Large Photovoltaic Power Plants Integration: A Review of Challenges and Solutions
Abstract
:1. Introduction
2. Main Components Grid-Connected Photovoltaic System
3. Overview of Grid Codes for Photovoltaic Integration
4. Photovoltaic Penetration Impact on Power System Stability
4.1. Frequency Stability
4.2. Angle Stability
5. Photovoltaic Penetration Impact on Voltage Profiles
5.1. Voltage Stability
5.2. Active Power Curtailment
5.3. Reactive Power Control
6. Fault Ride Through
7. Maximum Power Point Tracking Techniques
8. Investigating Impacts on Photovoltaic Cells and Panels
9. Conclusions and Future Trends
- Considering an ES system and a super capacitor in future research to improve grid stability and simultaneously mitigate short-term power fluctuations.
- Developing intelligent, robust, and advanced strategies, and fast communication technologies to improve the inertia and frequency regulation of the system.
Author Contributions
Funding
Conflicts of Interest
Abbreviations
RES | renewable energy system |
RE | renewable energy |
MPPT | maximum power point tracking |
LS-PVPP | large-scale photovoltaic power plant |
PV | photovoltaic |
PI | proportional integral |
GC | grid codes |
PF | power factor |
LV/HV | low voltage/high voltage |
MV | medium voltage |
PRF | primary frequency response |
SFR | secondary frequency response |
PVPP | photovoltaic power plants |
ES | energy storage |
RP | reactive power |
AP | active power |
PC | power curtailment |
LFC | linear feedback controller |
AVC | automatic voltage control |
LVRT | low-voltage ride through |
HVRT | high-voltage ride through |
PCC | point common coupling |
PSS | power system stabilizer |
SVC | supervisory voltage control |
MPC | model predictive control |
PDPC | direct power control |
FRT | fault ride through |
PSO | particle swarm optimization |
ABC | artificial bee colony |
GSO | glowworm swarm optimization |
UAV | unmanned aerial vehicle |
IT | infrared thermography |
MWp | megawatt |
kWp | kilowatt |
NDT | non-destructive testing |
OCVT | open-circuit voltage technology |
P&O | perturbation and observation |
References
- Michael, S. Solar Market Outlook for 2018–2022; Solar Power Europe: Brussels, Belgium, 2018; pp. 1–81. [Google Scholar]
- Karimi, M.; Mokhlis, H.; Naidu, K.; Uddin, S.; Bakar, A.H.A. Photovoltaic penetration issues and impacts in distribution network—A review. Renew. Sustain. Energy Rev. 2016, 53, 594–605. [Google Scholar] [CrossRef]
- Widén, J.; Wäckelgård, E.; Paatero, J.; Lund, P. Impacts of distributed photovoltaic on network voltages: Stochastic simulations of three Swedish low-voltage distribution grids. Electr. Power Syst. Res. 2010, 80, 1562–1571. [Google Scholar] [CrossRef]
- Gallo, D.; Langella, R.; Testa, A.; Hernandez, J.C.; Papič, I.; Blažič, B.; Meyer, J. Case studies on large PV plants: Harmonic distortion, unbalance and their effects. In Proceedings of the IEEE Power and Energy Society General Meeting, Vancouver, BC, Canada, 21–25 July 2013. [Google Scholar] [CrossRef]
- Marinopoulos, A.; Papandrea, F.; Reza, M.; Norrga, S.; Spertino, F.; Napoli, R. Grid integration aspects of large solar PV installations: LVRT capability and reactive power/voltage support requirements. In Proceedings of the 2011 IEEE PES Trondheim PowerTech: The Power of Technology for a Sustainable Society, Trondheim, Norway, 19–23 June 2011. [Google Scholar] [CrossRef]
- Morjaria, M.; Anichkov, D.; Chadliev, V.; Soni, S. A grid-friendly plant: The role of utility-scale photovoltaic plants in grid stability and reliability. IEEE Power Energy Mag. 2014, 12, 87–95. [Google Scholar] [CrossRef]
- Mirhosseini, M.; Agelidis, V.G. Performance of large-scale grid-connected photovoltaic system under various fault conditions. In Proceedings of the IEEE International Conference on Industrial Technology, Cape Town, South Africa, 25–28 February 2013. [Google Scholar] [CrossRef]
- Shah, R.; Mithulananthan, N.; Bansal, R.C.; Ramachandaramurthy, V.K. A review of key power system stability challenges for large-scale PV integration. Renew. Sustain. Energy Rev. 2015, 41, 1423–1436. [Google Scholar] [CrossRef]
- Obi, M.; Bass, R. Trends and challenges of grid-connected photovoltaic systems—A review. Renew. Sustain. Energy Rev. 2016, 58, 1082–1094. [Google Scholar] [CrossRef]
- Cabrera-Tobar, A.; Bullich-Massagué, E.; Aragüés-Peñalba, M.; Gomis-Bellmunt, O. Review of advanced grid requirements for the integration of large scale photovoltaic power plants in the transmission system. Renew. Sustain. Energy Rev. 2016, 62, 971–987. [Google Scholar] [CrossRef]
