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Abstract: This study presents a new interface for wellbore stability analysis, which visualizes and
quantifies the stress condition around a wellbore at shear and tensile failure. In the first part of this
study, the Mohr–Coulomb, Mogi–Coulomb, modified Lade and Drucker–Prager shear failure criteria,
and a tensile failure criterion, are applied to compare the differences in the critical wellbore pressure
for three basin types with Andersonian stress states. Using traditional wellbore stability window
plots, the Mohr–Coulomb criterion consistently gives the narrowest safe mud weight window, while
the Drucker–Prager criterion yields the widest window. In the second part of this study, a new type
of plot is introduced where the safe drilling window specifies the local magnitude and trajectories
of the principal deviatoric stresses for the shear and tensile wellbore failure bounds, as determined
by dimensionless variables, the Frac number (F) and the Bi-axial Stress scalar (χ), in combination
with failure criteria. The influence of both stress and fracture cages increases with the magnitude of
the F values, but reduces with depth. The extensional basin case is more prone to potential wellbore
instability induced by circumferential fracture propagation, because fracture cages persists at greater
depths than for the compressional and strike-slip basin cases.

Keywords: wellbore stability; failure criteria; stress trajectories; safe drilling window; Frac number;
Biaxial-Stress scalar

1. Introduction

Reliable analysis of wellbore stability is one of the keys for a successful and safe drilling process,
because if instability occurs it may result in pipe stuck by wellbore collapse or drilling fluid loss
through induced tensile fractures, which require considerable time and effort to be solved. When
a well is drilled in an elastic rock formation, the stresses around the wellbore are redistributed by
replacement of rock with drilling fluid and its condition is altered from the intrinsic state. The
redistributed stress magnitudes are generally calculated by the classical Kirsch equations, accounting
for the in-situ stresses and wellbore pressure induced by drilling fluid weight. The stresses and the
wellbore pressures are next integrated with rock failure criteria to compute the safe mud weight
window. Outside the safe mud weight window, the stresses on the wellbore induce failure and wellbore
stability becomes compromised.
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Although commercial packages for wellbore stability (WBS) analysis adequately follow the above
procedure, we argue that there is still room for improvement in the information flow assessed for
making WBS control decisions. This study advocates an approach where one carefully examines the
stress trajectories when failure occurs at the upper and lower bounds of the safe drilling window.
Knowing the stress trajectory pattern at the moment of failure is extremely useful as it provides
additional conceptual insight and quantitative information relevant for real-time stability analysis
during drilling and completion processes. The new WBS interface and examples presented in our study
led to several new practical insights, which are systematically discussed based on our in-depth analysis.

The first part of our study compares the variations in the safe drilling envelope, using traditional
WBS plots, for the four commonly used shear failure criteria augmented with a fifth, tensile failure
criterion, under various basin stress states, first recognized by Anderson (see references in Thomas
and Weijermars [1]). Andersonian stress states typical for each type of basin are generated on the
basis of published field data for such basins. Next, the safe drilling window and the critical wellbore
pressures at lower-bound and upper-bound shear failure are calculated for each Andersonian case
using four different shear failure criteria: The Mohr–Coulomb, Mogi–Coulomb, modified Lade, and
Drucker–Prager criterion. In addition, the wellbore pressure at tensile failure is calculated. According
to our knowledge such a systematic comparative study of shear and tensile failure criteria and the
resulting critical wellbore pressures, with an analysis of the shifts in the safe drilling window under
the three principal Andersonian stress regimes, has not been done before.

