Optimization of 100 MWe Parabolic-Trough Solar-Thermal Power Plants Under Regulated and Deregulated Electricity Market Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location of Direct Normal Irradiance (DNI) and Solar Field
2.2. Thermal-Energy Storage: System of Two Molten-Salt Tanks
2.3. PT Plant Managment and Implementation
2.3.1. Plant-Management Analysis
2.3.2. Implementation Basics
2.4. Mathematical Modelling and Simulation Process
2.4.1. PT Solar-Thermal Plant Modeling
2.4.2. Implementation of the Model into Real PT Plant
PT Plant Model Calibration
Short Time Analysis
2.4.3. Optimization Problems
Optimization Problems for Electricity Sales Benefits
Objective Function for Electricity Production
Solar Field and Two Tanks of Molten Salt Thermal Storage
Electric Power Supply
2.4.4. Simulation Environment and Implementation Process
3. Results
3.1. Plant Sizing-Optimization Scenarios
3.2. Technoeconomic Sensitivity Analysis
3.3. Regulated- vs Deregulated-Electricity-Market Assesment
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
Parameters | |
Decision variables lower constraints | |
Decision variables upper constraints | |
Real collection surface for 100 MWe solar thermal plant (m2) | |
Thermal losses factor in solar field (%) | |
Capital recovery factor (%) | |
Stored thermal energy in period j (MWhth) | |
Minimum stored thermal energy in period j (MWhth) | |
Annual insurance rate (%/year) | |
Fuel consumption cost in the year t (c€/kWh) | |
Plant investment cost per year (M€/year) | |
Capital cost in year t (€/kWhe) | |
Annual insurance rate (%/year) | |
Maximal stored energy in thermal tanks in annual period (equiv. hours of max. production (h)) | |
Nominal electricity power generated (MWe) | |
Electricity power generated for period j (MWe) | |
Minimum electricity power generated (MWe) | |
Maximum solar field direct normal irradiance received (MWth) | |
Solar field direct normal irradiance received for period j (MWhth) | |
Nominal thermal energy received from solar concentrators for period j (MWhth) | |
Nominal thermal capacity to steam turbine (MWth) | |
Thermal energy to steam turbine for period j (MWhth) | |
Storage-load efficiency (%) | |
Storage-unload efficiency (%) | |
Thermal–electrical conversion efficiency by design (%) | |
Solar thermal conversion efficiency as factor of optical efficiency and heat loses in pumps and pipes, accumulative efficiency coefficient (%) | |
Generic price of electricity in the period j (€/MWhe) | |
High price of electricity (in deregulated market) in the period j (€/MWhe) | |
Low price of electricity (in deregulated market) in the period j (€/MWhe) | |
Price of electricity in regulated market in the period j (€/MWhe) | |
Maximum price of electricity in regulated market in the period j (€/MWhe) | |
Variables | |
Solar multiple of solar-collection surface (%) | |
Maximal stored energy in thermal tanks (equiv. hours of max. production (h)) | |
Thermal energy from the storage tanks to steam turbine (MWhth) | |
Solar-field thermal energy received decrement due to collector fadeout (MWhth) | |
Thermal energy input to hot tank (MWhth) | |
Direct Normal Irradiance as solar resource (MWhth/m2) | |
Generic decision varibles | |
Price of electricity in deregulated market (€/MWhe) | |
Index | |
DM | Daily market |
DTG | Design parameters for steam turbine |
HCE | Heat from solar field |
HED-FS | Heat from thermal storage system |
HED-TS | Heat to thermal storage system |
Number of decision variables | |
Time as variable | |
Planning of operating period in hours | |
max | Maximal value |
min | Minimal value |
Acronyms | |
CS | Case Study |
CSP | Concentrating Solar Power |
CTS | Concentrating Thermosolar System |
EM | Electricity Market |