- Lashab, A.; Sera, D.; Martins, J.; Guerrero, J.M. Multilevel DC-link converter-based photovoltaic system with integrated energy storage. In Proceedings of the 2018 5th International Symposium on Environment-Friendly Energies and Applications (EFEA), Rome, Italy, 24–26 September 2018. [Google Scholar] [CrossRef]
- Bevrani, H.; Ghosh, A.; Ledwich, G. Renewable energy sources and frequency regulation: Survey and new perspectives. IET Renew. Power Gener. 2010, 4, 438–457. [Google Scholar] [CrossRef]
- Dehghanpour, K.; Afsharnia, S. Electrical demand side contribution to frequency control in power systems: A review on technical aspects. Renew. Sustain. Energy Rev. 2015, 41, 1267–1276. [Google Scholar] [CrossRef]
- Rahmann, C.; Castillo, A. Fast frequency response capability of photovoltaic power plants: The necessity of new grid requirements and definitions. Energies 2014, 7, 6306–6322. [Google Scholar] [CrossRef]
- Seneviratne, C.; Ozansoy, C. Frequency response due to a large generator loss with the increasing penetration of wind/PV generation—A literature review. Renew. Sustain. Energy Rev. 2016, 57, 659–668. [Google Scholar] [CrossRef]
- Yan, R.; Saha, T.K.; Modi, N.; Masood, N.A.; Mosadeghy, M. The combined effects of high penetration of wind and PV on power system frequency response. Appl. Energy 2015, 145, 320–330. [Google Scholar] [CrossRef]
- Abdlrahem, A.; Venayagamoorthy, G.K.; Corzine, K.A. Frequency stability and control of a power system with large PV plants using PMU information. In Proceedings of the 45th North American Power Symposium, Manhattan, KS, USA, 22–24 September 2013. [Google Scholar] [CrossRef]
- Silva, V.; Lopez-Botet-Zulueta, M.; Wang, Y. Impact of high penetration of variable renewable generation on frequency dynamics in the continental Europe interconnected system. IET Renew. Power Gener. 2015. [Google Scholar] [CrossRef]
- Zhang, Y.; Mensah-Bonsu, C.; Walke, P.; Arora, S.; Pierce, J. Transient over-voltages in high voltage grid-connected PV solar interconnection. In Proceedings of the IEEE PES General Meeting, Providence, RI, USA, 25–29 July 2010. [Google Scholar] [CrossRef]
- Mahalakshmi, D.; Archana, V.S.; Komathi, J. Reactive power control in microgrid by using Photovoltaic Generators. In Proceedings of the 2016 International Conference on Computation of Power, Energy, Information and Communication (ICCPEIC), Chennai, India, 20–21 April 2016. [Google Scholar] [CrossRef]
- Eftekharnejad, S.; Vittal, V.; Heydt, G.T.; Keel, B.; Loehr, J. Small Signal Stability Assessment of Power Systems with Increased Penetration of Photovoltaic Generation: A Case Study. IEEE Trans. Sustain. Energy 2013, 4, 960–967. [Google Scholar] [CrossRef]
- Tamimi, B.; Canizares, C.; Bhattacharya, K. System stability impact of large-scale and distributed solar photovoltaic generation: The case of Ontario, Canada. IEEE Trans. Sustain. Energy 2013, 4, 680–688. [Google Scholar] [CrossRef]
- Liu, S.; Liu, P.X.; Wang, X. Stochastic small-signal stability analysis of grid-connected photovoltaic systems. IEEE Trans. Ind. Electron. 2016. [Google Scholar] [CrossRef]
- Munkhchuluun, E.; Meegahapola, L.; Vahidnia, A. Impact on rotor angle stability with high solar-PV generation in power networks. In Proceedings of the 2017 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe 2017), Torino, Italy, 26–29 September 2017. [Google Scholar] [CrossRef]
- Lashab, A.; Sera, D.; Martins, J.; Guerrero, J.M. Model predictive-based direct battery control in PV fed Quasi Z-source inverters. In Proceedings of the 2018 5th International Symposium on Environment-Friendly Energies and Applications (EFEA), Rome, Italy, 24–26 September 2018. [Google Scholar] [CrossRef]
- Eftekharnejad, S.; Vittal, V.; Heydt, G.T.; Keel, B.; Loehr, J. Impact of increased penetration of photovoltaic generation on power systems. IEEE Trans. Power Syst. 2013, 28, 893–901. [Google Scholar] [CrossRef]
- Tan, Y.T.; Kirschen, D.S. Impact on the power system of a large penetration of photovoltaic generation. In Proceedings of the 2007 IEEE Power Engineering Society General Meeting (PES), Tampa, FL, USA, 24–28 June 2007. [Google Scholar] [CrossRef]
- EUROSTAG Release. 4.2 Package Documentation Part I. 2000. Available online: http://www.eurostag.be/en/products/eurostag/eurostag-release/eurostag-release/ (accessed on 3 October 2019).