The second part of the paper analyzes the detailed principal stress trajectory patterns and
magnitudes at failure for various depths in the wellbore (up to 3048 m depth), and introduces the
new WBS interface (advocated here for the first time). In traditional wellbore stability analysis, the
only parameters of focus are the principal total stress concentrations at the wellbore proper, which are
used to determine whether the wellbore pressure would induce a failure under a given circumstance
of the in-situ stresses. The principal stress trajectories are commonly neglected but harness valuable
information such as the expected location of failure and likely fracture propagation direction [2].
Previous research [1] dealing with the deviatoric stress trajectories patterns was limited to an evaluation
of the possible range of outcomes in a sensitivity analysis using arbitrary input values (χ and F,
see Section 4), but did not show how these parameters may vary in a practical wellbore stability
analysis. The present study visualizes the principal deviatoric stress magnitudes and trajectories at the
margins of the safe drilling envelope for a vertical wellbore under three different Andersonian tectonic
stress regimes.

2. Preparation of Wellbore Stability Model

Essential blocks for our proposed expansion of the classical wellbore stability model are discussed
in the sections below. Prior to the stress distribution analysis around the wellbore, data from field cases
in literature were gathered to select reasonable ranges of the in-situ stresses and rock failure properties.
The selected field studies were used as a basis for constructing three synthetic Andersonian stress
states (Section 2.1). The four failure criteria used in our wellbore stability analysis are briefly reviewed
(Section 2.2). All pertinent equations used in the wellbore stability model are summarized in concise
Appendices A–C, and a supplementary online file for quick referral, and to maintain the brevity of the
main text.

2.1. Construction of Three Synthetic Andersonian Cases

In order to determine the reasonable in-situ stress conditions with rock mechanical properties,
field scale measurements available in literature have been reviewed (described in detail in Appendix A).
The in-situ vertical, maximum, and minimum stress gradients collected from field data have ranges
of 22.6–25.6, 17.0–34.4, and 14.3–24.4 kPa/m, respectively (Table 1). In addition, the pore pressure
gradients, cohesion, internal friction angle, and Poisson’s ratio are in the ranges of 9.3–10.4 kPa/m,
5.4–12.4 MPa, 31.0–50.2◦, and 0.18–0.30, respectively (Table 1). Assuming that the in-situ stress gradients
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are consistent from the surface to 3048 m (10,000 ft) depth, synthetic 1D models for the three synthetic
Andersonian cases were constructed based on the collected field data (Table 2).

The vertical stress and pore pressure gradients range between 22.6 and 10.2 kPa/m along the
wellbore trajectory. Since this study focuses on vertical wellbores, the difference between the principal
stresses normal to the wellbore, i.e., σH − σh, is consistently set as 4.5 kPa/m for all the cases. For the
reverse faulting regime, the maximum and the minimum horizontal stresses are 29.4 and 24.9 kPa/m,
respectively. The maximum and minimum horizontal stress gradients are 24.9 and 20.4 kPa/m for the
strike-slip regime, and 20.4 and 15.8 kPa/m for the normal faulting regime. The cohesion is assumed to
be 6.9 MPa, with an internal friction angle of 40◦, and a Poisson’s ratio of 0.25. For the tensile failure
computations, we assume that the tensile strength is zero as a general approximation [3].

Table 1. In-situ stresses and rock mechanical properties from available literature. Assumed values
are underlined.

Location Western
Canada

Cyrus
Reservoir,

UK

Mansouri
Field,
Iran

Pagerungan
Island,

Indonesia

ABK
field,

Abu-Dhabi

Offshore
Wells,

Arabian
Gulf

Cusiana
Field,

Columbia

Cusiana
Field,

Columbia

Source [4] [5] [6] [7] [8] [9] [10] [11]

Andersonian
Type Strike-slip Extensional Strike-slip Strike-slip CompressionalExtensional Strike-slip Strike-slip

Depth (m) >3048 2600 2313 1463–1890 2958 2073 4572 3048

σV
gradient
(kPa/m)

24.9 ± 0.7 22.6 25.3 22.6 22.6 24.9 24.4 24.9

σH
gradient
(kPa/m)

28.0 17.0 27.6 27.6 34.4 22.6 30.8 31.7

σh gradient
(kPa/m) 19.2 ± 1.4 17.0 14.3 19.7 24.4 20.4 17.0 15.8

Pp
gradient
(kPa/m)

