The Acceptable Alternative Vehicle Fuel Price
Abstract
:1. Introduction
2. Materials and Methods
- The USA is the world biggest consumer of alternative vehicle fuels, including renewable ones;
- Germany and Sweden hold leading positions in renewable fuels consumption (biofuels and biomethane);
- Ukraine has a large CNG and LPG fleet.
3. Results
3.1. Modeling Procedure
- the differential between gasoline and E85 prices in the USA is equal to 0.81;
- the differential between gasoline and LPG prices in Ukraine is equal to 0.84.
3.2. Initial Data for Modeling
3.2.1. Lifetime of a Project
3.2.2. Fuel Prices and Their Ratio
- The actual alternative to conventional fuel price ratios;
3.2.3. Investment Costs
3.2.4. Fuel Economy
4. Results of Modeling
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
AAU | the average annual utilization, h/year |
ACFC | the annual conventional fuel consumption cost, EUR |
AFpr | the price of the alternative fuel, EUR/L |
BEV | the battery electric vehicle |
ci | the volume fraction of the ith component of fuel |
DFpr | the price of conventional fuel, EUR/L |
ECA | the annual ecological charges for the alternative fuel, EUR |
ECC | the annual ecological charges for the conventional fuel, EUR |
ECE | the annual ecological charges for electricity, EUR |
EEpr | the price of electricity, EUR/kWh |
EL | the economic life, year |
FCEV | the hydrogen fuel cell electric vehicle |
Fpr | the fuel price, EUR/m3 |
Fpri | the price of the ith component of fuel, EUR/m3 |
g | the discount rate |
I | the investment costs, EUR |
M | the annual consumption of conventional fuel, t |
n | the lifetime of a certain investment project, year |
NPV | Net Present Value |
P0 | the operational power, kW |
Pr | the rated power, kW |
PI | Profitability Index |
Q | the lower heating value of the fuel, MJ/kg |
QA | the lower heating value of the alternative fuel, MJ/kg |
Qi | the lower heating value of the ith component of fuel, MJ/kg |
R* | the critical value of the return, EUR |
SL | the service life, hours |
ρ | the fuel density, t/m3 |
ρi | the density of the ith component of fuel, t/m3 |
ρA | the density of alternative fuel, kg/L |
η | the efficiency of an engine |
ηA | the efficiency of vehicle which runs on the alternative fuel |
ηC | the efficiency of vehicle which runs on the conventional fuel |
ηE | the efficiency of vehicle which runs on electricity |
φ | the conventional fuel energy share in fuel blends or for a dual fuel mode |
φ0 | the energy share of diesel fuel on the rated power |
γ | the ratio of alternative fuel price to conventional fuel price |
γ* | the critical value of the relative price for the alternative fuel |
References
- Yilmaz, I.; Ilbas, M. An experimental study on hydrogen–methane mixtured fuels. Int. Commun. Heat Mass Transf. 2008, 35, 178–187. [Google Scholar] [CrossRef]
- Sinyak, Y.V.; Kolpakov, A.Y. Economic efficiency of synthetic motor fuels from natural gas. Stud. Russ. Econ. Dev. 2012, 23, 27–36. [Google Scholar] [CrossRef]
- Rosa, R.N. The Role of Synthetic Fuels for a Carbon Neutral Economy. J. Carbon Res. 2017, 3, 11. [Google Scholar] [CrossRef]
- Gaigalis, V.; Markevicius, A.; Skema, R.; Savickas, J. Energy strategy of Lithuanian Ignalina Nuclear Power Plant region for 2012–2035 as a chance for regional development. Renew. Sustain. Energy Rev. 2015, 51, 1680–1696. [Google Scholar] [CrossRef]
- Lanjewar, B.P.; Rao, V.R.; Kale, V.A. Assessment of alternative fuels for transportation using a hybrid graph theory and analytic hierarchy process method. Fuel 2015, 154, 9–16. [Google Scholar] [CrossRef]
- Speth, L.R.; Rojo, C.; Malina, R.; Barrett, R.H.S. Black carbon emissions reductions from combustion of alternative jet fuels. Atmos. Environ. 2015, 105, 37–42. [Google Scholar] [CrossRef]
- IEA. Statistics: CO2 Emissions from Fuel Combustion. 2017. Paris. Report. Available online: https://www.iea.org/publications/freepublications/publication/CO2EmissionsfromFuelCombustionHighlights2017.pdf (accessed on 4 September 2018).