- Omran, W.A.; Kazerani, M.; Salama, M.M.A. A clustering-based method for quantifying the effects of large on-grid PV systems. IEEE Trans. Power Deliv. 2010, 25, 2617–2625. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, S.; Sparks, R.; Green, I. Impacts of solar PV generators on power system stability and voltage performance. In Proceedings of the IEEE Power and Energy Society General Meeting, San Diego, CA, USA, 22–26 July 2012. [Google Scholar] [CrossRef]
- Martins, J.; Spataru, S.; Sera, D.; Stroe, D.-I.; Lashab, A. Comparative study of ramp-rate control algorithms for PV with energy storage systems. Energies 2019, 12, 1342. [Google Scholar] [CrossRef]
- Lashab, A.; Sera, D.; Guerrero, J.M. A low-computational high-performance model predictive control of single phase battery assisted Quasi Z-source PV inverters. In Proceedings of the 2019 10th International Conference on Power Electronics and ECCE Asia (ICPE 2019—ECCE Asia), Busan, Korea, 27–30 May 2019; pp. 1873–1878. [Google Scholar]
- Luthander, R.; Lingfors, D.; Widén, J. Large-scale integration of photovoltaic power in a distribution grid using power curtailment and energy storage. Sol. Energy 2017, 155, 1319–1325. [Google Scholar] [CrossRef]
- Ina, N.; Yanagawa, S.; Kato, T.; Suzuoki, Y. Smoothing of PV system output by tuning MPPT control. Electr. Eng. Jpn. 2005, 152, 10–17. [Google Scholar] [CrossRef]
- Tonkoski, R.; Lopes, L.A.C.; El-Fouly, T.H.M. Coordinated active power curtailment of grid connected PV inverters for overvoltage prevention. IEEE Trans. Sustain. Energy 2011, 2, 139–147. [Google Scholar] [CrossRef]
- Zarina, P.P.; Mishra, S.; Sekhar, P.C. Exploring frequency control capability of a PV system in a hybrid PV-rotating machine-without storage system. Int. J. Electr. Power Energy Syst. 2014, 60, 258–267. [Google Scholar] [CrossRef]
- Yang, Y.; Enjeti, P.; Blaabjerg, F.; Wang, H. Suggested grid code modifications to ensure wide-scale adoption of photovoltaic energy in distributed power generation systems. In Proceedings of the 2013 IEEE Industry Applications Society Annual Meeting, Lake Buena Vista, FL, USA, 6–11 October 2013. [Google Scholar] [CrossRef]
- Mendes, F.E.G.; Brandao, D.I.; Silva, S.M.; Pires, I.A. Reactive power injection strategies for three-phase four-wire inverters under symmetrical voltage sags. In Proceedings of the 14th Brazilian Power Electronics Conference (COBEP 2017), Juiz de Fora, Brazil, 19–22 November 2017. [Google Scholar] [CrossRef]
- Zhou, L.; Chao, Y. The research of reactive power control strategy for grid-connected photovoltaic plants. In Proceedings of the 2013 World Congress on Sustainable Technologies (WCST 2013), London, UK, 9–12 December 2013. [Google Scholar] [CrossRef]
- Minambres-Marcos, V.; Guerrero-Martinez, M.A.; Romero-Cadaval, E.; Gonzalez-Castrillo, P. Point of common coupling voltage regulation with photovoltaic power plant infrastructures. In Proceedings of the IEEE International Symposium on Industrial Electronics, Istanbul, Turkey, 1–4 June 2014. [Google Scholar] [CrossRef]
- Van Dao, T.; Nguyen, H.T.N.; Chaitusaney, S.; Chatthaworn, R. Local reactive power control of PV plants for voltage fluctuation mitigation. In Proceedings of the 2014 11th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON 2014), Nakhon Ratchasima, Thailand, 14–17 May 2014. [Google Scholar] [CrossRef]
