Towards a Low Emission Transport System: Evaluating the Public Health and Environmental Benefits
Abstract
:1. Introduction
2. Methodology
2.1. Overall Estimation of Emissions
2.2. Public Health Co-Benefits
3. Results and Discussion
3.1. The Study Area: Tehran Transport Sector
3.2. Baseline Scenario
3.3. Tehran Transportation Master Plan
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- WEC, World Energy Council. Climate Change: Implications for the Energy Sector, Key Findings from the Intergovernmental Panel on Climate Change Fifth Assessment Report; University of Cambridge: Cambridge, UK, 2014; Available online: https://www.worldenergy.org/wp-content/uploads/2014/06/Climate-Change-Implications-for-the-Energy-Sector-Summary-from-IPCC-AR5-2014-Full-report.pdf (accessed on 1 January 2019).
- Boemi, S.N.; Irulegi, O.; Santamouris, M. Energy Performance of Buildings: Energy Efficiency and Built Environment in Temperate Climates; Springer International Publishing: Switzerland, 2016; ISBN 978-3-319-20830-5. [Google Scholar]
- OECD, Organisation for Economic Co-operation and Development. Cities and Climate Change. 2010. Available online: https://www.oecd.org/berlin/46560225.pdf (accessed on 1 January 2019).[Green Version]
- Polydoros, A.; Cartalis, C. Use of Earth Observation based indices for the monitoring of built-up area features and dynamics in support of urban energy studies. Energy Build. 2015, 98, 92–99. [Google Scholar] [CrossRef]
- UN-HABIT. State of the World’s Cities 2008/2009—Harmonious Cities; UN-HABITAT: London, UK; Sterling, VA, USA, 2008; ISBN1 978-92-1-132010-7. Available online: http://mirror.unhabitat.org/pmss/listItemDetails.aspx?publicationID=2562 (accessed on 1 December 2018)ISBN2 978-92-1-132010-7.
- Cao, J.; Ho, M.S.; Jorgenson, D.W. Co-benefits of Greenhouse Gas Mitigation Policies in China. Environment for Development, Discussion Paper Series, EfD DP 08-10, China. 2008. Available online: https://pdfs.semanticscholar.org/d2b1/e5c6ec1c962145d62abdba747b08f36cf495.pdf (accessed on 1 December 2018).
- Puppim de Oliveira, J.A.; Doll, C.N.H.; Siri, J.; Dreyfus, M.; Farzaneh, H.; Capon, A. Urban governance and the systems approaches to health-environment co-benefits in cities. Cad. Saúde Pública 2015, 31, 25–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woodcock, J.; Edwards, P.; Tonne, C.; Armstrong, B.G.; Ashiru, O.; Banister, D.; Beevers, S.; Chalabi, Z.; Chowdhury, Z.; Cohen, A.; et al. Public health benefits of strategies to reduce greenhouse-gas emissions: Urban land transport. Lancet 2009, 374, 1930–1943. [Google Scholar] [CrossRef]
- Hyslop, A. Co-benefits of Municipal Climate Change Mitigation Strategies, Hamilton; University of Waterloo: Waterloo, ON, Canada, 2006; Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.488.268&rep=rep1&type=pdf (accessed on 1 December 2018).