DEM | Deregulated Electricity Market |
DIPS | Delayed Intermediate Production System |
DNI | Direct Normal Irradiance |
HHV | Higher Heating Value |
HP | High Market Price |
HSR | High solar Resource |
HTF | Heat Transfer Fluid |
Levelized cost of electricity (k€/GWhe) | |
LP | Low Market Price |
LSR | Low Solar Resource |
O and M | Operation and Maintenance |
PLP | Peak Load Plant |
PT | Parabolic Trough |
REM | Regulated Electricity Market |
SM | Solar Multiple |
TGHP | Thermal Group Hourly Program |
References
- Kearney, D.; Kelly, B.; Cable, R.; Potrovitza, N.; Herrmann, U.; Nava, P.; Mahoney, R.; Pacheco, J.; Blake, D.; Price, H. Overview on use of a molten salt HTF in a trough solar field. In Proceedings of the NREL: Parabolic Trough Thermal Energy Storage Workshop, Golden, CO, USA, 20–21 February 2003. [Google Scholar]
- Brogren, M. Optical Efficiency of Low-Concentrating Solar Energy Systems with Parabolic Reflectors. Ph.D. Thesis, Acta Universitatis Upsaliensis, Uppsala University, Uppsala, Sweden, 2004. [Google Scholar]
- Castronuovo, E. Optimization Advances in Electric Power Systems; Nova Science Publishers Inc.: New York, NY, USA, 2008; ISBN 978-1-60692-613-0. [Google Scholar]
- Union, E. Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. Off. J. Eur. Union 2009, 5, 2009. [Google Scholar]
- Bullejos, D.; Llamas, J.; De Adana, M.R. Spanish regulated scenarios for renewable energy and CSP plants. Arpn J. Eng. Appl. Sci. 2015, 10, 7217–7222. [Google Scholar]
- Oro, E.; Gil, A.; de Gracia, A.; Boer, D.; Cabeza, L.F. Comparative life cycle assessment of thermal energy storage systems for solar power plants. Renew. Energy 2012, 44, 166–173. [Google Scholar] [CrossRef]
- Bathurst, G.N.; Strbac, G. Value of combining energy storage and wind in short-term energy and balancing markets. Electr. Power Syst. Res. 2003, 67, 1–8. [Google Scholar] [CrossRef]
- Union, E. EU Energy in Figures. Statistical Pocketbook; Publication Office of the European Union: Brussels, Belgium, 2018; ISBN 978-92-79-88737-6. [Google Scholar] [CrossRef]
- Kumaresan, G.; Sridhar, R.; Velraj, R. Performance studies of a solar parabolic trough collector with a thermal energy storage system. Energy 2012, 47, 395–402. [Google Scholar] [CrossRef]
- Reddy, V.S.; Kaushik, S.C.; Tyagi, S.K. Exergetic analysis and performance evaluation of parabolic trough concentrating solar thermal power plant (PTCSTPP). Energy 2012, 39, 258–273. [Google Scholar] [CrossRef]
- Martin, L.; Mariano, M. Optimal year-round operation of a concentrated solar energy plant in the south of Europe. Appl. Eng. 2013, 59, 627–633. [Google Scholar] [CrossRef]
- El Hefni, B.; Soler, R. Dynamic multi-configuration model of a 145 MWe concentrated solar power plant with the ThermoSysPro library (tower receiver, molten salt storage and steam generator). Energy Procedia 2015, 69, 1249–1258. [Google Scholar] [CrossRef]
- Garcia, L.I.; Alvarez, J.L.; Blanco, D. Performance model for parabolic trough solar thermal power plants with thermal storage: Comparison to operating plant data. Sol. Energy 2011, 85, 2443–2460. [Google Scholar] [CrossRef]
- Llamas, J.; Bullejos, D.; Ruiz de Adana, M. Techno-economic assessment of heat transfer fluid buffering for thermal ENERGY storage in the solar field of parabolic trough solar thermal power plants. Energies 2017, 10, 1123. [Google Scholar] [CrossRef]
- Abdul Baseer, M.; Awan, A.B.; Zubair, M. Performance analysis and optimization of a parabolic trough solar power plant in the middle east region. Energies 2018, 11, 741. [Google Scholar] [CrossRef]
- System Advisor Model Version 2017.9.5 (SAM 2017.9.5). National Renewable Energy Laboratory: Golden, CO, USA. Available online: https://sam.nrel.gov/content/downloads (accessed on 2 March 2019).