- Xiao, W.; Torchyan, K.; El Moursi, M.S.; Kirtley, J.L. Online supervisory voltage control for grid interface of utility-level PV plants. IEEE Trans. Sustain. Energy 2014, 5, 843–853. [Google Scholar] [CrossRef]
- Kobayashi, H. Fault ride through requirements and measures of distributed PV systems in Japan. In Proceedings of the IEEE Power and Energy Society General Meeting, San Diego, CA, USA, 22–26 July 2012. [Google Scholar] [CrossRef]
- Islam, G.M.S.; Al-Durra, A.; Muyeen, S.M.; Tamura, J. A robust control scheme to enhance the stability of a grid-connected large scale photovoltaic system. In Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference, Orlando, FL, USA, 7–10 May 2012. [Google Scholar] [CrossRef]
- Saeedul Islam, G.M.; Al-Durra, A.; Muyeen, S.M.; Tamura, J. Low voltage ride through capability enhancement of grid connected large scale photovoltaic system. In Proceedings of the 37th Annual Conference of the IEEE Industrial Electronics Society, Melbourne, Australia, 7–10 November 2011. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, L.; Zheng, T.Q. Application of feedback linearization strategy in voltage fault ride-through for photovoltaic inverters. In Proceedings of the 37th Annual Conference of the IEEE Industrial Electronics Society, Melbourne, Australia, 7–10 November 2011. [Google Scholar] [CrossRef]
- Hao, T.; Feng, G.; Cong, M. Novel low voltage ride through strategy of single-stage grid-tied photovoltaic inverter with supercapacitor coupled. In Proceedings of the 2012 IEEE 7th International Power Electronics and Motion Control Conference, Harbin, China, 2–5 June 2012. [Google Scholar] [CrossRef]
- Hu, J.; Zhu, J.; Dorrell, D.G. Model predictive control of grid-connected inverters for PV systems with flexible power regulation and switching frequency reduction. IEEE Trans. Ind. Appl. 2015, 51, 587–594. [Google Scholar] [CrossRef]
- Errouissi, R.; Muyeen, S.M.; Al-Durra, A.; Leng, S. Experimental validation of a robust continuous nonlinear model predictive control based grid-interlinked photovoltaic inverter. IEEE Trans. Ind. Electron. 2016, 63, 4495–4505. [Google Scholar] [CrossRef]
- Ouchen, S.; Betka, A.; Abdeddaim, S.; Menadi, A. Fuzzy-predictive direct power control implementation of a grid connected photovoltaic system, associated with an active power filter. Energy Convers. Manag. 2016, 122, 515–525. [Google Scholar] [CrossRef]
- Merabet, A.; Labib, L.; Ghias, A.M.Y.M. Robust model predictive control for photovoltaic inverter system with grid fault ride-through capability. IEEE Trans. Smart Grid 2018, 9, 5699–5709. [Google Scholar] [CrossRef]
- Lashab, A.; Bouzid, A.; Snani, H. Comparative study of three MPPT algorithms for a photovoltaic system control. In Proceedings of the 2015 World Congress on Information Technology and Computer Applications (WCITCA), Hammamet, Tunisia, 11–13 June 2015; pp. 1–5. [Google Scholar]
- Lashab, A.; Sera, D.; Guerrero, J.M.; Mathe, L.; Bouzid, A. Discrete model-predictive-control-based maximum power point tracking for PV systems: Overview and evaluation. IEEE Trans. Power Electron. 2018, 33, 7273–7287. [Google Scholar] [CrossRef]
- Subudhi, B.; Pradhan, R. A comparative study on maximum power point tracking techniques for photovoltaic power systems. IEEE Trans. Sustain. Energy 2013, 4, 89–98. [Google Scholar] [CrossRef]
- Elgendy, M.A.; Zahawi, B.; Atkinson, D.J. Assessment of perturb and observe MPPT algorithm implementation techniques for PV pumping applications. IEEE Trans. Sustain. Energy 2012, 3, 21–33. [Google Scholar] [CrossRef]