- Antonakakis, N.; Chatziantoniou, I.; Filis, G. Energy consumption, CO2 emissions, and economic growth: An ethical dilemma. Renew. Sustain. Energy Rev. 2017, 68, 808–824. [Google Scholar] [CrossRef]
- Ozokcu, S.; Ozdemir, O. Economic growth, energy, and environmental Kuznets curve. Renew. Sustain. Energy Rev. 2017, 72, 639–647. [Google Scholar] [CrossRef]
- Fragkos, P.; Tasios, N.; Paroussos, L.; Capros, P.; Tsani, S. Energy system impacts and policy implications of the European intended nationally determined contribution and low-carbon pathway to 2050. Energy Policy 2017, 100, 216–226. [Google Scholar] [CrossRef]
- European Commission. Climate Action—Paris Agreement. 2015. Available online: https://ec.Europa.Eu/clima/policies/international/negotiations/paris_en (accessed on 15 May 2017).
- Rogelj, J.; Elzen, M.; Höhne, N.; Fransen, T.; Fekete, H.; Winkler, H.; Schaeffer, R.; Sha, F.; Riahi, K.; Meinshausen, M. Paris agreement climate proposals need a boost to keep warming well below 2 °C. Nature 2016, 534, 631–639. [Google Scholar] [CrossRef]
- Rahman, A.; Rasul, G.M.; Khan, M.M.M.; Sharma, S. Recent development on the uses of alternative fuels in cement manufacturing process. Fuel 2015, 145, 84–99. [Google Scholar] [CrossRef]
- Goncharuk, A.G.; Havrysh, V.I.; Nitsenko, V.S. National features for alternative motor fuels market. Int. J. Energy Econ. Policy 2018, 2, 226–249. [Google Scholar] [CrossRef]
- Cucchiella, F.; Adamo, I.; Gastaldi, M. Biomethane: A renewable resource as vehicle fuel. Resources 2017, 6, 58. [Google Scholar] [CrossRef]
- Armeanu, D.S.; Vintila, G.; Gherghina, S.C. Does renewable energy drive sustainable economic growth? Multivariate panel data evidence for EU-28 Countries. Energies 2017, 10, 381. [Google Scholar] [CrossRef]
- Moldan, B.; Janouskova, S.; Hak, T. How to understand and measure environmental sustainability: Indicators and targets. Ecol. Indic. 2012, 17, 4–13. [Google Scholar] [CrossRef]
- Chang, D.; Chen, S.; Hsu, C.; Hu, A.H.; Tzeng, G. Evaluation framework for alternative fuel vehicles: Sustainable development perspective. Sustainability 2015, 7, 11570–11594. [Google Scholar] [CrossRef]
- Soltani-Sobh, A.; Heaslip, K.; Bosworth, R.C.; Barnes, R. Compressed Natural Gas Vehicles: Financially Viable Option? Transp. Res. Rec. 2016, 2572, 28–36. [Google Scholar] [CrossRef] [Green Version]
- Heaslip, K.; Bosworth, R.; Barnes, R.; Sobh, A.S.; Thomas, M.; Song, Z. Effects of Natural Gas Vehicles and Fuel Prices on Key Transportation Economic Metrics; Final Res. Rep.; Washington State Department of Transportation: Olympia, DC, USA, 2014. Available online: https://www.wsdot.wa.gov/research/reports/fullreports/829.1.pdf (accessed on 4 September 2018).
- Pessoa, J.P.; Rezende, L.; Assunção, J. Flex Cars and Competition in Ethanol and Gasoline Retail Markets; CEP Discussion Papers dp1251; Centre for Economic Performance: London, UK, 2013; Available online: http://www.economia.puc-rio.br/lrezende/FlexCars.pdf (accessed on 5 September 2018).
- Pouliot, S. Arbitrage between ethanol and gasoline: Evidence from motor fuel consumption in Brazil. In Proceedings of the Economics Present., Post. and Proc. AAEA&CAES Ann. Meeting, Washington, DC, USA, 4–6 August 2013; Available online: https://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=1007&context=econ_las_conf (accessed on 10 August 2019).
