Peer-to-Peer Energy Trading of a Community Connected with an AC and DC Microgrid
Abstract
:1. Introduction
2. P2P Energy Market Mechanism
2.1. Self-Consumption
2.1.1. Individual Self-Consumption
2.1.2. Community Self-Consumption
2.2. Power Import/Export
2.2.1. Individual Power Import/Export
2.2.2. Community Power Import/Export
3. P2G Trading
4. P2P Trading
4.1. Bill Sharing Method
4.2. Mid-Market Rate Method
4.2.1. Self-Sustained State
4.2.2. Community as a Seller
4.2.3. Community as a Buyer
5. System Description
6. Results and Discussion
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, C.; Wu, J.; Meng, Y.; Long, C. Peer-to-Peer energy trading in a Microgrid. Appl. Energy 2018, 220, 1–12. [Google Scholar] [CrossRef]
- Rodríguez-Molina, J.; Martínez-Núñez, M.; Martínez, J.-F.; Pérez-Aguiar, W. Business Models in the Smart Grid: Challenges, Opportunities and Proposals for Prosumer Profitability. Energies 2014, 7, 6142–6171. [Google Scholar] [CrossRef] [Green Version]
- Morstyn, T.; Farrell, N.; Darby, S.J.; McCulloch, M.D. Using peer-to-peer energy-trading platforms to incentivize prosumers to form federated power plants. Nat. Energy 2018, 3, 94–101. [Google Scholar] [CrossRef]
- Long, C.; Wu, J.; Zhang, C.; Cheng, M.; Al-Wakeel, A. Feasibility of peer-to-peer energy trading in low voltage electrical distribution networks. Energy Procedia 2017, 105, 2227–2232. [Google Scholar] [CrossRef]
- Dehnavi, E.; Aminifar, F.; Afsharnia, S. Congestion management through distributed generations and energy storage systems. Int. Trans. Electr. Energy Syst. 2019, 29, e12018. [Google Scholar] [CrossRef]
- Zhang, C.; Wu, J.; Cheng, M.; Zhou, Y.; Long, C. Performance Evaluation of Peer to Peer Energy Sharing Models. Energy Procedia 2017, 143, 817–822. [Google Scholar]
- Pouttu, A.; Xu, Y.; Kopsakangas-Savolainen, M.; Porras, E.; Kalalas, C.; Alonso-Zarate, J.; Gallego, F.D.; Martin, J.M.; Deconinck, G.; Almasalma, H.; et al. P2P model for distributed energy trading, grid control and ICT for local smart grids. In Proceedings of the 2017 European Conference on Networks and Communications (EuCNC), Oulu, Finland, 12–15 June 2017; pp. 1–6. [Google Scholar]
- Liu, N.; Yu, X.; Wang, C.; Li, C.; Ma, L.; Lei, J. An Energy-Sharing Model with Price-Based Demand Response for Microgrids of Peer-to-Peer Prosumers. IEEE Trans. Power Syst. 2017, 32, 3569–3583. [Google Scholar] [CrossRef]
- Guerrero, J.; Chapman, A.C.; Verbic, G. Decentralized P2P Energy Trading under Network Constraints in a Low-Voltage Network. IEEE Trans. Smart Grid 2018, 10, 5163–5173. [Google Scholar] [CrossRef]
- Morstyn, T.; Teytelboym, A.; Mcculloch, M.D. Bilateral Contract Networks for Peer-to-Peer Energy Trading. IEEE Trans. Smart Grid 2018, 10, 2026–2035. [Google Scholar] [CrossRef]
- Mengelkamp, E.; Gärttner, J.; Rock, K.; Kessler, S.; Orsini, L.; Weinhardt, C. Designing microgrid energy markets A case study: The Brooklyn Microgrid. Appl. Energy 2018, 210, 870–880. [Google Scholar] [CrossRef]
- Wang, N.; Xu, W.; Xu, Z.; Shao, W. Peer-to-Peer Energy Trading among Microgrids with Multidimensional Willingness. Energies 2018, 11, 3312. [Google Scholar] [CrossRef]
- Wang, S.; Taha, A.F.; Wang, J.; Kvaternik, K.; Hahn, A. Energy Crowdsourcing and Peer-to-Peer Energy Trading in Blockchain-Enabled Smart Grids. IEEE Trans. Syst. Man, Cybern. Syst. 2019, 49, 1612–1623. [Google Scholar] [CrossRef]
- Long, C.; Wu, J.; Zhou, Y.; Jenkins, N. Peer-to-peer energy sharing through a two-stage aggregated battery control in a community Microgrid. Appl. Energy 2018, 226, 261–276. [Google Scholar] [CrossRef]
- Guerrero, J.; Chapman, A.; Verbic, G. A Study of Energy Trading in a Low-Voltage Network: Centralised and Distributed Approaches. In Proceedings of the 2017 Australasian Universities Power Engineering Conference (AUPEC), Melbourne, Australia, 19–22 November 2017. [Google Scholar]