- Hallegatte, S.; Corfee-Morlot, J. Understanding climate change impacts, vulnerability and adaptation at city scale: An introduction. Clim. Chang. 2011, 104, 1–12. [Google Scholar] [CrossRef]
- Puppim de Oliveira, J.A. Learning how to align climate, environmental and development objectives in cities: Lessons from the implementation of climate co-benefits initiatives in urban Asia. J. Clean. Prod. 2013, 58, 7–14. [Google Scholar] [CrossRef]
- Doll, C.N.; Puppim de Oliveira, J.A. (Eds.) Urbanization and Climate Co-Benefits: Implementation of Win-Win Interventions in Cities; Routledge: Abingdon, UK, 2017. [Google Scholar]
- Mayrhofer, J.P.; Gupta, J. The science and politics of co-benefits in climate policy. Environ. Sci. Policy 2016, 57, 22–30. [Google Scholar] [CrossRef]
- Betsill, M.M.; Bulkeley, H. Cities and Climate Change: Urban Sustainability and Global Environmental Governance; Routledge: New York, NY, USA, 2003. [Google Scholar]
- Puppim de Oliveira, J.A.; Doll, C.N.; Kurniawan, T.A.; Geng, Y.; Kapshe, M.; Huisingh, D. Promoting win–win situations in climate change mitigation, local environmental quality and development in Asian cities through co-benefits. J. Clean. Prod. 2013, 58, 1–6. [Google Scholar] [CrossRef]
- Lee, T.; Van de Meene, S. Comparative studies of urban climate co-benefits in Asian cities: An analysis of relationships between CO2 emissions and environmental indicators. J. Clean. Prod. 2013, 58, 15–24. [Google Scholar] [CrossRef]
- Fischedick, M.; Roy, A.J.; Abdel-Aziz, A.; Acquaye, J.M.; Allwood, J.-P.; Ceron, Y.; Geng, H.; Kheshgi, A.; Lanza, D.; Perczyk, L.; et al. 2014: Industry. In Climate Change 2014: Mitigation of Climate Change; Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S., Eickemeier, P., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Perston, B.; Suppiah, R.; Macadam, I.; Bathols, J. Climate Change in the Asia-Pacific region, A Consultancy Report Prepared for the Climate Change and Development Roundtable. CSIRO Marine and Atmospheric Research: Australia. Available online: http://www.cmar.csiro.au/e-print/open/prestonbl_2006b.pdf (accessed on 1 December 2018).
- Lee, Z.H.; Sethupathi, S.; Lee, K.T.; Bhatia, S.; Mohamed, A.R. An overview on global warming in Southeast Asia: CO2 emission status, efforts done, and barriers. Renew. Sustain. Energy Rev. 2013, 28, 71–81. [Google Scholar] [CrossRef]
- Timilsina, G.R.; Shrestha, A. Transport sector CO2 emissions growth in Asia: Underlying factors and policy options. Energy Policy 2009, 37, 4523–4539. [Google Scholar] [CrossRef]
- Ong, H.C.; Mahlia, T.M.I.; Masjuki, H.H. A review on energy pattern and policy for transportation sector in Malaysia. Renew. Sustain. Energy Rev. 2012, 16, 532–542. [Google Scholar] [CrossRef]
- Doll, C.N.H.; Balaban, O. A methodology for evaluating environmental co-benefits in the transport sector: Application to the Delhi metro. J. Clean. Prod. 2013, 58, 61–73. [Google Scholar] [CrossRef]
- Caia, B.; Bo, X.; Zhangc, L.; Boyced, J.K.; Zhange, Y.; Leif, Y. Gearing carbon trading towards environmental co-benefits in China: Measurement model and policy implications. Glob. Environ. Chang. 2016, 39, 275–284. [Google Scholar] [CrossRef]
- Farzaneh, H. Multiple benefits assessment of the clean energy development in Asian Cities. Energy Procedia 2017, 136, 8–14. [Google Scholar] [CrossRef]
- Farzaneh, H. Development of a Bottom-up Technology Assessment Model for Assessing the Low Carbon Energy Scenarios in the Urban System. Energy Procedia 2017, 107, 321–326. [Google Scholar] [CrossRef]
- Keshavarzian, M.; Anaraki, S.K.; Zamani, M.; Erfanifard, A. Projections of oil demand in road transportation sector on the basis of vehicle ownership projections, worldwide: 1972–2020. Econ. Model. 2012, 29, 1979–1985. [Google Scholar] [CrossRef]
- Mittal, S.; Dai, H.; Shukla, P.R. Low carbon urban transport scenarios for China and India: A comparative assessment. Transp. Res. Part D Transp. Environ. 2016, 44, 266–276. [Google Scholar] [CrossRef]
- Pathak, M.; Shukla, P.R. Co-benefits of low carbon passenger transport actions in Indian cities: Case study of Ahmedabad. Transp. Res. Part D 2016, 44, 303–316. [Google Scholar] [CrossRef]
- LIU, W.W.; DONG, J.; Qian, W. Research on Environmental sustainability in Eastern Asia Region Based On Transport Policies. Procedia Soc. Behav. Sci. 2013, 96, 894–899. [Google Scholar] [CrossRef]
- Geng, Y.; Ma, Z.; Xue, B.; Ren, W.; Liu, Z.; Fujita, T. Co-benefit evaluation for urban public transportation sector—A case of Shenyang, China. J. Clean. Prod. 2013, 58, 82–91. [Google Scholar] [CrossRef]
- Ling-Yun, H.E.; Lu-Yi, Q.I.U. Transport demand, harmful emissions, environment and health co benefits in China. Energy Policy 2016, 97, 267–275. [Google Scholar]
- Li, Y.; Crawford-Brown, D.J. Assessing the co-benefits of greenhouse gas reduction: Health benefits of particulate matter related inspection and maintenance programs in Bangkok, Thailand. Sci. Total Environ. 2011, 409, 1774–1785. [Google Scholar] [CrossRef] [PubMed]
- MESDC, Ministry of Environment and Sustainable Development of Colombia. 2017. Available online: https://www.minambiente.gov.co/index.php/component/content/article?id=469:plantilla-cambio-climatico- 25#documentos (accessed on 1 December 2018).