- Boukelia, T.E.; Mecibah, M.S.; Kumar, B.N.; Reddy, K.S. Optimization, selection and feasibility study of solar parabolic trough power plants for Algerian conditions. Energy Convers. Manag. 2015, 101, 450–459. [Google Scholar] [CrossRef]
- Poullikkas, A. Economic analysis of power generation from parabolic trough solar thermal plants for the Mediterranean region-a case study for the island of Cyprus. Renew. Sustain. Energy Rev. 2009, 13, 2474–2484. [Google Scholar] [CrossRef]
- Abbas, M.; Belgroun, Z.; Aburidah, H.; Merzouk, N.K. Assessment of a solar parabolic trough power plant for electricity generation under Mediterranean and arid climate conditions in Algeria. Energy Procedia 2013, 42, 93–102. [Google Scholar] [CrossRef]
- Reddy, K.S.; Kumar, K.R. Solar collector field design and viability analysis of standalone parabolic trough power plants for Indian conditions. Energy Sustain. Dev. 2012, 16, 456–470. [Google Scholar] [CrossRef]
- Bishoyi, D.; Sudhakar, K. Modeling and performance simulation of 100 MW PTC based solar thermal power plant in Udaipur India. Case Stud. Eng. 2017, 10, 216–226. [Google Scholar] [CrossRef]
- Shouman, E.R.; Khattab, N.M. Future economic of concentrating solar power (CSP) for electricity generation in Egypt. Renew. Sustain. Energy Rev. 2015, 41, 1119–1127. [Google Scholar] [CrossRef]
- Guédez, R.; Spelling, J.; Laumert, B. Thermoeconomic optimization of solar thermal power plants with storage in high-penetration renewable electricity markets. Energy Procedia 2014, 57, 541–550. [Google Scholar] [CrossRef]
- Usaola, J. Operation of concentrating solar power plants with storage in spot electricity markets. IET Renew. Power Gener. 2012, 6, 59–66. [Google Scholar] [CrossRef]
- Casati, E.; Casella, F.; Colonna, P. Design of CSP plants with optimally operated thermal storage. Sol. Energy 2015, 116, 371–387. [Google Scholar] [CrossRef]
- Llamas, J.M.; Bullejos, D.; Ruiz de Adana, M. Optimal operation strategies into deregulated markets for 50 MWe parabolic trough solar thermal power plants with thermal storage. Energies 2019, 12, 935. [Google Scholar] [CrossRef]
- Sioshanshi, R.; Denholm, P. The Value of Concentrating Solar Power and Thermal Energy Storage; Technical Report NREL-TP-6A2-45833; National Renewable Energy Laboratory: Golden, CO, USA, 2010.
- International Energy Agency Technology Roadmap. Concentrating Solar Power. Available online: http://www.iea.org (accessed on 11 December 2018).
- Kazempour, J.; Moghaddam, P. Electric energy storage systems in a market-based economy: Comparison of emerging and traditional technologies. Renew. Energy 2009, 34, 2630–2639. [Google Scholar] [CrossRef]
- Martínez-Val, J.M. La Energía en sus Claves; Fundación Iberdrola: Madrid, Spain, 2004; ISBN 84-609-1337-6. [Google Scholar]
- XU, X.; Vignarooban, K.; Xu, B.; Hsu, K.; Kannan, A.M. Prospects and problems of concentrating solar power technologies for power generation in the desert regions. Renew. Sustain. Energy Rev. 2016, 53, 1106–1131. [Google Scholar] [CrossRef]
- Habib, L.; Hassan, M.I.; Shatilla, Y. A realistic numerical model of lengthy solar thermal receivers used in parabolic trough CSP plants. Energy Procedia 2015, 75, 473–478. [Google Scholar] [CrossRef]
- Dunn, R.I.; Hearps, P.J.; Wright, M.N. Molten-salt power towers: Newly commercial concentrating solar storage. Proc. IEEE 2012, 504–515. [Google Scholar] [CrossRef]
- Cervantes, R.; Quéméré, G.; Luque-Heredia, I. Sunspear calibration against array power output for tracking accuracy monitoring in solar concentrators. In Proceedings of the European Photovoltaic Solar Energy Conference, Valencia, Spain, 1–5 September 2008; pp. 890–893. [Google Scholar]
- Almasabi, A.; Alobaidli, A.; Zhang, T.J. Transient characterization of multiple parabolic trough collector loops in a 100 MW CSP plant for solar energy harvesting. Energy Procedia 2015, 69, 24–33. [Google Scholar] [CrossRef]
- Centro de Investigaciones Medioambientales, energéticas y tecnológicas (CIEMAT), Prospectiva y vigilancia tecnológica de energía solar térmica de concentración. Available online: http://www.ciemat.es (accessed on 5 September 2018).
- National Aeronautics and Space Administration (NASA). Prediction of Worldwide Resources. Available online: https://power.larc.nasa.gov/ (accessed on 11 June 2019).
