Simulating Three-Dimensional Plume Migration of a Radionuclide Decay Chain through Groundwater
Abstract
:1. Introduction
2. Mathematical Model
3. Results and Discussion
3.1. Verification of the Developed Analytical Solution
3.2. Application of the Analytical Model
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Yeh, G.T. AT123D: Analytical Transient One-, Two-, and Three- Dimensional Simulation of Waste Transport in the Aquifer System, ORNL-5602; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 1981. [Google Scholar]
- Van Genuchten, M.T.; Alves, W.J. Analytical Solutions of the One-Dimensional Convective-Dispersive Solute Transport Equation; Technical Bulletin No. 1661; US Department of Agriculture: Washington, DC, USA, 1982. [Google Scholar]
- Batu, V. A generalized two-dimensional analytical solution for hydrodynamic dispersion in bounded media with the first-type boundary condition at the source. Water Resour. Res. 1989, 25, 1125–1132. [Google Scholar] [CrossRef]
- Batu, V. A generalized two-dimensional analytical solute transport model in bounded media for flux-type finite multiple sources. Water Resour. Res. 1993, 29, 2881–2892. [Google Scholar] [CrossRef]
- Batu, V. A generalized three-dimensional analytical solute transport model for multiple rectangular first-type sources. J. Hydrol. 1996, 174, 57–82. [Google Scholar] [CrossRef]
- Leij, F.J.; Skaggs, T.H.; Van Genuchten, M.T. Analytical solution for solute transport in three-dimensional semi-infinite porous media. Water Resour. Res. 1991, 27, 2719–2733. [Google Scholar] [CrossRef]
- Leij, F.J.; Toride, N.; van Genuchten, M.T. Analytical solutions for non-equilibrium solute transport in three-dimensional porous media. J. Hydrol. 1993, 151, 193–228. [Google Scholar] [CrossRef]
- Park, E.; Zhan, H. Analytical solutions of contaminant transport from finite one-, two, three-dimensional sources in a finite thickness aquifer. J. Contam. Hydrol. 2001, 53, 41–61. [Google Scholar] [CrossRef]
- Chen, J.S.; Liu, C.W.; Liao, C.M. A novel analytical power series solution for solute transport in a radially convergent flow field. J. Hydrol. 2002, 266, 120–138. [Google Scholar] [CrossRef]
- Chen, J.S.; Ni, C.F.; Liang, C.P.; Chiang, C.C. Analytical power series solution for contaminant transport with hyperbolic asymptotic distance-dependent dispersivity. J. Hydrol. 2008, 362, 142–149. [Google Scholar] [CrossRef]
- Chen, J.S.; Ni, C.F.; Liang, C.P. Analytical power series solutions to the two-dimensional advection-dispersion equation with distance-dependent dispersivities. Hydrol. Process. 2008, 22, 4670–4678. [Google Scholar] [CrossRef]
- Chen, J.S.; Chen, J.T.; Liu, C.W.; Liang, C.P.; Lin, C.M. Analytical solutions to two-dimensional advection–dispersion equation in cylindrical coordinates in finite domain subject to first- and third-type inlet boundary conditions. J. Hydrol. 2011, 405, 522–531. [Google Scholar] [CrossRef]
- Chen, J.S.; Liu, Y.H.; Liang, C.P.; Liu, C.W.; Lin, C.W. Exact analytical solutions for two-dimensional advection-dispersion equation in cylindrical coordinates subject to third-type inlet boundary condition. Adv. Water Resour. 2011, 34, 365–374. [Google Scholar] [CrossRef]
