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Abstract: Deep reinforcement learning (DRL), which excels at solving a wide variety of Atari and board
games, is an area of machine learning that combines the deep learning approach and reinforcement
learning (RL). However, to the authors’ best knowledge, there seem to be few studies that apply the
latest DRL algorithms on real-world powertrain control problems. If there are any, the requirement of
classical model-free DRL algorithms typically for a large number of random exploration in order to
realize good control performance makes it almost impossible to implement directly on a real plant.
Unlike most of the other DRL studies, whose control strategies can only be trained in a simulation
environment—especially when a control strategy has to be learned from scratch—in this study,
a hybrid end-to-end control strategy combining one of the latest DRL approaches—i.e., a dueling
deep Q-network and traditional Proportion Integration Differentiation (PID) controller—is built,
assuming no fidelity simulation model exists. Taking the boost control of a diesel engine with a
variable geometry turbocharger (VGT) and cooled (exhaust gas recirculation) EGR as an example,
under the common driving cycle, the integral absolute error (IAE) values with the proposed algorithm
are improved by 20.66% and 9.7% respectively for the control performance and generality index,
compared with a fine-tuned PID benchmark. In addition, the proposed method can also improve
system adaptiveness by adding another redundant control module. This makes it attractive to real
plant control problems whose simulation models do not exist, and whose environment may change
over time.

Keywords: hybrid control strategy; dueling deep Q-network; PID; transient boost control; VGT

1. Introduction

Turbocharging and boosting are key technologies in the continued drive for improved internal
combustion engine efficiency with reduced emissions [1]. For more than a decade, engine boosting has
seen widespread adoption by passenger and heavy goods vehicle powertrains in order to increase the
specific power and enable the downsizing megatrend [2]. However, many challenges still remain, as the
regulation requirements become stricter, and the demand for low-carbon powertrains increases [3].
Currently, the growing expectations of vehicle performance, including an excellent transient response
with high boost levels, have converged within the demand for increased downsizing and higher levels
of EGR. For boosting machinery, the rated power and torque for downsized units are conventionally
regained via fixed-geometry turbocharging [4]. However, the transient behavior of such systems
is limited by the usual requirement of a large size turbocharger, especially if a high-end torque is
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pursued [5,6]. VGT technology (see Figure 1), which is designed to vary the effective aspect ratio of the
turbocharger under different engine operating conditions [7], can significantly improve an engine’s
transient response and fuel economy compared with a fixed-geometry turbocharger [8].
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hybrid PID controllers. For example, in [13], the fuzzy technique was combined with a PI controller, 
and a better control performance was demonstrated. In addition, Sant and Rajagopal proposed a 
hybrid control system that includes a steady-state PI controller and a transient fuzzy controller [14]. 
However, both these approaches adopt offline-tuning rules, which are sensitive to system uncertainty. 
Another direction to improve the behavior of a PID controller is to replace it with a brand-new control 
structure. For example, an online self-learning deep deterministic policy gradient (DDPG) algorithm 
was employed for the boost control of a VGT-equipped engine. Although the proposed strategy can 
develop good transient control behavior by direct interaction with its environment, it takes much 
time for the algorithm to learn from no experience, and it is hardly possible to train the algorithm 
directly on a real plant due to its random exploration when a control strategy has to be learned from 
scratch [15].  
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control actions are selected in the environment in an optimal manner by trial and error [16,17]. The 
theory of reinforcement learning, inspired by the psychology of behaviorism, focuses on online 
learning and tries to maintain a balance between exploration and exploitation [18]. Different from 
supervised learning and unsupervised learning, reinforcement learning does not require any pre-
given data, but obtains learning information and updates model parameters by receiving rewards 
(feedback) from the environment for actions [19–21]. Deep reinforcement learning (DRL), which 
excels at solving a wide variety of Atari and board games, is an area of machine learning that 
combines the deep learning approach and reinforcement learning (RL) [22,23]. The deep Q-network 
(DQN) strategy adopted on AlphaGo [24] and AlphaGo Zero [25] formed the first computer program 
that defeated human experts at the game of Go. It effectively solves the problem of instability and 
divergence caused by the use of neural network nonlinear value approximators through experience 
replay and fixed Q-Target, which greatly improves the applicability of reinforcement learning. 
Recently, Wang et al. [26] updated DQN by proposing an architecture that consists of dueling 
networks. Their dueling networks replace the state-action value by two separate estimators: one for 
state-value function, and the other for state-dependent advantage function. This is particularly 
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Due to the nonlinear characteristics of the VGT system and the fact that EGR and VGT systems
are strongly interactive, the boost control of the VGT is recognized as a major challenge for diesel
engines [9]. Currently, the fixed-parameter gain-schedule PID control is used in the automotive
industry for VGT boost control owing to its simplicity, robustness, and effectiveness [10], but the
control performance is sensitive to the state of the control loop, and is difficult to be satisfactory when
the loop alters [11,12]. One of the feasible approaches to solve this problem is by proposing adaptive
hybrid PID controllers. For example, in [13], the fuzzy technique was combined with a PI controller,
and a better control performance was demonstrated. In addition, Sant and Rajagopal proposed a
hybrid control system that includes a steady-state PI controller and a transient fuzzy controller [14].
However, both these approaches adopt offline-tuning rules, which are sensitive to system uncertainty.
Another direction to improve the behavior of a PID controller is to replace it with a brand-new control
structure. For example, an online self-learning deep deterministic policy gradient (DDPG) algorithm
was employed for the boost control of a VGT-equipped engine. Although the proposed strategy can
develop good transient control behavior by direct interaction with its environment, it takes much time
for the algorithm to learn from no experience, and it is hardly possible to train the algorithm directly on
a real plant due to its random exploration when a control strategy has to be learned from scratch [15].