- Guerrero, J.; Chapman, A.C.; Verbic, G. Peer-to-Peer Energy Trading: A Case Study Considering Network Constraints. In Proceedings of the Asia-Pacific Solar Research Conference, Sydney, Australia, 4–6 December 2018. [Google Scholar]
- Moret, F.; Pinson, P. Energy Collectives: A Community and Fairness based Approach to Future Electricity Markets. IEEE Trans. Power Syst. 2018, 34, 3994–4004. [Google Scholar] [CrossRef]
- Singh, A.; Strating, A.T.; Herrera, N.R.; Mahato, D.; Keyson, D.V.; Van Dijk, H.W. Exploring peer-to-peer returns in off-grid renewable energy systems in rural India: An anthropological perspective on local energy sharing and trading. Energy Res. Soc. Sci. 2018, 46, 194–213. [Google Scholar] [CrossRef]
- Lee, J.; Guo, J.; Choi, J.K.; Zukerman, M. Distributed Energy Trading in Microgrids: A Game Theoretic Model and Its Equilibrium Analysis. IEEE Trans. Ind. Electron. 2015, 62, 3524–3533. [Google Scholar] [CrossRef]
- Tushar, W.; Yuen, C.; Mohsenian-Rad, H.; Saha, T.; Wood, K.L. Transforming Energy Networks via Peer-to-Peer Energy Trading: The Potential of Game—Theoretic Approaches. IEEE Signal Proc. Mag. 2018, 35, 90–111. [Google Scholar] [CrossRef]
- Zhang, C.; Wu, J.; Cheng, M.; Zhou, Y.; Long, C. A Bidding System for Peer-to-Peer Energy Trading in a Grid connected Microgrid. Energy Procedia 2016, 103, 147–152. [Google Scholar] [CrossRef]
- Prakash, L.; Chandran, S.; Kumar, S.; Soman, K.P. Self-sufficient Smart Prosumers of Tomorrow. Procedia Technol. 2015, 21, 338–344. [Google Scholar] [CrossRef] [Green Version]
- Alam, M.R.; St-Hilaire, M.; Kunz, T. An optimal P2P energy trading model for smart homes in the smart grid. Energy Effic. 2017, 10, 1475–1493. [Google Scholar] [CrossRef]
- Park, L.W.; Lee, S.; Chang, H. A Sustainable Home Energy Prosumer-Chain Methodology with Energy Tags over the Blockchain. Sustainability 2018, 10, 658. [Google Scholar] [CrossRef]
- Cintuglu, M.; Martin, H.; Mohammed, O.A. Real time implementation of multiagent based game theory reverse auction model for microgrid market operation. IEEE Trans. Smart Grid 2015, 6, 1064–1072. [Google Scholar] [CrossRef]
- Shamsi, P.; Xie, H.; Longe, A.; Joo, J.-Y. Economic Dispatch for an Agent-Based Community Microgrid. IEEE Trans. Smart Grid 2016, 7, 2317–2324. [Google Scholar] [CrossRef]
- De Paola, A.; Angeli, D.; Strbac, G. Price-Based Schemes for Distributed Coordination of Flexible Demand in the Electricity Market. IEEE Trans. Smart Grid 2017, 8, 3104–3116. [Google Scholar] [CrossRef]
- Goy, S.; Sancho-Tomás, S. Load management in buildings. In Urban Energy Systems for Low-Carbon Cities; Elsevier: Amsterdam, The Netherlands, 2019; pp. 137–179. [Google Scholar]
- Dehler, J.; Keles, D.; Telsnig, T.; Fleischer, B.; Baumann, M.; Fraboulet, D.; Faure-Schuyer, A.; Fichtner, W. Self-Consumption of Electricity from Renewable Sources. Eur. Energy Trans. Insights Policy Mak. 2017, 225–236. [Google Scholar] [Green Version]
- Modern Bioenergy Leads the Growth of All Renewables to 2023, According to Latest IEA Market Forecast. Available online: https://www.iea.org/newsroom/news/2018/october/modern-bioenergy-leads-the-growth-of-all-renewables-to-2023-according-to-latest-.html (accessed on 3 April 2019).
- Goel, M. Solar rooftop in India: Policies, Changes and Outlook. Gr. Energy Environ. 2016, 1, 129–137. [Google Scholar] [CrossRef]
- Hariat, M.K.; Ghosh, S. 100 GW solar power in India–A critical review. Renew. Sustain. Energy Rev. 2017, 73, 1041–1050. [Google Scholar] [CrossRef]
- Trading of Rooftop Solar Energy. Available online: https://www.powerledger.io/project/american-powernet-united-states/ (accessed on 23 June 2019).