- UNEP, The United Nations Environment Programme. Good Practice Guide; District Energy, Energy, Climate, and Technology Branch, Division of Technology, Industry and Economics: Paris, France, 2016; Available online: http://californiaseec.org/wp-content/uploads/2016/03/C40-Good-Practice-Guide_District-Energy.pdf (accessed on 1 December 2018).
- Government of Japan. Manual for the Quantitative Evaluation of the Co-benefits Approach to Climate Change Project, Version 1.0; Ministry of Environment, June 2009. Available online: https://www.env.go.jp/en/earth/cc/manual_qecba.pdf (accessed on 1 December 2018).
- GIZ, Internationale Zusammenarbiet (GIZ) Gmb. Available online: http://www.sutp.org/files/contents/documents/resources/E_Fact-Sheets-and-Policy-Briefs/SUTP_GIZ_FS_Avoid-Shift-Improve_EN.pdf (accessed on 1 December 2018).
- Farzaneh, H. Energy Systems Modeling-Principles and Applications; Springer: Singapore, 2019. [Google Scholar] [CrossRef]
- Schipper, L.; Marie-Liliu, M. Flexing the Link between Transport Greenhouse Gas Emissions: A Path for the World Bank; International Energy Agency: Paris, France, 1999; Available online: http://documents.worldbank.org/curated/en/826921468766156728/pdf/multi-page.pdf (accessed on 1 December 2018).
- Farzaneh, H.; Suwa, A.; Doll, C.N.H.; Puppim de Oliveira, J.A. Developing a Tool to Analyze Climate Co-benefits of the Urban Energy System. Procedia Environ. Sci. 2014, 20, 97–105. [Google Scholar] [CrossRef] [Green Version]
- Farzaneh, H.; Doll, C.N.H.; Puppim de Oliveira, J.A. An integrated supply-demand model for the optimization of energy flow in the urban energy system. J. Clean. Prod. 2016, 114, 269–285. [Google Scholar] [CrossRef]
- Ostro, B. Outdoor Air Pollution, Assessing the Environmental Burden of Disease at National and Local Levels; World Health Organization Protection of the Human Environment: Geneva, Switzerland, 2004; ISBN 9241591263. [Google Scholar]
- Maizlish, N.; Woodcock, J.; Co, S.; Ostro, B.; Fanai, A.; Fairley, D. Health co-benefits and transportation-related reductions in greenhouse gas emissions in the San Francisco Bay Area. Am. J. Public Health 2013, 103, 703–709. [Google Scholar] [CrossRef] [PubMed]
- Xia, T.; Nitschke, M.; Zhang, Y.; Shah, P.; Crabb, S.; Hansen, A. Traffic-related air pollution and health co-benefits of alternative transport in Adelaide, South Australia. Environ. Int. 2015, 74, 281–290. [Google Scholar] [CrossRef]
- Macmillan, A.; Connor, J.; Witten, K.; Kearns, R.; Rees, D.; Woodward, A. The societal costs and benefits of commuter bicycling: Simulating the effects of specific policies using system dynamics modeling. Environ. Health Perspect. 2014, 122, 335–344. [Google Scholar] [CrossRef] [PubMed]
- Rojas-Rueda, D.; de Nazelle, A.; Teixido, O.; Nieuwenhuijsen, M.J. Replacing car trips by increasing bike and public transport in the greater Barcelona metropolitan area: A health impact assessment study. Environ. Int. 2012, 49, 100–109. [Google Scholar] [CrossRef]
- WHO, World Health Organization. Health Risks of air Pollution in Europe –HRAPIE Project, Recommendations for Concentration–Response Functions for Cost–Benefit Analysis of Particulate Matter, Ozone and Nitrogen Dioxide; WHO Regional Office for Europe: København, Denmark, 2013. [Google Scholar]