Reinforcement learning (RL), being as one of three machine learning paradigms, along with
supervised learning and unsupervised learning, is the field of machine learning focusing on how control
actions are selected in the environment in an optimal manner by trial and error [16,17]. The theory
of reinforcement learning, inspired by the psychology of behaviorism, focuses on online learning
and tries to maintain a balance between exploration and exploitation [18]. Different from supervised
learning and unsupervised learning, reinforcement learning does not require any pre-given data,
but obtains learning information and updates model parameters by receiving rewards (feedback) from
the environment for actions [19–21]. Deep reinforcement learning (DRL), which excels at solving a
wide variety of Atari and board games, is an area of machine learning that combines the deep learning
approach and reinforcement learning (RL) [22,23]. The deep Q-network (DQN) strategy adopted
on AlphaGo [24] and AlphaGo Zero [25] formed the first computer program that defeated human
experts at the game of Go. It effectively solves the problem of instability and divergence caused
by the use of neural network nonlinear value approximators through experience replay and fixed
Q-Target, which greatly improves the applicability of reinforcement learning. Recently, Wang et al. [26]
updated DQN by proposing an architecture that consists of dueling networks. Their dueling networks
replace the state-action value by two separate estimators: one for state-value function, and the other
for state-dependent advantage function. This is particularly beneficial if a control action does not
have any influence on the environment in any situation. By doing so, their RL agent proved superior
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to the latest technologies in the Atari 2600 domain. However, the aforementioned model-free DRL
algorithms typically require a very large number of random exploration before achieving a good
control performance; thus, it is hardly possible to apply the algorithm directly on a real plant, and have
to rely heavily on a simulation environment, especially when a control strategy has to be learned from
scratch. In contrast, the traditional PID method can control a process from its beginning to its end,
and deliver a complete function solution without needing to procure anything from a third party
(i.e., the concept of end-to-end); therefore, it can be easily implemented on real controllers without
relying on simulation models. Based on the discussion above and that there exists no simulation model
at many times for the training of a pure DRL strategy, it is interesting to combine a traditional PID
controller and an intelligent DRL strategy together in order to realize an end-to-end control using the
latest DRL achievement in a real environment.

In the following paper, a hybrid end-to-end control strategy combining an intelligent dueling
deep Q-network and traditional PID for the transient boost control of a diesel engine with a variable
geometry turbocharger and cooled EGR will be proposed. The remaining of this article is structured as
follows: In Section 2, the hybrid control framework is proposed to realize an optimal boost control of a
VGT-equipped engine. In Section 3, a comparison between the proposed end-to-end hybrid algorithm,
a classical model-free DRL algorithm, and a fine-tuned PID controller are conducted and discussed.
Section 4 concludes the article.