- Turchi, C. Parabolic trough Reference Plant for COST Modeling with the Solar Advisor Model; Technical Report NREL/TP-550-47605; National Renewable Energy Laboratory (NREL): Golden, CO USA, 2010.
- Reddy, R.G.; Wu, B.; Rogers, R. Ionic Liquids as Thermal Energy Storage Media for Solar Thermal Electric Power Systems; University of Alabama: Tuscaloosa, AL, USA, 2001; Available online: https://p2infohouse.org/ref/22/21020.pdf (accessed on 8 May 2018).
- Desai, N.; Bandyopadhyay, S. Optimization of concentrating solar thermal power plant based on parabolic trough collector. J. Clean. Prod. 2015, 89, 262–271. [Google Scholar] [CrossRef]
- Teske, S. Concentrated Solar Thermal Power. Available online: https://www.greenpeace.de/sites/www.greenpeace.de/files/greenpeace_studie_solar_thermal_power_englisch_1.pdf/ (accessed on 16 February 2019).
- Eutech Scientific Engineering. Thermolib User Manual. Available online: https://www.thermolib.de/media/thermolib/downloads/Thermolib-UserManual.pdf (accessed on 24 August 2015).
- Mathworks. The Mathwork, SymPowerSystems 5. Available online: http://www.mathworks.com. (accessed on 28 February 2019).
Location | Vittoria (Italy) | Posadas (Spain) | Death Valley, CA (USA) |
---|---|---|---|
DNI Scenarios | Low radiation (Area 1) | Medium radiation (Area 2) | High radiation (Area 3) |
Daily average DNI | 5 KWhth/m2 | 6 KWhth/m2 | 7 KWhth/m2 |
Coordinates | 36°57’N, 14°31’E | 37°45′N 5°3′W | 36°14′N 116°49′W |
Average temperature | 16.73 °C | 21.10 °C | 25.10 °C |
Elevation | 168 m | 88 m | 92 m |
Solar Field | ||
PT collectors | Units | 624 |
Total collector surface | m2 | 475,438 |
Solar-thermal efficiency () | % | 51.6 |
Solar-field losses | % | <1 |
Average operation temperatures Solar-field input temperature Solar-field output temperature | °C °C °C | 260–391 293 391 |
Pressure in checkpoints | ||
Thermal-fluid-pump output Solar-field input Solar-field output Steam-generation system input/output Molten-salt exchange input/output | bar bar bar bar bar | 15.30 14–28 10–15 391/293 293–380 |
Yearly received thermal energy | MWhth | 1,090,000 |
Total thermal energy collected by heat-transfer fluid (HTF) system | MWhth | 465,000 |
Collector thermal efficiency | % | 43 |
Total average efficiency | % | 16 |
Thermal energy storage (Seven equivalent hours of thermal storage) | ||
Composition of thermal fluid | 60% NaNO, 40% KNO | |
Initial operation point | °C | 221 |
Molten-salt mass | T | 20,000 |
Molten-salt global flux | Kg/s | 948 |
Low-temperature tank | °C | 292 |
High-temperature tank | °C | 391 |
Total storage capacity | MWhth | 1010 |
Storage efficiency () | % | 98 |
Storage-recovery efficiency () | % | 97 |
Steam turbine. Single recirculation, four steam extractions | ||
Nominal electric power | MWe | 49.9 |
Residual loses | MWe | 5.0 |
Efficiency (ηDTurbineGross) | % | 99 |
Net energy production | MWhe | 160,000 |
Input steam to turbine Recirculation | bar bar | 100 (370 °C) 16.5 (370 °C) |
Steam nominal flux | kg/s | 59 |
DNI | ||||
---|---|---|---|---|
100.0% | 65.0% | 97.5% | 98.0% | 99.0% |
Scenario | Solar Resource Availability | Deregulated Market Behavior | Reregulated Market Behavior |
---|---|---|---|
CS[LSR][LP;FP] | LSR | LP | FP |
CS[LSR][HP;FP] | LSR | HP | FP |
CS[HSR][LP;FP] | HSR | LP | FP |
CS[HSR][HP;FP] | HSR | HP | FP |
Name | Electricity Market | Thermal St. (Equivalent Hours) | Solar Multiple |