- Centrica Joins the Verv Community Energy Blockchain Trial. Available online: https://verv.energy/centrica-joins-the-verv-community-energy-blockchain-trial/ (accessed on 17 July 2019).
- Transitioning Toward an Energy Democracy. Available online: https://www.mccormick.northwestern.edu/engineering-management/news/articles/2018/transitioning-toward-an-energy-democracy.html (accessed on 12 September 2018).
- Brooklyn Microgrid Community Powered Energy. Available online: https://www.brooklyn.energy/ (accessed on 17 July 2019).
- Orsini, L.; Kessler, S.; Wei, J.; Field, H. How the Brooklyn Microgrid and TransActive Grid are paving the way to next-gen energy markets. Energy Internet 2019, 223–239. [Google Scholar]
- Sousa, T.; Soares, T.; Pinson, P.; Moret, F.; Baroche, T.; Sorin, E. Peer-to-peer and community-based markets: A comprehensive review. Renew. Sustain. Energy Rev. 2019, 104, 367–378. [Google Scholar] [CrossRef] [Green Version]
- UPERC (Rooftop Solar PV Grid Interactive System Gross/Net Metering) Regulations, 2019 (RSPV Regulations, 2019). Available online: http://www.uperc.org/Notified_User.aspx (accessed on 20 August 2019).
- Phurailatpam, C.; Rajpurohit, B.S.; Wang, L. Planning and optimization of autonomous DC microgrids for rural and urban applications in India. Renew. Sustain. Energy Rev. 2018, 82, 194–204. [Google Scholar] [CrossRef]
- Sanjeev, P.; Padhy, N.P.; Agarwal, P. DC grid initiative in India. IFAC-PapersOnLine 2015, 48, 114–119. [Google Scholar] [CrossRef]
- Shamshuddin, M.A.; Babu, T.S.; Dragicevic, T.; Miyatake, M.; Rajasekar, N. Priority-based Energy Management Technique for Integration of Solar PV, Battery, and Fuel Cell Systems in an Autonomous DC Microgrid. Electr. Power Compon. Syst. 2018, 45, 1881–1891. [Google Scholar] [CrossRef]
- Reka, S.S.; Ramesh, V. A demand response modeling for residential consumers in smart grid environment using game theory based energy scheduling algorithm. Ain Shams Eng. J. 2016, 7, 835–845. [Google Scholar] [CrossRef] [Green Version]
No. | Appliance | Wattage | |
---|---|---|---|
AC | DC | ||
1 | Ceiling fan | 75 | 25 |
2 | Lights | 18 | 5 |
3 | Cell phone | 6 | 5 |
4 | Television (TV) | 215 | 25 |
5 | Induction stove | 1500 | 400 |
6 | Refrigerator | 110 | 25 |
7 | Mixer/grinder | 750 | 100 |
8 | Cooler | 165 | 50 |
P2G (INR) | ||
---|---|---|
AC | DC | |
Household 1 | 31.05 | 8.41 |
Household 2 | 36.83 | 10.81 |
Household 3 | 33.00 | 9.41 |
Household 4 | 26.53 | 7.85 |
Household 5 | 29.24 | 8.25 |
Household 6 | 43.94 | 12.38 |
Household 7 | 42.12 | 12.01 |
Household 8 | 58.23 | 16.17 |
Household 9 | 29.92 | 8.15 |
Household 10 | 35.54 | 9.64 |
Community | 366.40 | 103.07 |
Household | PV Penetration (No. of Prosumers) | |||||
---|---|---|---|---|---|---|
Low | Medium | High | ||||
AC (INR) | DC (INR) | AC (INR) | DC (INR) | AC (INR) | DC (INR) | |
1 | −21.61 | −41.35 | −21.61 | −41.35 | −21.61 | −41.35 |
2 | 36.83 | 10.79 | −18.98 | −40.13 | −18.98 | −40.13 |
3 | 33.00 | 9.42 | −19.76 | −40.61 | −19.76 | −40.61 |
4 | 26.53 | 7.85 | −25.50 | −41.93 | −25.50 | −41.93 |
5 | 29.24 | 8.24 | −25.44 | −42.24 | −25.44 | −42.24 |
6 | 43.94 | 12.39 | 43.94 | 12.39 | −12.64 | −38.90 |