2. Hybrid Control Framework

In this section, firstly, the mean value model of the research engine is introduced. After that,
the implementation mechanism of the dueling DQN and the corresponding testing platform are
described. Finally, the proposed adaptive hybrid control strategy combining intelligent DQN and
traditional PID is elaborated.

2.1. Engine Model Analysis

In this article, the boost control strategy is implemented on a six-cylinder, three-liter VGT-equipped
diesel engine, which can be seen in Figure 2. A detailed engine model has been converted to a mean
value model in order to reduce the run time without sacrificing transient accuracy [27] (see Ref. [15]
for detailed explanation). Note that the mean value GT-Suite model (see Figure 3) serves as a “real”
engine environment in this study, so as to show the results between the end-to-end and non-end-to-end
model-free approaches, but the proposed method can be transferred to a real plant easily. In order to
provide a comparison, the model is initially controlled by a fine-tuned PID controller.
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2.2. Dueling Deep Q-Network Architecture

Reinforcement learning is a computational approach to learning whereby an agent tries to maximize
the total amount of reward it receives when interacting with environment (see Figure 4) [28,29]. For every
state s, the agents always try to maximize the expected discounted return by choosing an action a.
The discounted return is defined as Rt =

∑
∞

τ=t γ
τ−trτ, where γε[0, 1] is a discount factor and r stands

for the reward that is observed by the agent after an action is exerted on the environment.
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For an agent behaving according to a policy π, the state-action function and the state function are
defined as follows:

Qπ(s, a) = E[Rt|st = s, at = a,π] (1)
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and:
Vπ(s) = Ea∼π(s)[Q

π(s, a)] (2)

The value function described above is a high-dimensional object. For approximation, a deep
Q-network Q(s, a;θ) with parameter θ can be used, and the following loss function sequence is
optimized at iteration i:

Li(θi) = Es,a,r,s′
[(

yDQN
i −Q(s, a;θi)

)2
]

(3)

In order to solve the problem of instability and divergence caused by the use of nonlinear value
approximators, the classical DQN algorithm adopted the strategy of experience replay and fixed
Q-target, which are considered as two key factors in its great success on Alpha Go. The following
shows the algorithm pseudo-code of the proposed DQN algorithm for the boost control problem in
this study.

DQN Algorithm:

Initialize replay memory D to capacity N
Initialize action-value function Q with random weights θ
Initialize target action-value function Q̂ with weights θ− = θ

For episode = 1, M do
Initialize sequence st =

{
SpeedInitial, PressureInitial, Target_Boost0, Action0, PIDInitial

}
For t= l, T do

With probability s select a random action at

otherwise select at = argmax
a

Q(s1, a;θ)

Execute action at in emulator and observe reward rt and image xt+1

Set st+1 =
{
Speedt+1, Pressuret+1, Target_Boostt+1, Actiont+1, PIDt+1

}
Store transition (s j, a j, r j, s j+1) in D
Sample random minibatch of transitions (s j, a j, r j, s j+1) from D

Set y j =

r j if episode terminates at step j + 1

r j + γmax
d′

Q̂
(
s j+1, a′;θ−

)
otherwise

Perform a gradient descent step on
(
y j −Q

(
(φ j, a j;θ

))2
with respect to the

network parameters θ
Every C steps reset Q̂ = Q

End For
End For

The updated dueling DQN algorithm implementation and the corresponding testing platform are
illustrated in Figure 5. Unlike the classical DQN, which only produces a single output Q function,
the dueling DQN use two streams of fully connected layers to provide the estimate of the state and the
advantage functions before combining them to generate output Q functions. By separating the state
value function from the Q function, the updated dueling DQN is capable of solving control problems
whose estimate of the state values is of great importance, while for many circumstances, the choice of
actions does not have any influence on the environment. The vane position controlled by a membrane
vacuum actuator is selected for the control action, and the four quantities of engine speed, actual boost
pressure, target boost pressure, and current vane position are used to group the four-dimensional state
space. For the choice of immediate reward (rt), the function of the error between the target boost and
the current boost (e(t)) plus the action change rate (It) is defined, and the specific formula is as follows:

rt = e−
[0.95∗|e(t)|+0.05∗|It |]

