth of fossil resource-based organizations, codependent industries,
consumption patterns, and private and public institutions ensuing in a “carbon lock-in” [4,7,9].

Research on the relationship among innovation systems, sustainability, and policies focused on
energy system transitions [56–59]. Literature offers significant insights concerning appropriate policies,
innovation economics, and systems [49,58]. Therefore, an inclusive and well-coordinated policy asset
is compulsory to support a well-developed innovation system, which is in turn helpful in providing a
sociotechnical path change [56,59].

In the last decade, climate and energy strategy was emphasized by the European declaration
towards the achievement of definite environmental goals of energy strategy and advancement of
agriculture-based bioenergy and biofuels [41,60–62]. Several global challenges require innovative
approaches to knowledge discussion, e.g., those predicted in the European Innovation Partnership
“Agricultural Productivity and Sustainability”, which are of greatest importance to foster the application
of explanations [52]. The change toward agriculture-based bioenergy has also been supported in reply
to structural variations in agriculture that involve an examination of new endurance approaches [60].

2.1. Conjugating Innovation with Biomass

Climate change, scarcity of resources and materials, increasing population, and environmental
pressures have encouraged a revaluation and assessment of the current fossil-based economy [3,63].
The bioeconomy concept has been given numerous descriptions and its conceptualization is still
developing [64–66]. However, two main features can be shared. Firstly, bioeconomy will depend
on renewable biomass in place of finite fossil inputs to produce an extensive variety of value-added
products, e.g., bio-based products and bioenergy [3,32,64,67–70]. Secondly, these products will be
formed in biorefineries succeeding a cascade principle with the intention of extremely valorizing
the obtainable biomass [71,72]. Biomass is originally processed into high value products and the
relative residues are used for lower value applications until the smallest amount of waste remains
at the conclusion of the process [73–75]. Bioeconomy can therefore be considered an assortment of
sectors and subsectors (e.g., agriculture and energy), employed in combination to derive products from
renewable biological resources from the primary sector [3,71,72].

According to [3], innovation can develop following specific processes within the bioeconomy
based on a four-staged literature research: innovation process, network management, stakeholder
groups, and bioeconomy contextual factors. Idea development, invention, and commercialization are
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the three fundamental phases for activating an iterative process. During the latter process, the three
fundamental phases are interconnected via learning cycles, enabling repetition of confident process
steps to adjust to unexpected progresses and errors (Figure 1).
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Biomass feedstock are energy sources in the primary sector, which are derived from wastes
associated with their processing (e.g., agricultural residues) [6,67,68,70,76]. However, natural resources
for energy purpose expose contrasting opinions. Following some researchers, land-use change for the
cultivation of energy crops can have important consequences on global food security, employment, the
income of regional populations, and the biodiversity of ecological societies [37,76,77]. Land accessibility,
land-use practices, and water availability are some of the main key factors for the large-scale production
of biofuels [76,78–80]. A negative perspective has exposed that the future availability of arable land,
using existing farming areas for energy crop cultivation, might result in food deficiency [76]. However,
it may be practicable to convert abandoned and marginal areas into cultivated land for energy crop
cultivation [32,55,67,69,77]. Global biofuel programs will usually subsidize the sustainable livelihood
of agricultural employees by growing employment rates in most rural contexts since a large portion of
feedstock cultivation and plant processing includes manual work [76].

Following a more optimistic perspective, biomass supply may be protected and extended using
advanced management procedures and strategies [40,81]. For instance, new sources of cheap biomass
for energy production can be selected by using lignocellulosic material that is inappropriate for common
forestry and agricultural usage [82].

Investigation into innovations and technologies that can decrease land use and decrease accidents
from renewable energy sources and the risk of resource competition have been carried out [83,84].
For instance, with bioenergy, food for consumption competes in the same areas as those for energy
production [42].



Energies 2019, 12, 3659 5 of 11

2.2. Conjugating Innovation with Solar Energy

Innovation in the primary sector also benefits from solar energy [85–89]. Many studies
have deepened understanding of this issue since the installation of solar systems on greenhouse
structures became one of the recent strategies to allow both agricultural production and energy
production [39,46,86,89–91]. However, the installation of photovoltaic panels on greenhouses involves
certain limitations, which have been solved through specific studies [39,92]. Shading represents one of
the main limitations for photovoltaic installation on the rooves of greenhouses [39,93–96]. The spatial
shading variations in a greenhouse during a year can be supposed an appropriate factor for picking
out the greatest combination of photovoltaic panels and crops present, guaranteeing both energy and
production activities [52,88]. The choice of the covering shading on the spectral distribution of solar
radiation incoming to greenhouses, the kind of material, and further properties of the greenhouse
are crucial for defining pertinent technical structural details, environmental influences, and internal
climatic settings [87,97–99].