- Chen, J.S.; Hsu, S.Y.; Li, M.H.; Liu, C.W. Assessing the performance of a permeable reactive barrier-aquifer system using a dual-domain solute transport model. J. Hydrol. 2016, 543, 849–860. [Google Scholar] [CrossRef]
- Chen, J.S.; Li, L.Y.; Lai, K.H.; Liang, C.P. Analytical model for advective-dispersive transport involving flexible boundary inputs, initial distributions and zero-order productions. J. Hydrol. 2017, 554, 187–199. [Google Scholar] [CrossRef]
- Zhan, H.; Wen, Z.; Gao, G. An analytical solution of two-dimensional reactive solute transport in an aquifer-aquitard system. Water Resour. Res. 2009, 45, W10501. [Google Scholar] [CrossRef]
- Pérez Guerrero, J.S.; Skaggs, T.H.; van Genuchten, M.T. Analytical solution for multi-species contaminant transport in finite media with time-varying boundary condition. Transp. Porous Med. 2010, 85, 171–188. [Google Scholar] [CrossRef]
- Gao, G.; Zhan, H.; Feng, S.; Fu, B.; Ma, Y.; Huang, G. A new mobile-immobile model for reactive solute transport with scale-dependent dispersion. Water Resour. Res. 2010, 46, W08533. [Google Scholar] [CrossRef]
- Gao, G.; Zhan, H.; Feng, S.; Huang, G.; Fu, B. A mobile-immobile model with an asymptotic scale-dependent dispersion function. J. Hydrol. 2012, 424, 172–183. [Google Scholar] [CrossRef]
- Gao, G.; Fu, B.; Zhan, H.; Ma, Y. Contaminant transport in soil with depth-dependent reaction coefficients and time-dependent boundary conditions. Water Res. 2013, 47, 2507–2522. [Google Scholar] [CrossRef]
- Chen, J.S.; Liu, C.W. Generalized analytical solution for advection-dispersion equation in finite spatial domain with arbitrary time-dependent inlet boundary condition. Hydrol. Earth Syst. Sci. 2011, 15, 2471–2479. [Google Scholar] [CrossRef] [Green Version]
- Pérez Guerrero, J.S.; Pontedeiro, E.M.; van Genuchten, M.T.; Skaggs, T.H. Analytical solutions of the one-dimensional advection–dispersion solute transport equation subject to time-dependent boundary conditions. Chem. Eng. J. 2013, 221, 487–491. [Google Scholar] [CrossRef]
- Liang, C.P.; Hsu, S.Y.; Chen, J.S. An analytical model for solute transport in an infiltration tracer test in soil with a shallow groundwater table. J. Hydrol. 2016, 540, 129–141. [Google Scholar] [CrossRef]
- Nair, R.N.; Sunny, F.; Manikandan, S.T. Modelling of decay chain transport in groundwater from uranium tailings ponds. Appl. Math. Model. 2010, 34, 2300–2311. [Google Scholar] [CrossRef]
- Cho, C.M. Convective transport of ammonium with nitrification in soil. Can. J. Soil Sci. 1971, 51, 339–350. [Google Scholar] [CrossRef]
- Van Genuchten, M.T. Convective–dispersive transport of solutes involved in sequential first-order decay reactions. Comput. Geosci. 1985, 11, 129–147. [Google Scholar] [CrossRef]
- Lunn, M.; Lunn, R.J.; Mackay, R. Determining analytic solution of multiple species contaminant transport with sorption and decay. J. Hydrol. 1996, 180, 195–210. [Google Scholar] [CrossRef]
- Sun, Y.; Clement, T.P. A decomposition method for solving coupled multi-species reactive transport problems. Transp. Porous Med. 1999, 37, 327–346. [Google Scholar] [CrossRef]
- Sun, Y.; Peterson, J.N.; Clement, T.P. A new analytical solution for multiple species reactive transport in multiple dimensions. J. Contam. Hydrol. 1999, 35, 429–440. [Google Scholar] [CrossRef]
