Liquid Storage Characteristics of Nanoporous Particles in Shale: Rigorous Proof
Abstract
:1. Introduction
2. Mathematical Models
2.1. Gaussian Mixture Model
2.2. Storage Models
- The thickness of an adsorption region reflects the strength of solid-liquid interaction, influenced by the relevant proportion of light and heavy oil components [9], and the different definitions for the adsorption region as well;
- The porosity ratio indicates the richness (or Total Organic Carbon) and maturity of organic matter in shale rocks. As the maturity of organic matter grows, its porous structure becomes more developed, and organic porosity increases;
- The pore size variance implies the dispersion or complexity of the porous structure of shale;
- The volume ratio of circular pores quantifies the overall pore morphology in shale, and it is impacted by the geo-mechanical conditions, the mineralogy, etc.;
- The average pore radius is the most fundamental parameter characterizing the porous structure, and it reflects how tight the porous rock is.
- Only circular and slit pores are considered [13], and α is constant in spite of different pore sizes;
- The critical pore radius for immobile oil is equal to the thickness of the adsorption region. To be more exact, when pore radius is smaller than or equal to adsorption thickness, all oil stored in pores is immobile; when pore radius is larger than adsorption thickness, oil exists as adsorbed and free states.
- Water content is negligible, and only oil exists in the pores;
- The slight density difference (about 10%) between adsorbed and free oil is ignored;
- Immobile oil only refers to the oil trapped in the pore space resulting from van der Waals. If only the nanoporous Gaussian component is considered, Equations (2) and (3) can be simplified as:
2.3. Proof for the Adsorbed Model
2.3.1. Volume Ratio of Circular Pores (α)
2.3.2. Thickness of Adsorption Region (h)
2.3.3. Average Pore Radius (μ)
2.4. Proof for the Immobile Model
2.4.1. Thickness of Adsorption Region (h)
2.4.2. Variance of Pore Radius (σ)
2.4.3. Average Pore Radius (μ)
2.4.4. Volume Ratio of Circular Pores (α)
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- He, L.; Mei, H.; Hu, X.; Dejam, M.; Kou, Z.; Zhang, M. Advanced Flowing Material Balance To Determine Original Gas in Place of Shale Gas Considering Adsorption Hysteresis. SPE Reserv. Eval. Eng. 2019, 1–11. [Google Scholar] [CrossRef]
- Wei, M.; Duan, Y.; Dong, M.; Fang, Q.; Dejam, M. Transient Production Decline Behavior Analysis for a Multi-Fractured Horizontal Well With Discrete Fracture Networks in Shale Gas Reservoirs. J. Porous Media 2019, 22, 343–361. [Google Scholar] [CrossRef]
- Li, H.; Guo, H.; Yang, Z.; Wang, X. Tight oil occurrence space of Triassic Chang 7 Member in Northern Shaanxi Area, Ordos Basin, NW China. Pet. Explor. Dev. 2015, 42, 434–438. [Google Scholar] [CrossRef]
- Yang, Y.; Yao, J.; Wang, C.; Gao, Y.; Zhang, Q.; An, S.; Song, W. New pore space characterization method of shale matrix formation by considering organic and inorganic pores. J. Nat. Gas Sci. Eng. 2015, 27, 496–503. [Google Scholar] [CrossRef]
- Sun, M.; Yu, B.; Hu, Q.; Yang, R.; Zhang, Y.; Li, B. Pore connectivity and tracer migration of typical shales in south China. Fuel 2017, 203, 32–46. [Google Scholar] [CrossRef]
- Chen, C.; Hu, D.; Westacott, D.; Loveless, D. Nanometer-scale characterization of microscopic pores in shale kerogen by image analysis and pore-scale modeling. Geochem. Geophys. Geosyst. 2013, 14, 4066–4075. [Google Scholar] [CrossRef]