9.7 10.2 9.3 10.2 10.2 10.4 9.5 10.0

UCS
(MPa) - - 27.8 47.7 5.5 21.3 70.0 -

Cohesion
(MPa) - 5.9 5.4 12.4 - 6.0 19.8 -

Tensile
Strength

(MPa)
- - 2.0 - - - - -

Internal
Friction

Angle (◦)
- 43.8 - 35.0 50.2 31.3 31.0 -

Poisson’s
Ratio - 0.18 0.20 0.30 - -

2.2. Comparison of Failure Criteria

One of the primary goals for a safe and stable drilling process is to maintain the wellbore pressure
within the safe window by controlling the drilling fluid weight based on estimations of the pore
pressure at depth. Since the calculated safe pressure range varies with the selected failure criteria,
most prior studies focused on identifying the most appropriate criterion. In the present study, critical
wellbore pressures are compared for four of the most common shear failure criteria (Mohr–Coulomb,
Mogi–Coulomb, modified Lade, and the Drucker–Prager) using a range of in-situ stress conditions.
The failure envelopes for each of the four criteria can be directly established with the Mohr–Coulomb
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parameters, such as cohesion and internal friction angle. For a concise review of the failure criteria,
including equations and concepts, readers are referred to the supplementary online file.

Table 2. Input data for the three Andersonian cases.

Andersonian Type Compressional Strike-Slip Extensional

σV gradient (kPa/m) 22.6 22.6 22.6

σH gradient (kPa/m) 29.4 24.9 20.4

σh gradient (kPa/m) 24.9 20.4 15.8

χ 0.20 1.00 5.00

Pp gradient (kPa/m) 10.2

Cohesion (MPa) 6.9

Internal Friction Angle (◦) 40.00

Unconfined Compressive Strength (MPa) 29.6

Poisson’s ratio 0.25

Among the various rock failure criteria, the most frequently used during wellbore stability
analysis is the Mohr–Coulomb failure criterion [12]. Despite of its wide area of application, many
researchers pointed out that the 2D results may bias a wellbore stability analysis, because the criterion
underestimates rock strengths by neglecting the effect of the intermediate principal stress [12–15]. The
use of this failure criterion would result in too conservative and narrow safe drilling window, because
of the unwarranted low rock strength assumption. Meanwhile, several studies proposed modifications
of the criterion in an attempt to compensate the shortcomings [16,17].

Recently, the Mogi–Coulomb criterion gained attention in wellbore stability analysis, because it
mitigates the defects of the Mohr–Coulomb criterion by taking into account the intermediate stress
effect. Several studies suggest evidence that the criterion provides favorable results when compared
with the laboratory and field scale analyses [14,18,19].

A third failure criterion used in the present study is the modified Lade criterion proposed by
Ewy [13]. The author performed experimental analyses and pointed out that the criterion shows
reliable results for wellbore stability studies. However, Zhang, Cao, and Radha [19] insisted that the
criterion is not suitable for estimation of the critical wellbore pressure at the lower-bound of the safe
drilling window.

Additionally, the Drucker–Prager failure criterion was included in our study, because it ranks
among the most widely used failure criteria in wellbore stability analysis [13]. There are three options
for the Drucker–Prager constants, which result in the yield surface circumscribing, middle-inscribing
or inscribing that of the Mohr–Coulomb criterion (Figure 1a). Based on field studies, McLean and
Addis [5] concluded that the Drucker–Prager criterion favorably predicts the potential failure in
wellbore stability analysis when the circumscribing constants are chosen. However, other studies
indicated that the criterion overestimates the rock strength and may lead to unrealistic results with
failure envelopes overstepping the safe drilling window [13].
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Figure 1. (a) Failure surfaces in 𝜋-plane calculated by the Drucker–Prager and Mohr–Coulomb failure 
criteria. The Drucker–Prager constants were determined with the assumptions that the failure surface 
circumscribes (green), middle circumscribes (yellow) or inscribes (blue) the failure surface of the 
Mohr–Coulomb (red) criterion. Internal friction angle is 30°. (b) Failure surfaces in 𝜋  -plane 
calculated by the Drucker–Prager (circumscribing case, green), modified Lade (yellow), Mogi–
Coulomb (blue), and Mohr–Coulomb (red) failure criteria. The dashed black circle represents the 
stress state where the maximum and intermediate principal stresses are identical. Internal friction 
angle is 30°. 