- Liu, B.; Duan, S.; Liu, F.; Xu, P. Analysis and improvement of maximum power point tracking algorithm based on incremental conductance method for photovoltaic array. In Proceedings of the Seventh International Conference on Power Electronics and Drive Systems, Bangkok, Thailand, 27–30 November 2007; pp. 637–641. [Google Scholar]
- Lashab, A.; Sera, D.; Guerrero, J.M. A dual-discrete model predictive control-based MPPT for PV systems. IEEE Trans. Power Electron. 2019, 34, 9686–9697. [Google Scholar] [CrossRef]
- Lashab, A.; Sera, D.; Martins, J.; Guerrero, J. Dual-input Quasi Z-source PV inverter: Dynamic modeling, design, and control. IEEE Trans. Ind. Electron. 2019, in press. [Google Scholar] [CrossRef]
- Gounden, N.A.; Peter, S.A.; Nallandula, H.; Krithiga, S. Fuzzy logic controller with MPPT using line-commutated inverter for three-phase grid-connected photovoltaic systems. Renew. Energy 2009, 34, 909–915. [Google Scholar] [CrossRef]
- Hadji, S.; Gaubert, J.P.; Krim, F. Theoretical and experimental analysis of genetic algorithms based MPPT for PV systems. Energy Procedia 2015, 74, 772–787. [Google Scholar] [CrossRef] [Green Version]
- Sarvi, M.; Ahmadi, S.; Abdi, S. A PSO-based maximum power point tracking for photovoltaic systems under environmental and partially shaded conditions. Prog. Photovolt. Res. Appl. 2015, 23, 201–214. [Google Scholar] [CrossRef]
- Soufyane Benyoucef, A.; Chouder, A.; Kara, K.; Silvestre, S. Artificial bee colony based algorithm for maximum power point tracking (MPPT) for PV systems operating under partial shaded conditions. Appl. Soft Comput. 2015, 32, 38–48. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wang, S.; Ji, G. A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications. Math. Probl. Eng. 2015, 2015, 931256. [Google Scholar] [CrossRef]
- Sundareswaran, K.; Palani, S. Application of a combined particle swarm optimization and perturb and observe method for MPPT in PV systems under partial shading conditions. Renew. Energy 2015, 75, 308–317. [Google Scholar] [CrossRef]
- Jin, Y.; Hou, W.; Li, G.; Chen, X. A glowworm swarm optimization-based maximum power point tracking for photovoltaic/thermal systems under non-uniform solar irradiation and temperature distribution. Energies 2017, 10, 541. [Google Scholar] [CrossRef]
- Jolly, M.; Prabhakar, A.; Sturzu, B.; Hollstein, K.; Singh, R.; Thomas, S.; Foote, P.; Shaw, A. Review of nondestructive testing (NDT) techniques and their applicability to thick walled composites. Procedia CIRP 2015, 38, 129–136. [Google Scholar] [CrossRef]
- Pera, D.; Silva, J.A.; Costa, S.; Serra, J.M. Investigating the impact of solar cells partial shading on photovoltaic modules by thermography. In Proceedings of the 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC), Washington, DC, USA, 25–30 June 2017. [Google Scholar]
- Cioaca, C.; Pop, S.; Boscoianu, E.C.; Boscoianu, M. Aerial Infrared Thermography: A scalable procedure for photovoltaics inspections based on efficiency and flexibility. Appl. Mech. Mater. 2015, 772, 546–551. [Google Scholar] [CrossRef]
- Grimaccia, F.; Leva, S.; Dolara, A.; Aghaei, M. Survey on PV modules’ common faults after an O&M flight extensive campaign over different plants in Italy. IEEE J. Photovolt. 2017, 7, 810–816. [Google Scholar]