2

2 − 1 (4)
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The dueling Q-network illustration and the parameters of the proposed dueling DQN can be
seen from Figure 6 and Table 1. In this study, the input layer of the dueling Q-network has five states,
and there are two hidden layers each having 80 neurons, respectively. Before acquiring the Q function
at the output layer, two streams that independently estimate the state functions and the advantages
functions are constructed. It should be noted here that the hyper parameters are only using standard
values without fine tuning. Although in theory the control performance could be further improved,
this is out of the scope of this research, as the objective of this paper is only to introduce another
intelligent control frame to track the boost pressure for a VGT-equipped diesel engine. The training
dataset is composed of 50 data episodes, and each episode represents the data for the first 1098s of the
FTP-72 trips. 7 of 15 
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Table 1. Dueling DQN parameters.

Parameters Value

Learning rate 0.001
Reward decay 0.9

Replay memory size 10000
Mini-batch size 128
ε-greedy 0.95

ε-greedy increment 0.000005

2.3. Adaptive Hybrid Control System Combining Intelligent Dueling DQN and Traditional PID

Most of the control processes in the industry adopt the PID controller currently due to its simple
structure and robust performance under complex conditions. However, the fixed-parameter structure
makes it degraded when the control loop alters. Meanwhile, the DRL algorithm can self-learn a good
control behavior by direct interaction with the environment. Therefore, it is interesting to establish a
hybrid algorithm that combines the intelligent DRL (for example, the aforementioned dueling DQN)
algorithm and a traditional PID controller, in order to take advantage of DRL’s self-learning capability
to tune a PID performance online. Unlike the practice proposed by some literatures [16,30], which uses
the reinforcement learning approach to adjust the gains of PID controllers, in this paper, a simpler
but more powerful method will be introduced by adding a dueling DQN algorithm directly after a
fine-tuned PID controller, as can be seen in Figure 7. There are two special modifications that need to
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be considered here. First, the action range of the dueling DQN is limited, and for paper simplicity,
this will be elaborated later. Second, another state—i.e., the PID action output—will be imported to the
aforementioned dueling DQN algorithm. This is a practice to allow the dueling DQN strategy to learn
the system behavior controlled by an existing PID controller.
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This approach will intuitively enable a reasonable learning curve, as the proposed dueling DQN
only needs to adjust an already fine-tuned PID output. However, the most innovative aspect of this
practice is allowing the training process of the DRL algorithm to be performed directly for a real
plant. It is known that ‘conventional’ DRL algorithms require a large number of random explorations
especially at the beginning of the training and this, for most real plants, is not allowed, as poor action
behaviors could cause damage to or even destroy the plants. Thus, for most RL study, a large part of the
training (especially for the beginning) can only be carried out in a simulation environment. Depending
on the fidelity of the simulation model, the control strategy obtained from the simulation may need
to continue learning with the real environment. Although this method combines the simulation
training and the experimental continuing training together in order to fully utilize the computational
resources offline and refine the algorithm in the experimental environment online, a simulation model
with relatively high fidelity is required. Thus, this approach is not ‘model-free’ in the strict sense.
By combining both an intelligent dueling DQN and a traditional PID, this hybrid control approach,
innovatively allowing the training process of the DRL algorithm that previously could only be carried
out in the simulation environment, can now be performed directly on a real plant. This is realized
by giving the control strategy some ‘guided experience’ before learning through making use of an
existing fine-tuned PID controller and then allowing DRL control actions to autonomously learn the
interaction with the real environment in order to further improve the control performance, based on a
relatively good benchmark. With the help of the PID controller offering a good baseline, the combined
control action will oscillate decently, even at the beginning of training, without violating real plant
safety limit and not affecting the exploration performance of the algorithm. This approach, to the best
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of the authors’ knowledge, will be the first attempt that is able to apply the DRL directly on a real plant,
which in a sense achieves the real ‘model-free’ control.