---|---|---|---|
Area 1 [EM][TES][SM] | [REM;DEM] | [0:1:7] | [1.0:0.1:2.6] |
Area 2 [EM] [TES][SM] | [REM;DEM] | [0:1:7] | [1.0:0.1:2.6] |
Area 3 [EM] [TES][SM] | [REM;DEM] | [0:1:7] | [1.0:0.1:2.6] |
SM | 1.0 | 1.2 | 1.4 | 1.6 | 1.8 | 2.0 | 2.2 | 2.4 | 2.6 |
---|---|---|---|---|---|---|---|---|---|
Vittoria optimal TES (eq. hours) | 0 | 1 | 2 | 3 | 4 | 4 | 5 | 5 | 5 |
Posadas optimal TES (eq. hours) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 6 | 6 |
Death Valley, CA optimal TES (eq. hours) | 0 | 1 | 3 | 3 | 4 | 5 | 6 | 7 | 7 |
Concept | Units | Value |
---|---|---|
Site cost | €/m2 | 13.33 |
Solar field investment | €/m2 | 213.52 |
HTF system | €/kWhth | 210.95 |
Power-plant investment | €/kWe | 643.20 |
Two molten-salt-tank TES investment | €/KWhth | 52.74 |
Indirect investment cost and contingency surcharge | % | 16.00 |
Fixed Operation and Maintenance (O and M) cost | €/kWe/year | 45 |
Variable O and M cost | €/MWhe | 3.50 |
Higher Heating Value (HHV) natural-gas fossil backup price | c€/kWh | 2.87 |
Debt-interest rate | % | 8.00 |
Annual insurance rate | %/year | 0.50 |
Capital recovery factor | % | 8.38 |
Plant lifetime | N | 25 |
Location | Vittoria | Posadas | Death Valley, CA |
---|---|---|---|
Solar-multiple value | 1.8 | 2.0 | 2.2 |
Two-tank TES (equivalent hours) | 4 | 5 | 6 |
Total investment cost per year (M€) | 15.49 | 17.14 | 18.77 |
Annual O and M cost (M€) | 5.51 | 5.77 | 6.10 |
Annual fuel-consumption cost (M€) | 0.046 | 0.051 | 0.057 |
Annual net electric-energy production (GWhe) | 181.64 | 226.99 | 291.34 |
Capacity factor (%) | 20.65 | 25.96 | 33.38 |
Annual LCOE (k€/GWhe) | 209.92 | 182.08 | 155.82 |
REM gross average annual benefit (M€) | 11.89 | 14.53 | 19.04 |
DEM gross average annual benefit (M€) | 15.20 | 18.58 | 24.30 |
Location | Vittoria | Posadas | Death Valley, CA |
---|---|---|---|
Solar-multiple value | 2.0 | 2.2 | 2.4 |
Two-tanks TES (equivalent hours) | 4 | 6 | 7 |
Total investment cost per year (M€) | 16.89 | 18.46 | 20.01 |
Annual O and M cost (M€) | 5.66 | 5.93 | 6.25 |
Annual fuel-consumption cost (M€) | 0.051 | 0.057 | 0.062 |
Annual net electric-energy production (GWhe) | 196.35 | 243.80 | 308.05 |
Capacity factor (%) | 22.6 | 27.89 | 35.24 |
Annual LCOE (k€/GWhe) | 210.31 | 183.13 | 157.28 |
DEM gross average annual benefit (M€) | 16.70 | 20.08 | 25.91 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Llamas, J.M.; Bullejos, D.; Ruiz de Adana, M. Optimization of 100 MWe Parabolic-Trough Solar-Thermal Power Plants Under Regulated and Deregulated Electricity Market Conditions. Energies 2019, 12, 3973. https://doi.org/10.3390/en12203973
Llamas JM, Bullejos D, Ruiz de Adana M. Optimization of 100 MWe Parabolic-Trough Solar-Thermal Power Plants Under Regulated and Deregulated Electricity Market Conditions. Energies. 2019; 12(20):3973. https://doi.org/10.3390/en12203973
Chicago/Turabian StyleLlamas, Jorge M., David Bullejos, and Manuel Ruiz de Adana. 2019. "Optimization of 100 MWe Parabolic-Trough Solar-Thermal Power Plants Under Regulated and Deregulated Electricity Market Conditions" Energies 12, no. 20: 3973. https://doi.org/10.3390/en12203973
APA StyleLlamas, J. M., Bullejos, D., & Ruiz de Adana, M. (2019). Optimization of 100 MWe Parabolic-Trough Solar-Thermal Power Plants Under Regulated and Deregulated Electricity Market Conditions. Energies, 12(20), 3973. https://doi.org/10.3390/en12203973