3. Wellbore Stability Analysis Using Different Failure Criteria 

In this part of the study, the wellbore stability analysis is performed for a vertical well drilled 
into the three synthetic basins with Andersonian in-situ stress states using the Mohr–Coulomb, 

Figure 1. (a) Failure surfaces in π-plane calculated by the Drucker–Prager and Mohr–Coulomb failure
criteria. The Drucker–Prager constants were determined with the assumptions that the failure surface
circumscribes (green), middle circumscribes (yellow) or inscribes (blue) the failure surface of the
Mohr–Coulomb (red) criterion. Internal friction angle is 30◦. (b) Failure surfaces in π-plane calculated
by the Drucker–Prager (circumscribing case, green), modified Lade (yellow), Mogi–Coulomb (blue),
and Mohr–Coulomb (red) failure criteria. The dashed black circle represents the stress state where the
maximum and intermediate principal stresses are identical. Internal friction angle is 30◦.

In order to compare the results of the four failure criteria, their yield surfaces are depicted in the
π-plane (Figure 1b). Readers should note that (only in Figure 1) the general relation of the principal
stresses, σ1 ≥ σ2 ≥ σ3, was abandoned for easy representation. A rock reaches failure when the stress
state is placed at the edges of the shaded area. For the Drucker–Prager criterion, the constants of
the circumscribing case were selected for our analysis. The result shows that the Drucker–Prager
criterion has the widest yield surface (green), while the rock strengths calculated by the Mohr–Coulomb
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criterion are the most conservative (red). The failure surfaces determined by the Mogi–Coulomb (blue)
and modified Lade (yellow) criteria are very similar and are slightly circumscribing the surface of
the Mohr–Coulomb criterion. However, the largest discrepancy between the former criteria occurs
when the two larger principal stresses have same magnitude, i.e., σ1 = σ2 > σ3 (dashed black circle
in Figure 1b). At this state, the minimum principal stress calculated by the Mogi–Coulomb criterion
is higher than that of the modified Lade criterion. In addition, the yield surfaces determined by the
Mohr–Coulomb and Mogi–Coulomb criteria are identical at this stress.

3. Wellbore Stability Analysis Using Different Failure Criteria

In this part of the study, the wellbore stability analysis is performed for a vertical well drilled
into the three synthetic basins with Andersonian in-situ stress states using the Mohr–Coulomb,
Mogi–Coulomb, modified Lade and Drucker–Prager failure criteria. For the Drucker–Prager criterion,
the circumscribing case was chosen, which is identical to the Mohr–Coulomb and Mogi–Coulomb
criteria under laboratory measurement conditions, i.e., σ2 = σ3 For the same condition, the
circumscribing Drucker–Prager criterion coincides with the modified Lade criterion as the latter
was intentionally designed accordingly [20]. The Mohr–Coulomb, Mogi–Coulomb, modified Lade and
Drucker–Prager criteria are widely used and the required parameters can be directly determined from
the rock’s cohesion and internal friction angle. Since usage of different criteria yields distinct results,
many studies have been performed to analyze the physical nature and variations in strength of each
particular failure criterion. Prior studies compared the various failure criteria using observations made
by experimental [13,18,19] and computational [21] methods, and concluded that the failure criteria are
very sensitive to the 3D state of the stress. Furthermore, field evidence suggests that the effect of the
intermediate principal stress is significant for any wellbore stability analysis [14,15,22–24].