- Zhang, L.; Bao, Y.; Li, J.; Li, Z.; Zhu, R.; Zhang, J. Movability of lacustrine shale oil: A case study of Dongying Sag, Jiyang Depression, Bohai Bay Basin. Pet. Explor. Dev. 2014, 41, 703–711. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, S.; Zhang, F.; Liu, Y.; Guan, H.; Li, J.; Shao, L.; Yang, S.; She, Y. Quantitative research on tight oil microscopic state of Chang 7 Member of Triassic Yanchang Formation in Ordos Basin, NW China. Pet. Explor. Dev. 2015, 42, 827–832. [Google Scholar] [CrossRef]
- Wang, S.; Feng, Q.; Javadpour, F.; Xia, T.; Li, Z. Oil adsorption in shale nanopores and its effect on recoverable oil-in-place. Int. J. Coal Geol. 2015, 147–148, 9–24. [Google Scholar] [CrossRef]
- Wang, S.; Feng, Q.; Zha, M.; Lu, S.; Qin, Y.; Xia, T.; Zhang, C. Molecular dynamics simulation of liquid alkane occurrence state in pores and slits of shale organic matter. Pet. Explor. Dev. 2015, 42, 844–851. [Google Scholar] [CrossRef]
- Cui, J.; Cheng, L. A theoretical study of the occurrence state of shale oil based on the pore sizes of mixed Gaussian distribution. Fuel 2017, 206, 564–571. [Google Scholar] [CrossRef]
- Reed, R.M.; Loucks, R.G.; Ruppel, S.C. Comment on “Formation of nanoporous pyrobitumen residues during maturation of the Barnett Shale (Fort Worth Basin)” by Bernard et al. (2012). Int. J. Coal Geol. 2014, 127, 111–113. [Google Scholar] [CrossRef]
- Bu, H.; Ju, Y.; Tan, J.; Wang, G.; Li, X. Fractal characteristics of pores in non-marine shales from the Huainan coalfield, eastern China. J. Nat. Gas Sci. Eng. 2015, 24, 166–177. [Google Scholar] [CrossRef]
- Song, X.; Chen, J.K. A comparative study on poiseuille flow of simple fluids through cylindrical and slit-like nanochannels. Int. J. Heat Mass Transf. 2008, 51, 1770–1779. [Google Scholar] [CrossRef]
- Javadpour, F.; Mcclure, M.; Naraghi, M.E. Slip-corrected liquid permeability and its effect on hydraulic fracturing and fluid loss in shale. Fuel 2015, 160, 549–559. [Google Scholar] [CrossRef]
- Naraghi, M.E.; Javadpour, F. A stochastic permeability model for the shale-gas systems. Int. J. Coal Geol. 2015, 140, 111–124. [Google Scholar] [CrossRef]
- Feng, Q.; Xu, S.; Wang, S.; Li, Y.; Gao, F.; Xu, Y. Apparent permeability model for shale oil with multiple mechanisms. J. Pet. Sci. Eng. 2019, 175, 814–827. [Google Scholar] [CrossRef]
- Cui, R.; Feng, Q.; Chen, H.; Zhang, W.; Wang, S. Multiscale random pore network modeling of oil-water two-phase slip flow in shale matrix. J. Pet. Sci. Eng. 2019, 175, 46–59. [Google Scholar] [CrossRef]
- Xu, S.; Feng, Q.; Wang, S.; Li, Y. A 3D multi-mechanistic model for predicting shale gas permeability. J. Nat. Gas Sci. Eng. 2019, 68, 102913. [Google Scholar] [CrossRef]
- Pan, C.; Feng, J.; Tian, Y.; Yu, L.; Luo, X.; Sheng, G.; Fu, J. Interaction of oil components and clay minerals in reservoir sandstones. Org. Geochem. 2005, 36, 633–654. [Google Scholar] [CrossRef]
- Mathia, E.J.; Bowen, L.; Thomas, K.M.; Aplin, A.C. Evolution of porosity and pore types in organic-rich, calcareous, Lower Toarcian Posidonia Shale. Mar. Pet. Geol. 2016, 75, 117–139. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Han, Y.; Fu, C.; Zhang, H.; Zhu, Y.; Zuo, Z. Micro and nano-size pores of clay minerals in shale reservoirs: Implication for the accumulation of shale gas. Sediment. Geol. 2016, 342, 180–190. [Google Scholar] [CrossRef]
- Kuila, U.; Mccarty, D.K.; Derkowski, A.; Fischer, T.B.; Topór, T.; Prasad, M. Nano-scale texture and porosity of organic matter and clay minerals in organic-rich mudrocks. Fuel 2014, 135, 359–373. [Google Scholar] [CrossRef] [Green Version]
- Botan, A.; Rotenberg, B.; Marry, V.; Turq, P.; Noetinger, B. Hydrodynamics in clay nanopores. J. Phys. Chem. C 2011, 115, 16109–16115. [Google Scholar] [CrossRef]
- Wan, T.; Sheng, J.J.; Soliman, M.Y.; Zhang, Y. Effect of fracture characteristics on behavior of fractured shale-oil reservoirs by cyclic gas injection. SPE Reserv. Eval. Eng. 2016, 19, 12–14. [Google Scholar] [CrossRef]