- Buczaj, M.; Sumorek, A. Analysis of the market of LPG as an alternative vehicle fuel in Poland in 2005–2016. ECONTECHMOD Int. Q. J. 2017, 6, 47–54. [Google Scholar]
- Setiyo, M.; Soeparman, S.; Hamidi, N.; Wahyudi, S. Techno-economic analysis of liquid petroleum gas fueled vehicles as public transportation in Indonesia. Int. J. Energy Econ. Policy 2016, 6, 495–500. [Google Scholar]
- Hao, H.; Liu, Z.; Zhao, F.; Li, W. Natural gas as vehicle fuel in China: A review. Renew. Sustain. Energy Rev. 2016, 62, 521–533. [Google Scholar] [CrossRef]
- Ding, L.; Wu, J. Innovation ecosystem of CNG vehicles: A case study of its cultivation and characteristics in Sichuan, China. Sustainability 2018, 10, 39. [Google Scholar] [CrossRef]
- Salvo, A.; Huse, C. Is arbitrage tying the price of ethanol to that of gasoline? Evidence from the uptake of flexible-fuel technology. Energy J. 2011, 32, 119–148. [Google Scholar] [CrossRef]
- Montasser, G.E.; Gupta, R.; Martins, A.L.; Wanke, P. Are there multiple bubbles in the ethanol–gasoline priceratio of Brazil? Renew. Sustain. Energy Rev. 2015, 52, 19–23. [Google Scholar] [CrossRef]
- Bentivoglio, D.; Finco, A.; Bacchi, M.R.P. Interdependencies between biofuel, fuel and food prices: The case of the Brazilian ethanol market. Energies 2016, 9, 464. [Google Scholar] [CrossRef]
- Laurini, M.P. The spatio-temporal dynamics of ethanol/gasoline price ratio in Brazil. Renew. Sustain. Energy Rev. 2017, 70, 1–12. [Google Scholar] [CrossRef]
- Wik, C.; Niemi, S. Low emission engine technologies for future tier 3 legislations-options and case studies. J. Shipp. Trade 2016, 1, 3. [Google Scholar] [CrossRef]
- Tareen, I.Y.; Wetzstein, M.E.; Duffield, J.A. Biodiesel as a substitute for petroleum diesel in a stochastic environment. J. Agric. Appl. Econ. 2000, 32, 373–381. [Google Scholar] [CrossRef]
- Dincer, I.; Zamfirescu, C. Fossil fuels and alternative fuels. In Advanced Power Generation Systems; Elsevier: Amsterdam, The Netherlands, 2014; pp. 95–141. [Google Scholar] [CrossRef]
- Annual Energy Outlook. With Projections to 2035. U.S. Energy Information Administration, U.S. Department of Energy. Available online: https://www.eia.gov/outlooks/aeo/pdf/0383.pdf (accessed on 7 August 2019).
- Zorpas, A.A.; Pociovalisteanu, D.M.; Georgiadou, L.; Voukkali, I. Environmental and technical evaluation of the use of alternative fuels through multi-criteria analysis model. Prog. Ind. Ecol. Int. J. 2016, 10, 3–15. [Google Scholar] [CrossRef]
- Havrysh, V.; Nitsenko, V. Current state of world alternative fuels market. Actual Probl. Econ. 2016, 7, 41–52. [Google Scholar]
- Aatola, H.; Larmi, M.; Sarjovaara, T.; Mikkonen, S. Hydrotreated vegetable oil (HVO) as a renewable diesel fuel: Trade-off between NOx, particulate emission, and fuel consumption of a heavy duty engine. SAE Int. J. Engines 2008, 1, 1251–1262. [Google Scholar] [CrossRef]
- Liu, Z.; Kendall, K.; Yan, X. China Progress on Renewable Energy Vehicles: Fuel Cells, Hydrogen and Battery Hybrid Vehicles. Energies 2019, 12, 54. [Google Scholar] [CrossRef]
- Leiby, P.; Rubin, J. Effectiveness and efficiency of policies to promote alternative fuel vehicles. Transp. Res. Rec. 2001, 1750, 84–91. [Google Scholar] [CrossRef]
- Kalinichenko, A.; Havrysh, V. Environmentally friendly fuel usage: Economic margin of feasibility. Ecol. Chem. Eng. S 2019, 26, 241–254. [Google Scholar] [CrossRef]
- Kalinichenko, A.; Havrysh, V.; Hruban, V. Heat recovery systems for agricultural vehicles: Utilization ways and their efficiency. Agriculture 2018, 8, 199. [Google Scholar] [CrossRef]
- Kalinichenko, A.; Havrysh, V.; Perebyynis, V. Sensitivity analysis in investment project of biogas plant. Appl. Ecol. Environ. Res. 2017, 15, 969–985. [Google Scholar] [CrossRef]
- Gazzarin, C. Maschinenkosten Agroscope Transfer 142. 2016. Available online: https://www.agroscope.admin.ch/agroscope/de/home/themen/wirtschaft-technik/betriebswirtschaft/maschinenkosten/_jcr_content/par/columncontrols/items/1/column/externalcontent_1062703409.external.exturl.pdf/aHR0cHM6Ly9pcmEuYWdyb3Njb3BlLmNoL2RlLUNIL0VpbnplbH/B1Ymxpa2F0aW9uL0Rvd25sb2FkP2VpbnplbHB1Ymxpa2F0aW9u/SWQ9MzY3OTI=.pdf (accessed on 4 September 2018).