7 | 42.12 | 12.03 | 42.12 | 12.03 | −14.00 | −38.86 |
8 | 58.23 | 16.17 | 58.23 | 16.17 | 2.18 | −35.42 |
9 | 29.92 | 8.15 | 29.92 | 8.15 | 22.29 | −41.50 |
10 | 35.54 | 9.64 | 35.54 | 9.64 | −17.05 | −40.43 |
Household | PV Penetration (No. of Prosumers) | |||||
---|---|---|---|---|---|---|
Low | Medium | High | ||||
AC (INR) | DC (INR) | AC (INR) | DC (INR) | AC (INR) | DC (INR) | |
1 | 14.19 | −25.42 | −17.84 | −40.14 | −22.01 | −41.35 |
2 | 30.06 | 7.66 | −15.68 | −38.87 | −19.35 | −40.13 |
3 | 26.94 | 6.69 | −16.40 | −39.51 | −20.28 | −40.61 |
4 | 21.66 | 5.57 | −20.90 | −40.56 | −25.71 | −41.93 |
5 | 23.87 | 5.85 | −20.76 | −40.56 | −25.48 | −42.24 |
6 | 35.86 | 8.80 | 34.21 | 9.03 | −13.36 | −38.90 |
7 | 34.38 | 8.54 | 32.80 | 8.77 | −14.66 | −38.86 |
8 | 47.53 | 11.48 | 45.35 | 11.79 | 0.50 | −35.42 |
9 | 24.43 | 5.79 | 23.30 | 5.94 | −22.68 | −41.50 |
10 | 29.01 | 6.85 | 27.68 | 7.03 | −17.75 | −40.43 |
Household | PV Penetration (No of Prosumers) | |||||
---|---|---|---|---|---|---|
Low | Medium | High | ||||
AC (INR) | DC (INR) | AC (INR) | DC (INR) | AC (INR) | DC (INR) | |
1 | −34.60 | −47.29 | −25.67 | −42.84 | −23.88 | −42.10 |
2 | 34.64 | 9.93 | −22.42 | −41.53 | −20.89 | −40.83 |
3 | 32.03 | 8.98 | −23.60 | −42.05 | −21.85 | −41.33 |
4 | 25.61 | 7.47 | −29.71 | −43.43 | −27.85 | −42.68 |
5 | 27.77 | 7.58 | −28.74 | −43.66 | −27.29 | −42.95 |
6 | 41.73 | 11.39 | 40.02 | 11.17 | −14.77 | −39.58 |
7 | 40.04 | 11.16 | 38.80 | 11.02 | −15.76 | −39.57 |
8 | 56.33 | 15.25 | 54.13 | 14.81 | −0.83 | −36.01 |
9 | 28.99 | 7.84 | 28.46 | 7.75 | −24.58 | −42.25 |
10 | 34.53 | 9.25 | 33.68 | 9.04 | −19.73 | −41.13 |
No. of Prosumers | Operational Cost (INR) | |||||
---|---|---|---|---|---|---|
P2G | P2P Bill Sharing | P2P Mid-Market Rate | ||||
AC | DC | AC | DC | AC | DC | |
0 | 366.40 | 103.07 | 366.40 | 103.07 | 366.40 | 103.07 |
1 | 313.75 | 53.33 | 287.92 | 41.82 | 287.07 | 41.55 |
2 | 257.94 | 2.41 | 229.91 | −9.90 | 227.15 | −10.80 |
3 | 205.18 | −47.61 | 177.16 | −59.34 | 172.78 | −60.72 |
4 | 153.15 | −97.39 | 124.46 | −108.20 | 119.02 | −110.10 |
5 | 98.47 | −147.87 | 71.76 | −157.06 | 64.96 | −159.73 |
6 | 41.90 | −199.16 | 19.05 | −205.92 | 10.64 | −209.72 |
7 | −14.22 | −250.05 | −31.63 | −254.78 | −42.49 | −259.58 |
8 | −70.28 | −301.64 | −81.63 | −303.64 | −94.92 | −309.65 |
9 | −122.48 | −351.29 | −131.63 | −352.50 | −146.43 | −358.96 |
10 | −175.07 | −401.36 | −180.78 | −403.66 | −197.43 | −408.42 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
S, K.; C, V. Peer-to-Peer Energy Trading of a Community Connected with an AC and DC Microgrid. Energies 2019, 12, 3709. https://doi.org/10.3390/en12193709
S K, C V. Peer-to-Peer Energy Trading of a Community Connected with an AC and DC Microgrid. Energies. 2019; 12(19):3709. https://doi.org/10.3390/en12193709
Chicago/Turabian StyleS, Kuruseelan, and Vaithilingam C. 2019. "Peer-to-Peer Energy Trading of a Community Connected with an AC and DC Microgrid" Energies 12, no. 19: 3709. https://doi.org/10.3390/en12193709
APA StyleS, K., & C, V. (2019). Peer-to-Peer Energy Trading of a Community Connected with an AC and DC Microgrid. Energies, 12(19), 3709. https://doi.org/10.3390/en12193709