3. Results and Discussion

The presented hybrid end-to-end control strategy is validated in this section. In order to mimic
real-world driving behavior, the target boost pressure of the engine under a US FTP-72 (Federal Test
Procedure 72) driving cycle was selected as the control objective, and the first 80% of this dataset is
used to train the learning algorithm with the remaining for testing analysis. A comparative analysis of
the tracking performance between a benchmark PID controller, a classical model-free DRL algorithm,
and the dueling DQN + PID algorithm is performed to verify the advantage of the proposed method.
First, the control performance with a fine-tuned gain-schedule PID controller is shown. Second,
the learning curve of a classic model-free DRL algorithm and the proposed algorithm is discussed,
and the boost tracking performance at the very first training episode for both algorithms is compared.
Finally, the control performance of the proposed algorithm is demonstrated to achieve a high level
of control performance, generality, and adaptiveness when compared with the aforementioned PID
benchmark. For the whole section, one of the commonly used control performance measures—i.e.,
IAE—is adopted to compare each control algorithm.

The fine-tuned PID control behavior can be seen in Figure 8. The control parameters in this PID
controller are tuned by the classic Ziegler–Nichols method, which takes a lot of effort; however, its
performance can be recognized as a good control benchmark. It should be noted that the emphasis
in this research is to propose a practical learning structure that allows the control strategy to learn
the interactions with a real transient environment directly (without relying on a simulation model)
and finally form a good control behavior. Thus, a conclusion of which algorithm is better than the
other cannot be drawn (especially when the driving cycle is known), as it is believed that the control
behavior largely depends on the efforts of tuning.
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The learning curve that shows the cumulated rewards of each episode for the hybrid algorithm,
the DDPG algorithm, and the benchmark PID controller can be seen from Figure 9. The trajectory of
the DDPG algorithm (which has been published in [15]) illustrates a classical learning process from
scratch using model-free DRL algorithms. It is shown that from the beginning of the training that
the accumulated rewards for the DDPG agent per episode are extremely low, indicating poor control
behavior, and after approximately 40 episodes, the accumulated rewards can be converged slowly to
a higher value than that of the benchmark fine-tuned PID controller, indicating a preferable control
performance. However, this approach cannot be directly applied on a real plant due to the possible
plant damage resulting from its random and not wise control action when the agent has limited
experience, especially at the beginning of the training. However, the proposed hybrid algorithm is
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distinct from the DDPG learning curve by offering the control strategy a good action baseline, making
it practicable to train the algorithm directly on a real plant.
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To make it clearer, the control behaviors of the DDPG and the hybrid algorithm at the very first
training episode are shown in Figure 10. It is shown that the boost pressure of the DDPG algorithm is
far away from the target, and due to its random control action (so as to realize extensive exploration),
the boost pressure easily exceeds the safety margin. This may be forgiven in the simulation environment,
but will most likely damage a real plant in one attempt, not to mention that this kind of model-free DRL
algorithm requires a very large number of random actions to achieve good performance. However, for
the proposed hybrid algorithm, the boost tracking performance at the very first episode is acceptable,
and the boost pressure is well below the safety margin. This is because (1) the action range of the dueling
DQN is limited; and (2) the PID acts as a compensator to modify the incorrect action implemented by
the dueling DQN at the very first episode. Note that only after approximately five episodes, the hybrid
algorithm has already been converged, and the accumulated rewards are basically the same as those
achieved by the DDPG algorithm requiring nearly 50 episodes, indicating a superior computational
efficiency. Figure 11 shows the control behavior of the proposed hybrid algorithm, and when it is
compared with Figure 8, it can be seen that the control behavior based on the proposed hybrid algorithm
outperforms that of the PID controller, with the IAE for each being 40.12 and 31.83, respectively.
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In order to show the generalization ability of the proposed hybrid algorithm, as indicated in
Figure 12, the control behavior comparison between the fine-tuned PID and the proposed hybrid
algorithm using testing dataset is conducted. Compared with the results of the fine-tuned PID controller
(the parameters of the PID controller were initially optimized for the whole period of the FTP-72 driving
cycle), the average control behavior based on the proposed algorithm performs marginally better,
as indicated by the IAE of the PID being 9.84 and that of the proposed algorithm being 8.89. However,
the actual boost pressure of the proposed algorithm suffers a high-frequency oscillation compared
with the PID benchmark. In order to test its adaptivity, a continuous learning is implemented using a
long driving cycle containing this specific driving cycle. After a short time, as shown in Figure 13,
the agent is able to follow the target boost better, and the oscillation is almost eliminated, showing the
superior adaptiveness of this hybrid algorithm.
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when a PID controller failure occurs, a constant value of 0.5 in our study rather than 1 (which is the 
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Furthermore, by adding another redundant control module, this hybrid method can also improve
the system’s reliability. This redundancy, unlike most of the other literature, is achieved by enabling
DRL algorithms to adapt themselves to the behavior of the system under different PID outputs while
trying to maximize the cumulative rewards. This will not only help improve the control behavior
when the PID controller behaves decently, but also provide a satisfactory control correction when
the PID controller functions abnormally or a total failure occurs. For example, under minor PID
issues, the dueling DQN is able to adjust the control parameters autonomously by direct interaction
with the environment (thus, a well-behaved controller can be re-developed). Figure 14 simulates this
phenomenon by adding a random noise to the PID controller. It is shown that the hybrid algorithm
behaves decently well, while the benchmarking PID controller suffers pressure oscillation. For bigger
problems, this hybrid architecture can also output a relatively good control behavior, which will help
keep the power within the reasonable ranges for the control case of boosted internal combustion
engines. This is done by introducing a simple switch in the hybrid controller. To be more specific,
when a PID controller failure occurs, a constant value of 0.5 in our study rather than 1 (which is the
current industrial practice to protect the engine) is sent to the dueling DQN controller, as can be seen in
Figure 7. Without requiring re-learning with the environment (see Figure 15), a good control behavior
can still be realized, and it’s much better than that of the PID benchmark, whose pressure is well below
the target, indicating a lack of power.
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environment, can now be performed directly on a real plant. This is realized by giving the control 
strategy some ‘guided experience’ before learning through making use of an existing fine-tuned PID 