- Sun, Y.; Petersen, J.N.; Clement, T.P.; Skeen, R.S. Development of analytical solutions for multi-species transport with serial and parallel reactions. Water Resour. Res. 1999, 35, 185–190. [Google Scholar] [CrossRef]
- Srinivasan, V.; Clememt, T.P. Analytical solutions for sequentially coupled one-dimensional reactive transport problems-Part I: Mathematical derivations. Adv. Water Res. 2008, 31, 203–218. [Google Scholar] [CrossRef]
- Srinivasan, V.; Clement, T.P. Analytical solutions for sequentially coupled one-dimensional reactive transport problems-Part II: Special cases, implementation and testing. Adv. Water Res. 31, 219–232. [CrossRef]
- Pérez Guerrero, J.S.; Skaggs, T.H.; van Genuchten, M.T. Analytical solution for multi-species contaminant transport subject to sequential first-order decay reactions in finite media. Transp. Porous Med. 2009, 80, 373–387. [Google Scholar] [CrossRef]
- Chen, J.S.; Lai, K.H.; Liu, C.W.; Ni, C.F. A novel method for analytically solving multi-species advective-dispersive transport equations sequentially coupled with first-order decay reactions. J. Hydrol. 2012, 420, 191–204. [Google Scholar] [CrossRef]
- Chen, J.S.; Liu, C.W.; Liang, C.P.; Lai, K.H. Generalized analytical solutions to sequentially coupled multi-species advective-dispersive transport equations in a finite domain subject to an arbitrary time-dependent source boundary condition. J. Hydrol. 2012, 456–457, 101–109. [Google Scholar] [CrossRef]
- Bauer, P.; Attinger, S.; Kinzelbach, W. Transport of a decay chain in homogeneous porous media: Analytical solutions. J. Contam. Hydrol. 2001, 49, 217–239. [Google Scholar] [CrossRef]
- Montas, H.J. An analytical solution of the three-component transport equation with application to third-order transport. Water Resour. Res. 2003, 39, 1036. [Google Scholar] [CrossRef]
- Quezada, C.R.; Clement, T.P.; Lee, K.K. Generalized solution to multi-dimensional multi-species transport equations coupled with a first-order reaction network involving distinct retardation factors. Adv. Water Res. 2004, 27, 507–520. [Google Scholar] [CrossRef]
- Sudicky, E.A.; Hwang, H.T.; Illman, W.A.; Wu, Y.S. A semi-analytical solution for simulating contaminant transport subject to chain-decay reactions. J. Contam. Hydrol. 2013, 144, 20–45. [Google Scholar] [CrossRef]
- Kreft, A.; Zuber, A. Comment on “Flux averaged and volume averaged concentrations in continuum approaches to solute transport”. Water Resour. Res. 1986, 22, 1157–1158. [Google Scholar] [CrossRef]
- Parker, J.C.; van Genuchten, M.T. Flux-averaged and volume-averaged concentrations in continuum approaches to solute transport. Water Resour. Res. 1984, 20, 866–872. [Google Scholar] [CrossRef]
- Van Genuchten, M.T.; Parker, J.C. Boundary conditions for displacement experiments through short laboratory soil columns. Soil Sci. Soc. Am. J. 1984, 48, 703–708. [Google Scholar] [CrossRef]
- Parlange, J.Y.; Barry, D.A.; Starr, J.L. Comments on “Boundary conditions for displacement experiments through short laboratory soil columns”. Soil Sci. Soc. Am. J. 1985, 49, 1325. [Google Scholar] [CrossRef]
- Chen, J.S.; Liang, C.P.; Liu, C.W.; Li, L.Y. An analytical model for simulating two-dimensional multispecies plume migration. Hydrol. Earth Sys. Sci. 2016, 20, 733–753. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Goltz, M.N. Solutions to equations incorporating the effect of rate-limited contaminant mass transfer on vadose zone remediation by soil vapor extraction. Water Resour. Res. 1999, 35, 879–883. [Google Scholar] [CrossRef]