- Dalsass, M.; Scheuerpflug, H.; Fecher, F.W.; Buerhop-Lutz, C.; Camus, C.; Brabec, C.J. Correlation between the generated string powers of a photovoltaic: Power plant and module defects detected by aerial thermography. In Proceedings of the 2016 IEEE 43rd Photovoltaic Specialists Conference, Portland, OR, USA, 5–10 June 2016; pp. 3113–3118. [Google Scholar]
- De Oliveira, A.K.V.; Aghaei, M.; Madukanya, U.E.; Nascimento, L.; Rüther, R. Aerial Infrared Thermography of a Utility-Scale PV Plant After a Meteorological Tsunami in Brazil. In Proceedings of the 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion, Waikoloa Village, HI, USA, 10–15 June 2018. [Google Scholar]
- Tsanakas, J.A.; Ha, L.; Buerhop, C. Faults and infrared thermographic diagnosis in operating c-Si photovoltaic modules: A review of research and future challenges. Renew. Sustain. Energy Rev. 2016, 62, 695–709. [Google Scholar] [CrossRef]
Country GCs | Nominal Frequency (Hz) | Frequency Grid (fg) Limits (Hz) | Maximum Duration | LVRT | HVRT | PF at Point of Connection | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Fault Time | After Fault | During Voltage Swell | Leading Power Factor-Capacitive | Lagging Power Factor-Inductive | ||||||||
V1 (%) | t2 (s) | V2 (%) | t3 (s) | V (%) | t (s) | |||||||
Germany | 50 | fg > 51.5 47.5 < fg < 51.5 fg < 47.5 | Instant disconnection No trip (continuous) Immediate disconnection | 0 | 0.15 | 90 | 1.5 | 120 | 0.1 | 0.95 | 0.95 | |
Italy | 50 | ND | ND | 0 | 0.2 | 85 | 1.5 | 125 | 0.1 | 0.95 | 0.95 | |
Spain | 50 | fg > 51.5 47.5 < fg < 51.5 48 < fg < 47.5 fg < 47.5 | Immediate disconnection Continuous operation 3 s Immediate disconnection | 20 | 0.5 | 80 | 1.0 | 130 | 0.25 | 0.85 | 0.85 | |
Australia | 50 | fg > 52 47.5 < fg < 52 fg < 47.5 | 2 s Continuous operation 2 s | 0 | 0.45 | 80 | 0.45 | 130 | 0.06 | 0.9 | 0.95 | |
Romania | 50 | fg > 52 47.5 < fg < 52 fg < 47.5 | Immediate disconnection No trip (continuous) Immediate disconnection | 15 | 0.625 | 90 | 3.0 | ND | ND | ND | ND | |
Malaysia | 50 | fg > 52 47 < fg < 52 fg < 47 | Immediate disconnection Continuous operation Immediate disconnection | 0 | 0.15 | 90 | 1.5 | 120 | Continuous | 0.9 | 0.85 | |
Japan | Eastern | 50 | fg > 51.5 47.5 < fg < 51.5 fg < 47.5 | Immediate disconnection Continuous operation Immediate disconnection | 20 | 1.0 | 80 | 1.2 | NS | NS | ND | ND |
Western | 60 | fg > 61.8 58 < fg < 61.8 fg < 58 | Immediate disconnection Continuous operation Immediate disconnection | |||||||||
South Africa | 50 | fg > 52 51 < fg < 52 49 < fg < 51 48 < fg < 49 47 < fg < 48 fg < 47 | 4 s 60 s Continuous operation 60 s 10 s 0.2 s | 0 | 0.15 | 85 | 2.0 | 120 | 0.15 | 0.95 | 0.95 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mansouri, N.; Lashab, A.; Sera, D.; Guerrero, J.M.; Cherif, A. Large Photovoltaic Power Plants Integration: A Review of Challenges and Solutions. Energies 2019, 12, 3798. https://doi.org/10.3390/en12193798
Mansouri N, Lashab A, Sera D, Guerrero JM, Cherif A. Large Photovoltaic Power Plants Integration: A Review of Challenges and Solutions. Energies. 2019; 12(19):3798. https://doi.org/10.3390/en12193798
Chicago/Turabian StyleMansouri, Nouha, Abderezak Lashab, Dezso Sera, Josep M. Guerrero, and Adnen Cherif. 2019. "Large Photovoltaic Power Plants Integration: A Review of Challenges and Solutions" Energies 12, no. 19: 3798. https://doi.org/10.3390/en12193798
APA StyleMansouri, N., Lashab, A., Sera, D., Guerrero, J. M., & Cherif, A. (2019). Large Photovoltaic Power Plants Integration: A Review of Challenges and Solutions. Energies, 12(19), 3798. https://doi.org/10.3390/en12193798