- Lubbe, P.A.; Archer, C.G. Guide to Machinery Costs Department of Agriculture, Forestry and Fisheries, Pretoria. 2014/2015. Available online: http://www.daff.gov.za/Daffweb3/Portals/0/Statistics%20and%20Economic%20Analysis/Economic%20Analysis/Guide%20to%20machinery%20costs%202014-15.pdf (accessed on 1 September 2018).
- Lips, M. Length of Operational Life and Its Impact on Life-Cycle Costs of a Tractor in Switzerland. Agriculture 2017, 7, 68. [Google Scholar] [CrossRef]
- Edwards, W. Machinery Management. Estimating Farm Machinery Costs. Iowa State University, University Extension. 2015. Available online: https://www.extension.iastate.edu/AGDm/crops/html/a3-29.html (accessed on 4 September 2018).
- Davis, S.C.; Diegel, S.W.; Boundy, R.G. Transportation Energy Data Book: Edition 31, Center for Transportation Analysis. Energy and Transportation Science Division, 2012. Available online: https://tedb.ornl.gov/wp-content/uploads/2019/03/Edition31_Full_Doc.pdf (accessed on 10 August 2019).
- Davis, S.C.; Williams, S.E.; Boundy, R.G. Transportation Energy Data Book: Edition 36, Center for Transportation Analysis. Energy and Transportation Science Division, 2017. Available online: https://tedb.ornl.gov/wp-content/uploads/2019/03/Edition31_Full_Doc.pdf (accessed on 10 August 2019).
- E85Prices. 4430 Stations Selling E85 across 2462 Cities in USA. 2018. Available online: https://e85prices.com/ (accessed on 7 August 2019).
- MyLPG.UA. Chart of Fuel Prices in Germany. Available online: https://www.mylpg.eu/stations/germany/prices (accessed on 4 September 2018).
- FUELO, CNG. 2018. Available online: https://de.fuelo.net/fuel/type/methane/year?lang=en (accessed on 4 September 2018).
- Sweden Tips. Travel Guide and Booking Portal. Fuel Prices in Sweden: Petrol/Gasoline and Diesel. Available online: http://www.swedentips.se/fuel-prices/ (accessed on 5 September 2018).
- Atamanyuk, I.P. Polynomial algorithm of optimal extrapolation of stochastic system parameters. J. Upravlyayushchie Sistemy i Mashiny 2002, 1, 16–19. [Google Scholar] [CrossRef]
- Atamanyuk, I.P. Algorithm of extrapolation of a nonlinear random process on the basis of its canonical decomposition. J. Kibernetika i Sistemnyj Analiz 2005, 2, 131–138. [Google Scholar] [CrossRef]
- DAIZEN. Wheeled CNG-Powered Tractor MTZ-1221.2 Belarus. 2018. Available online: http://www.xn--80ahehj0a.xn--p1ai/goods/61479722-kolesny_traktor_mtz_1221_2_belarus_s_gazobalonnym_oborudovaniyem (accessed on 7 August 2019).
- Omnitek Develops Diesel-to-Natural Gas Engine Conversion Kits for Mercedes OM904/OM906. Green Car Congress, 2012. Available online: https://www.greencarcongress.com/2012/04/omnitek-20120419.html (accessed on 27 January 2019).
- Smith, M.; Gonzales, J. Costs Associated with Compressed Natural Gas Vehicle Fueling Infrastructure. September US Department of Energy, 2014. Available online: https://www.afdc.energy.gov/uploads/publication/cng_infrastructure_costs.pdf (accessed on 10 August 2019).