- Lai, K.H.; Liu, C.W.; Liang, C.P.; Chen, J.S.; Sie, B.R. A novel method for analytically solving a radial advection-dispersion equation. J. Hydrol. 2016, 542, 532–540. [Google Scholar] [CrossRef]
- Chen, J.S.; Ho, Y.C.; Liang, C.P.; Wang, S.W.; Liu, C.W. Semi-analytical model for coupled multispecies advective-dispersive transport subject to rate-limited sorption. J. Hydrol. 2019, 579, 124–164. [Google Scholar] [CrossRef]
- Sneddon, I.H. The Use of Integral Transforms; McGraw-Hill: New York, NY, USA, 1972. [Google Scholar]
- De Hoog, F.R.; Knight, J.H.; Stokes, A.N. An improved method for numerical inversion of Laplace transforms. SIAM J. Sci. Stat. Comput. 1982, 3, 357–366. [Google Scholar] [CrossRef]
- Chen, J.S.; Chen, C.S.; Chen, C.Y. Analysis of solute transport in a divergent flow tracer test with scale-dependent dispersion. Hydrol. Process. 2007, 21, 2526–2536. [Google Scholar] [CrossRef]
- Higashi, K.; Pigford, T. Analytical models for migration of radionuclides in geological sorbing media. J. Nucl. Sci. Technol. 1980, 17, 700–709. [Google Scholar] [CrossRef]
- ICRP. Compendium of Dose Coefficients based on ICRP Publication 60; ICRP Publication: Ottawa, ON, Canada, 2012. [Google Scholar]
Parameter | Unit | Value |
---|---|---|
Domain length, | m | 250 |
Domain width, | m | 100 |
Domain height, | m | 100 |
Groundwater velocity, | m/year | 100 |
Dispersion coefficient, Dx | m2/year | 1000 |
Dispersion coefficient, Dy | m2/year | 100 |
Dispersion coefficient, Dz | m2/year | 100 |
Retardation factor, Ri | ||
238Pu | 10,000 | |
234U | 14,000 | |
230Th | 50,000 | |
226Ra | 500 | |
Radioactive decay constant, λi | ||
238Pu | year−1 | 0.0079 |
234U | year−1 | 0.0000028 |
230Th | year−1 | 0.0000087 |
226Ra | year−1 | 0.00043 |
Initial amount of nuclide, | ||
238Pu | Bq/m2 | 1.5×1015 |
234U | 0 | |
230Th | 0 | |
226Ra | 0 | |
Proportionality constant, γi | ||
238Pu | year−1 | 0.001 |
234U | year−1 | 0.001 |
230Th | year−1 | 0.001 |
226Ra | year−1 | 0.001 |
Ingestion dose coefficient, DFi | ||
238Pu | Sv/Bq | 2.3 × 10−7 |
234U | Sv/Bq | 4.9 × 10−8 |
230Th | Sv/Bq | 2.1 × 10−7 |
226Ra | Sv/Bq | 2.8 × 10−7 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.-S.; Liang, C.-P.; Chang, C.-H.; Wan, M.-H. Simulating Three-Dimensional Plume Migration of a Radionuclide Decay Chain through Groundwater. Energies 2019, 12, 3740. https://doi.org/10.3390/en12193740
Chen J-S, Liang C-P, Chang C-H, Wan M-H. Simulating Three-Dimensional Plume Migration of a Radionuclide Decay Chain through Groundwater. Energies. 2019; 12(19):3740. https://doi.org/10.3390/en12193740
Chicago/Turabian StyleChen, Jui-Sheng, Ching-Ping Liang, Cheng-Hung Chang, and Ming-Hsien Wan. 2019. "Simulating Three-Dimensional Plume Migration of a Radionuclide Decay Chain through Groundwater" Energies 12, no. 19: 3740. https://doi.org/10.3390/en12193740
APA StyleChen, J. -S., Liang, C. -P., Chang, C. -H., & Wan, M. -H. (2019). Simulating Three-Dimensional Plume Migration of a Radionuclide Decay Chain through Groundwater. Energies, 12(19), 3740. https://doi.org/10.3390/en12193740