The question of shade due to the presence of photovoltaic panels on greenhouse rooves, though,
is related to the possible reduction of cultivation that is carried out within the greenhouse [52,100].
Nevertheless, several studies have already promoted different methods and strategies and projects of
innovative greenhouses with the intention of limiting the shadow percentage and ensuring optimal
agricultural production [39,46,85].

3. Discussion

Innovation is indispensable to reply to the critical apprehensions and challenges related to, for example,
climate change, environmental trials, energy scarcity, and food security [1,13,21,22,27,37,50,76,77,99].
Numerous novelties will be in the form of products, processes, and services which can improve the
success and efficiency of answering to these socioeconomic challenges and dealing with the measurement
and mitigation of negative externalities [63].

Greater sustainability in the primary sector can be guaranteed through (i) the use of agricultural
residues, i.e., biomass from agricultural and forestry wastes [16,39,67,68,70,82,101], and (ii) renewable
energy, e.g., solar energy [39]. The importance of having adequate structures as solar systems installed
on greenhouses helping to produce agricultural products is fundamental to maximize space and
optimize both agricultural and energy production [32,39].

Agricultural innovation can be considered as a co-evolutionary process where technological,
socioeconomic, and institutional changes are combined [4,7,102]. With production and technical
knowledge, numerous factors play a crucial role as prerequisites for innovation, for instance, policy,
legislation, funding, infrastructure, and market progresses [7]. However, a limited quantity of research
is available concerning current technologies and innovations within the primary sector, such as in
developed countries [102–104]. The latter countries are mainly vulnerable to environmental influences,
e.g., related to climate change [34,42]. Such current challenges usually have an explicit influence on the
agricultural and forestry sector [103].

Addressing the current complex and uncontrolled sustainability matters facing the primary
sector, innovations must ensure continuous progress by (i) facilitating the development of rural and
forestry economic realities, (ii) pursuing greater environmental mitigation, and (iii) bringing the
political sphere into line with the more practical one [5,15,16]. However, dealing with such current
challenges is progressively significant (i) bearing in mind mission-oriented innovation strategies and
(ii) underscoring the requirement for innovation systems to achieve specific determinations for a
sustainability changeover [5,10,105].

Agricultural innovation is no longer just about approving new technologies, technical practices,
and alternative customs of organization [7]. Additionally, agricultural innovation is usually driven by
different visions exposing different development directions, e.g., sustainable developments and energy
efficiency [7,8,16,52,53,104]. However, soil should play a major role in food production in view of
another fundamental issue today, namely the increase of both food requirements and the reduction in
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soil availability and fertility due to population growth and the growing phenomena of desertification
and soil degradation [106–111]. In this requirement, the sustainability of agricultural practices can
make sense of the reduction of waste and the agronomic energy reuse of by-products [75,82,101].
The role of energy is decisive in this framework also in view of a sustainable development in which
the needs of fossil fuels (to produce energy biomass) must assess and reflect on the proper use of
agricultural areas and in the recovery of abandoned and marginal areas, even where energy crops are
grown [8,43].

4. Conclusion

Energy can assume a key role in current innovations, highlighting chances and limitations
for sustainable development [32,33,38,39,76,82,83,112–115]. In this review, the primary sector is
investigated due to different issues, e.g., alternative systems of agriculture, more sustainable
modernizations in agricultural and forestry [116], reuse of rural land [75,77,82,101,107,116],
environmental respect avoiding stress on natural resources, e.g., soil, which can lead to degenerative
phenomena, e.g., soil degradation, which are especially severe if they relate to the loss of high-quality
soils [37,80,106–111]. Innovation has become increasingly applied to survey the organization of
joint technological, social, and institutional modernizations in the primary sector [6,99,103,106,113].
Sightseeing the governance of actor relations, latent policies, and support structures is critical to the
stage of innovation, e.g., during research activities, at different spatial scales [117,118]. Modernizations
in agriculture and forestry may contribute to planning more sustainable systems, even including
energy as a fourth dimension together with economy, society, and environment [32,33,116]. In fact,
energy sustainability has become a crucial question in recent years, especially where progressive
technological progress is necessary to ensure long-lasting energy efficiency.
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