- Jung, H.; Leone, T.; Shelby, M.; Anderson, J.; Collings, T. Fuel Economy and CO2 Emissions of Ethanol-Gasoline Blends in a Turbocharged DI Engine. SAE Int. J. Engines 2013, 6, 422–434. [Google Scholar] [CrossRef]
- Leone, T.; Olin, E.; Anderson, J.; Jung, H.; Shelby, M.; Stein, R. Effects of Fuel Octane Rating and Ethanol Content on Knock, Fuel Economy, and CO2 for a Turbocharged DI Engine. SAE Int. J. Fuels Lubr. 2014, 7, 9–28. [Google Scholar] [CrossRef]
- US Department of Energy, New Flex-Fuel Vehicles. Available online: https://www.fueleconomy.gov/feg/PowerSearch.do?action=alts&path=3&year1=2017&year2=2018&vtype=E85&srchtyp=newAfv (accessed on 5 September 2018).
- Jadhav, A.; Hulwan, D.B. Experimentation & Simulation of Dual Fuel (Diesel-CNG) Engine of Off Road Vehicle. Eur. J. Adv. Eng. Tech. 2017, 4, 629–636. [Google Scholar]
- Mirica, I.; Pana, C.; Negurescu, N.; Cernat, A.; Nutu, N.C. Dual fuel diesel engine operation using LPG. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2016; Volume 147, p. 12122. [Google Scholar] [CrossRef]
- Valtra Dual Fuel Tractors—The Natural Choice. Available online: http://www.valtra.com.au/dual-fuel.aspx (accessed on 5 September 2018).
Make | Fuel Economy, gal/100 miles | E85/Gasoline Ratio | |
---|---|---|---|
Gasoline | E85 | ||
Ford Focus FWD FFV, Automatic (AM6) | 3.2 | 4.3 | 1.344 |
Ford Focus FWD FFV, Manual 5-spd | 3.6 | 4.8 | 1.333 |
Mercedes-Benz CLA250 4matic | 3.7 | 5.15 | 1.392 |
Chrysler 200 | 3.7 | 5 | 1.351 |
Audi A5 quattro | 4 | 5.6 | 1.400 |
Jeep Renegade 2WD | 4 | 5.3 | 1.325 |
Chevrolet Equinox FWD | 4 | 5.9 | 1.475 |
GMC Terrain FWD | 4 | 5.9 | 1.475 |
Jeep Cherokee FWD | 4 | 5.6 | 1.400 |
Audi A5 Cabriolet quattro | 4.2 | 5.9 | 1.405 |
Ford Escape FWD FFV | 4.2 | 5.6 | 1.333 |
Jeep Cherokee 4WD | 4.3 | 5.9 | 1.372 |
Chevrolet Equinox AWD | 4.3 | 5.9 | 1.372 |
Ford Transit Connect Van FFV | 4.3 | 5.9 | 1.372 |
Chysler 200 | 4.3 | 5.9 | 1.372 |
Dodge Charger | 4.3 | 5.9 | 1.372 |
Audi Q5 | 4.5 | 5.2 | 1.156 |
Ford F150 Pickup 2WD FFV | 4.5 | 6.2 | 1.378 |
Ford F150 2WD FFV BASE PAYLOAD LT TIRE | 4.8 | 6.2 | 1.292 |
Chevrolet Silverado C15 2WD | 5 | 7.1 | 1.420 |
GMC Sierra C15 2WD | 5 | 7.1 | 1.420 |
Ford Explorer 2WD FFV | 5 | 6.7 | 1.340 |
Mercedes-Benz GLE350 4matic | 5.3 | 7.1 | 1.340 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalinichenko, A.; Havrysh, V.; Atamanyuk, I. The Acceptable Alternative Vehicle Fuel Price. Energies 2019, 12, 3889. https://doi.org/10.3390/en12203889
Kalinichenko A, Havrysh V, Atamanyuk I. The Acceptable Alternative Vehicle Fuel Price. Energies. 2019; 12(20):3889. https://doi.org/10.3390/en12203889
Chicago/Turabian StyleKalinichenko, Antonina, Valerii Havrysh, and Igor Atamanyuk. 2019. "The Acceptable Alternative Vehicle Fuel Price" Energies 12, no. 20: 3889. https://doi.org/10.3390/en12203889
APA StyleKalinichenko, A., Havrysh, V., & Atamanyuk, I. (2019). The Acceptable Alternative Vehicle Fuel Price. Energies, 12(20), 3889. https://doi.org/10.3390/en12203889