- Shahbazi, H.; Reyhanian, M.; Hosseini, V.; Afshin, H. The Relative Contributions of Mobile Sources to Air Pollutant Emissions in Tehran, Iran: An Emission Inventory Approach, Emiss. Control Sci. Technol. 2016, 2, 44–56. [Google Scholar] [CrossRef]
- Shahbazi, H.; Ganjiazad, R.; Hosseini, V.; Hamedi, M. Investigating the influence of traffic emission reduction plans on Tehran air quality using WRF/CAMx modeling tools. Transp. Res. Part D Transport. Environ. 2017, 57, 484–495. [Google Scholar] [CrossRef]
- Hassani, A.; Hosseini, V. An assessment of gasoline motorcycle emissions performance and understanding their contribution to Tehran air pollution. Transp. Res. Part D Transport. Environ. 2016, 47, 1–12. [Google Scholar] [CrossRef]
- TAQCC. Tehran Air Quality Control Center. Annual Report of Air Quality in Tehran; Shahr Publication: Tehran, Iran, 2013; Available online: http://air.tehran.ir/portals/0/ReportFiles/AirPollution/New/39.pdf (accessed on 1 December 2018). (In Persian)
- Bayat, A. Tehran: Padox City, Metropolitan Disorders—7, New Left Review 66. Available online: https://newleftreview.org/issues/II66/articles/asef-bayat-tehran-paradox-city.pdf (accessed on 1 December 2018).
- SCI, Statistical Center of Iran. Iran Statistical Yearbook 2015–2016, Presidency Wise for Strategic Planning and Supervision, Tehran, Iran. 2013. Available online: https://www.amar.org.ir/english/Iran-Statistical-Yearbook/Statistical-Yearbook-2015-2016 (accessed on 1 December 2018).
- Saboohi, Y.; Farzaneh, H. Model for developing eco-driving strategy of a passenger vehicle. Appl. Energy 2009, 86, 1925–1932. [Google Scholar] [CrossRef]
- Zand, A.D.; Mikaeili, A.; Pezeshk, H. The influence of deposit control additives on exhaust CO and HC emissions from gasoline engines (case study: Tehran). Transp. Res. Part D Transport. Environ. 2007, 12, 189–194. [Google Scholar] [CrossRef]
- Heather, A. An integrated Approach to Public Transport, Tehran Islamic Republic of Iran, Case study for Global Report on Human Settelements 2013. Available online: http://www.unhabitat.org/grhs/2013 (accessed on 1 December 2018).
- TTTOD, Tehran Traffic Transportation Organization and Deputy, Deputy of planning and studies. An Overview of Tehran Transportation Master Plan (Revised in 2013), Tehran, Iran. Available online: http://www.iran.uitp.org/sites/default/files/documents/MasterPlanEnglishBook-old_Compressed.pdf (accessed on 1 December 2018).
- TUSRO, Tehran Urban & Suburban Railway Operation Co. 2016. Available online: http://metro.tehran.ir/Default.aspx?tabid=156 (accessed on 1 April 2017).
- Kakouei, A.; Vatani, A.; Kamal Bin Idris, A. An estimation of traffic related CO2 emissions from motor vehicles in the capital city of Iran. Iran. J. Environ. Health Sci. Eng. 2012, 9, 13. [Google Scholar] [CrossRef] [PubMed]
- Moshiri, S.; Atabi, F.; Panjehshahi, M.H.; Lechtenböhmer, S. Long run energy demand in Iran: A scenario analysis. Int. J. Energy Sect. Manag. 2012, 6, 120–144. [Google Scholar] [CrossRef]
- Naddafi, K.; Hassanvand, M.S.; Yunesian, M.; Momeniha, F.; Nabizadeh, R.; Faridi, S.; Gholampour, A. Health impact assessment of air pollution in megacity of Tehran, Iran. Iran. J. Environ. Health Sci. Eng. 2012, 9, 28. [Google Scholar] [CrossRef] [PubMed]
- NOFCR, National Organization for Civil Registration. Data on Mortality Based on Iranian Death Registration Systems (1990–2013) [Farsi]. 2016. Available online: http://www.sabteahval.ir/Default.aspx?tabid=4766 (accessed on 1 December 2018).