Figure 14. Control behavior between the original PID controller and the hybrid algorithm when the
controller is mixed with random noise.



Energies 2019, 12, 3739 13 of 15

 13 of 15 

behavior can still be realized, and it’s much better than that of the PID benchmark, whose pressure is 
well below the target, indicating a lack of power.  

 
Figure 14. Control behavior between the original PID controller and the hybrid algorithm when the 
controller is mixed with random noise. 

 
Figure 15. Control behavior between the original PID controller and the hybrid controller when the 
PID controller fails. 

4. Conclusion 

In this research, a hybrid control algorithm combining a model-free deep reinforcement learning 
algorithm and a traditional PID controller is proposed. Unlike most of the other DRL studies whose 
control strategies can only be trained in a simulation environment in order to realize an extensive 
random exploration while not violating the real plant safety limit, the purpose of this research is to 
seek a practical method that enables the DRL agent in the real environment to learn the control 
behavior on its own while adapting to the changing circumstances. By combining both an intelligent 
dueling DQN and a traditional PID, the proposed hybrid control approach, innovatively allowing 
the training process of the DRL algorithm that previously can only be carried out in the simulation 
environment, can now be performed directly on a real plant. This is realized by giving the control 
strategy some ‘guided experience’ before learning through making use of an existing fine-tuned PID 

Figure 15. Control behavior between the original PID controller and the hybrid controller when the
PID controller fails.

4. Conclusions

In this research, a hybrid control algorithm combining a model-free deep reinforcement learning
algorithm and a traditional PID controller is proposed. Unlike most of the other DRL studies whose
control strategies can only be trained in a simulation environment in order to realize an extensive
random exploration while not violating the real plant safety limit, the purpose of this research is to seek
a practical method that enables the DRL agent in the real environment to learn the control behavior
on its own while adapting to the changing circumstances. By combining both an intelligent dueling
DQN and a traditional PID, the proposed hybrid control approach, innovatively allowing the training
process of the DRL algorithm that previously can only be carried out in the simulation environment,
can now be performed directly on a real plant. This is realized by giving the control strategy some
‘guided experience’ before learning through making use of an existing fine-tuned PID controller and
then allowing DRL control actions to autonomously learn the interaction with the real environment in
order to further improve the control performance, based on a relatively good benchmark. Taking the
boost control of a VGT-equipped diesel engine as an example, the proposed hybrid algorithm is proven
to be able to realize a high level of control performance, generality, and adaptiveness, compared
with a fine-tuned PID controller benchmark. Future work may include applying DRL-based parallel
architecture or combining model-based RL and the model-free RL techniques to accelerate the training
process and improve the final control performance.
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