- Li, J.; Li, X.; Wu, K.; Wang, X.; Shi, J.; Yang, L.; Zhang, H.; Sun, Z.; Wang, R.; Feng, D. Water Sorption and Distribution Characteristics in Clay and Shale: Effect of Surface Force. Energy Fuels 2016, 30, 8863–8874. [Google Scholar] [CrossRef]
- Zolfaghari, A.; Dehghanpour, H.; Xu, M. Water sorption behaviour of gas shales: II. Pore size distribution. Int. J. Coal Geol. 2017, 179, 187–195. [Google Scholar] [CrossRef]
- Li, J.; Li, X.; Wang, X.; Li, Y.; Wu, K.; Shi, J.; Yang, L.; Feng, D.; Zhang, T.; Yu, P. Water distribution characteristic and effect on methane adsorption capacity in shale clay. Int. J. Coal Geol. 2016, 159, 135–154. [Google Scholar] [CrossRef]
- Hu, Y.; Devegowda, D.; Striolo, A.; Phan, A.; Ho, T.A.; Civan, F.; Sigal, R. The dynamics of hydraulic fracture water confined in nano-pores in shale reservoirs. J. Unconv. Oil Gas Resour. 2015, 9, 31–39. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Devegowda, D.; Sigal, R. A microscopic characterization of wettability in shale kerogen with varying maturity levels. J. Nat. Gas Sci. Eng. 2016, 33, 1078–1086. [Google Scholar] [CrossRef]
- Gu, X.; Mildner, D.F.R.; Cole, D.R.; Rother, G.; Slingerland, R.; Brantley, S.L. Quantification of organic porosity and water accessibility in Marcellus shale using neutron scattering. Energy Fuels 2016, 30, 4438–4449. [Google Scholar] [CrossRef]
- Cheng, P.; Tian, H.; Xiao, X.; Gai, H.; Li, T.; Wang, X. Water Distribution in Overmature Organic-Rich Shales: Implications from Water Adsorption Experiments. Energy Fuels 2017, 31, 13120–13132. [Google Scholar] [CrossRef]
- Hu, Y.; Devegowda, D.; Striolo, A.; Van Phan, A.T.; Ho, T.A.; Civan, F.; Sigal, R. Microscopic dynamics of water and hydrocarbon in shale-kerogen pores of potentially mixed wettability. SPE J. 2014, 20, 112–124. [Google Scholar] [CrossRef]
- Yuan, Y.; Rezaee, R. Comparative porosity and pore structure assessment in shales: Measurement techniques, influencing factors and implications for reservoir characterization. Energies 2019, 12, 2094. [Google Scholar] [CrossRef]
- Yuan, Y.; Rezaee, R.; Al-khdheeawi, E.A.; Hu, S.; Verrall, M.; Zou, J.; Liu, K. Impact of Composition on Pore Structure Properties in Shale: Implications for Micro-/Mesopore Volume and Surface Area Prediction. Energy Fuels 2019. [Google Scholar] [CrossRef]
Year | Reference | Purpose |
---|---|---|
2017 | Cui et al. [11] | Mathematical models quantifying the occurrence states of shale oil are established. |
2015 | Javadpour et al. [15] | Generation of organic and inorganic pore size distributions. |
2015 | Naraghi et al. [16] | Classification of pore-size distributions within organic and inorganic matter |
2019 | Feng et al. [17] | Same as above. |
2019 | Cui et al. [18] | Same as above. |
2019 | Xu et al. [19] | Same as above. |
Adsorbed Model (Mad) | Immobile Model (Mim) | |
---|---|---|
Thickness of adsorption region (h) | ↑↓ | ↑ |
Variance of pore radius (σ) | ? | μ>log10h: ↑ μ<log10h: ↓ |
Average pore radius (μ) | ↑↓ | ↓ |
Volume ratio of circular pores (α) | ↑ | → |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, J.; Cheng, L. Liquid Storage Characteristics of Nanoporous Particles in Shale: Rigorous Proof. Energies 2019, 12, 3985. https://doi.org/10.3390/en12203985
Cui J, Cheng L. Liquid Storage Characteristics of Nanoporous Particles in Shale: Rigorous Proof. Energies. 2019; 12(20):3985. https://doi.org/10.3390/en12203985
Chicago/Turabian StyleCui, Jiangfeng, and Long Cheng. 2019. "Liquid Storage Characteristics of Nanoporous Particles in Shale: Rigorous Proof" Energies 12, no. 20: 3985. https://doi.org/10.3390/en12203985
APA StyleCui, J., & Cheng, L. (2019). Liquid Storage Characteristics of Nanoporous Particles in Shale: Rigorous Proof. Energies, 12(20), 3985. https://doi.org/10.3390/en12203985