- Nojomi, M.; Naserbakhat, M.; Ramezany, M.; Anbary, K. Under-5 Year Mortality: Result of In-Hospital Study, Tehran, Iran. Acta Med. Iran. 2008, 47, 319–324. [Google Scholar]
CO | PM10 | SO2 | NOX | HC | |
---|---|---|---|---|---|
Bus | 2 | 9 | 60 | 5 | 10 |
Motorcycle | 18 | 9 | 1 | 2 | 33 |
Taxi | 7 | 1 | 1 | 10 | 8 |
Private Vehicle | 66 | 64 | 9 | 77 | 40 |
Others 1 | 7 | 17 | 29 | 6 | 9 |
Vehicle Categories | Mode Share (%) | Fuel Use | Fuel Efficiency (km/liter) |
---|---|---|---|
Passenger car | 39 | Gasoline (94%) CNG (6%) | Gasoline (7.8) CNG (7.6) |
Taxi | 24 | Gasoline (31%) CNG (69%) | Gasoline (7.8) CNG (7.6) |
Motorcycle | 6 | Gasoline (100%) | Gasoline (20.7) |
Urban Bus | 22 | Diesel (55%) CNG (45%) | Diesel (4) CNG (1.7) |
Metro | 9 | Electricity (100%) | Electricity (0.3) * |
Year | Million Trips Per Day | Distance Traveled Per Year (Million Kilometers) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Car | Taxi | Motorcycle | Bus | Metro | Car | Taxi | Motorcycle | Bus | Metro | |
2004 | 5.7 | 3.5 | 0.9 | 3.2 | 1.3 | 21,199 | 9976 | 2718 | 5534 | 4355 |
2005 | 5.8 | 3.6 | 0.9 | 3.3 | 1.3 | 21,634 | 10,181 | 2774 | 5647 | 4444 |
2006 | 5.9 | 3.6 | 0.9 | 3.3 | 1.4 | 22,070 | 10,386 | 2829 | 5761 | 4534 |
2007 | 6.0 | 3.7 | 0.9 | 3.4 | 1.4 | 22,506 | 10,591 | 2885 | 5875 | 4623 |
2008 | 6.0 | 3.7 | 0.9 | 3.4 | 1.4 | 22,506 | 10,591 | 2885 | 5875 | 4623 |
2009 | 6.3 | 3.9 | 1.0 | 3.6 | 1.5 | 23,522 | 11,069 | 3016 | 6140 | 4832 |
2010 | 6.5 | 4.0 | 1.0 | 3.7 | 1.5 | 24,103 | 11,342 | 3090 | 6292 | 4951 |
2011 | 6.6 | 4.1 | 1.0 | 3.7 | 1.5 | 24,683 | 11,616 | 3165 | 6443 | 5071 |
2012 | 6.8 | 4.2 | 1.0 | 3.8 | 1.6 | 25,264 | 11,889 | 3239 | 6595 | 5190 |
2013 | 6.9 | 4.2 | 1.1 | 3.9 | 1.6 | 25,700 | 12,094 | 3295 | 6709 | 5280 |
2014 | 7.0 | 4.3 | 1.1 | 4.0 | 1.6 | 26,135 | 12,299 | 3351 | 6822 | 5369 |
2015 | 7.1 | 4.4 | 1.1 | 4.0 | 1.6 | 26,571 | 12,504 | 3407 | 6936 | 5458 |
Mode | Private car | Taxi | Motorcycle | Bus | Metro | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(BPKM) | Low | Med. | High | Low | Med. | High | Low | Med. | High | Low | Med. | High | Low | Med. | High |
50 | 60 | 70 | 50 | 60 | 70 | 7 | 10 | 15 | 50 | 60 | 70 | 15 | 18 | 20 | |
−0.59 | −0.18 | 0.13 | −0.11 | 0.24 | 0.50 | 0.21 | 0.78 | 1.33 | −0.13 | 0.22 | 0.48 | −0.23 | 0.13 | 0.32 | |
−0.09 | −0.06 | −0.05 | −0.06 | −0.04 | −0.04 | −0.04 | −0.03 | −0.03 | −0.06 | −0.04 | −0.04 | −0.06 | −0.05 | −0.04 |
2010 | 2015 | 2020 | 2025 | 2030 | |
---|---|---|---|---|---|
CO2 (Mt/y) | 12.2 | 13.5 | 14.8 | 16.1 | 17.4 |
CO (Mt/y) | 1.4 | 1.5 | 1.7 | 1.8 | 2.0 |
SO2 (kt/y) | 3.2 | 3.6 | 3.9 | 4.2 | 4.6 |
NOX (kt/y) | 140.3 | 154.7 | 169.9 | 184.7 | 199.6 |
PM10 (kt/y) | 14.5 | 16.0 | 17.6 | 19.1 | 20.7 |
Bus | Car | Motorcycle | |||
---|---|---|---|---|---|
Diesel | CNG | Petrol | CNG | Petrol | |
CO2 | 3140 | 2750 | 3180 | 2750 | 3180 |
CH4 | 0.2 | 30.6 | 0.8 | 31.6 | 5 |
N2O | 0.1 | - | 0.06 | - | 0.07 |
SO2 | 0.56 | - | 1.50 | - | - |
NOx | 42 | 17.7 | 27 | 19.0 | 2.72 |
PM10 | 2.43 | - | 0.6 | - | 0.6 |
CO | 36 | 36.7 | 550 | 36.1 | 730 |
HC | 8 | 4.3 | 63 | 4.5 | 530 |
Action | Scenario | Baseline | TTMP (in 2030) | Impact |
---|---|---|---|---|
Shift | Developing Tehran’s rail system | Total length of 179 kilometers | Increasing the total length of subway lines to 514 kilometers 1 | Increasing about 32.3 BPKM traveled by urban rail system 2 |
Developing the Bus Rapid Transit (BRT) system | 10 lines with a total length of 172 kilometers | Increasing the total length to 202 kilometers 1 | Increasing about 19 BPKM traveled by BRT 3 | |
Increasing the number of natural gas buses | Compressed Natural Gas (CNG) buses accounted about 45% of total fleet | Increasing the share of CNG buses to 100% in total fleet 4 | Reducing about 1.14 billion liters of diesel 5 | |
Avoid | Improving the Restricted Traffic Zone (RTZ) enforcement | 160,000 unauthorized vehicles entering the RTZ | Preventing unauthorized entry of 196,000 vehicles by installing 303 cameras equipped with ANPR 6 system in the RTZ | Reducing about 2.86 BPKM traveled by private vehicles 7 |
Developing the Non-Motorized-Transportation (NMT) | Total length of 158 km of bike routes | Increasing the total length of bike routes to 919 kilometers | Reducing about 1.46 BPKM traveled by private vehicles 8 | |
Improve | Updating and improving the vehicle fuel economy | 7.8 km/liter | 12 km/liter 9 | Reducing about 0.86 billion liter of gasoline |
Scenarios | GHG (Mt/y) | SO2 (kt/y) | NOX (kt/y) | PM10 (kt/y) | CO (kt/y) |
---|---|---|---|---|---|
Baseline | 17.4 | 4.6 | 199.6 | 20.7 | 2 |
TTMP | 4.5 | 0.7 | 88.0 | 4.2 | 0.90 |
Total Mortality | Respiratory Mortality | Cardiovascular Mortality | |
---|---|---|---|
SO2 | 1.003 to 1.048 | 1.006 to 1.140 | 1.002 to 1.120 |
NOx | 1.002 to 1.004 | 1.011 to 1.045 | 1.003 to 1.005 |
PM10 | 1.004 to 1.008 | 1.005 to 1.020 | 1.005 to 1.013 |
Reduction in CO2 Emissions (Mt) | 12.9 Million Tons |
---|---|
Co-benefits | |
Reduction in local pollutant emissions | 1.4 million tons |
Public health impact | 10,000 deaths prevented |
Cost savings | 35 million USD |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farzaneh, H.; de Oliveira, J.A.P.; McLellan, B.; Ohgaki, H. Towards a Low Emission Transport System: Evaluating the Public Health and Environmental Benefits. Energies 2019, 12, 3747. https://doi.org/10.3390/en12193747
Farzaneh H, de Oliveira JAP, McLellan B, Ohgaki H. Towards a Low Emission Transport System: Evaluating the Public Health and Environmental Benefits. Energies. 2019; 12(19):3747. https://doi.org/10.3390/en12193747
Chicago/Turabian StyleFarzaneh, Hooman, Jose A. Puppim de Oliveira, Benjamin McLellan, and Hideaki Ohgaki. 2019. "Towards a Low Emission Transport System: Evaluating the Public Health and Environmental Benefits" Energies 12, no. 19: 3747. https://doi.org/10.3390/en12193747
APA StyleFarzaneh, H., de Oliveira, J. A. P., McLellan, B., & Ohgaki, H. (2019). Towards a Low Emission Transport System: Evaluating the Public Health and Environmental Benefits. Energies, 12(19), 3747. https://doi.org/10.3390/en12193747