The vertical well analyzed is assumed to be drilled in a thick formation for the reverse faulting,
strike-slip and normal faulting cases, and a wellbore stability analysis needs to identify and calculate
the lower and upper critical wellbore pressures, considering shear and tensile failure modes. The
derivation of the equations required for the critical wellbore pressure calculations are described in the
supplementary file. Combining the determined safe mud window with the pore pressure, potential
near-wellbore damage is also analyzed. In addition, the principal stress condition at the location
of the failure is closely examined to further investigate its effect on the calculated critical wellbore
pressures. Previous studies focused on the selection of the appropriate failure criterion comparing
their different outcomes. A systematic study of failure response for a broad range of possible stress
states is undertaken in this study for the first time.

3.1. Compressional Basin (Reverse Faulting) Case

The critical wellbore pressures for the compressional basin case (Tables 2 and 3) are shown
in Figure 2. The colored dashed lines represent the lower critical wellbore pressure that induces
lower-bound shear failure at the wellbore wall at θ = π/2 or 3π/2. Whether failure at the upper-bound
is by shear or tensile failure (expected at θ = 0 or π) depends on depth as indicated by the solid
lines (black for tensile and colored for upper-bound shear failure). The lines for upper-bound shear
failure are dotted where tensile failure will prevail. Tensile failure will occur at shallower depths
(<1188 m) and consequently shear failure is less likely to occur due to tensile failure releasing the stress
accumulations. However, the deeper wellbore section (>1188 m) is more prone to failure by shear at
the upper-bound, which occurs at a critical pressure lower than required for tensile failure (Figure 2).
The 1188 m depth for the transition between upper-bound tensile failure and shear failure is only
valid for the Mohr–Coulomb shear failure criterion. For other shear failure criteria, tensile failure still
prevails for the deeper well sections (see later).
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Table 3. Conversion of wellbore principal stress subscript system (σH, σh, σV ) to conventional principal
stress system (σ1, σ2, σ3 ) depending on tectonic stress regime.

Andersonian Case Spatially Fixed Subscripts

Compressional Basin σH σh σV

Extensional Basin σV σH σh

Strike Slip Basin σH σV σh

Principal Total Stress Subscripts (all cases) σ1 σ2 σ3

Principal Deviatoric Stress Subscripts (all cases) τ1 τ2 τ3
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Figure 2. Reverse faulting regime - compressional basin. Critical wellbore pressure at lower- (colored
dashed), upper-bound shear (colored solid), and tensile (TF; black solid) failures under the reverse
faulting regime with the vertical, maximum and minimum horizontal stress gradients of 22.6, 29.4,
and 24.9 kPa/m, respectively. The pore pressure gradient is 10.2 kPa/m (black dashed). The wellbore
pressures were calculated by the Mohr–Coulomb (MC; red), Mogi–Coulomb (MG; blue), modified Lade
(ML; yellow), and Drucker–Prager (DP; green) failure criteria. The vertical in-situ stress is depicted with
the dash-dotted black line. The magnified frame indicates that the calculated lower critical wellbore
pressures exceed the pore pressure at certain depths. Input parameters are given in Tables 2 and 3.

The wellbore pressure needs to be maintained between the dashed and solid lines (Figure 2) to
ensure a safe and stable drilling process. The critical wellbore pressures were calculated using the
Mohr–Coulomb (red), Mogi–Coulomb (blue), modified Lade (yellow), and Drucker–Prager (green)
failure criteria. The black dash-dotted and dashed lines represent, respectively, the minimum in-situ
stress gradient (22.6 kPa/m) and the pore pressure gradient (10.2 kPa/m) along the vertical wellbore
trajectory. The magnitude and gradient of the minimum in-situ stress (which is vertical for the
compressional basin), is very important for the analysis, because a hydraulically-driven tensile fracture
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will only propagate away from the wellbore wall if the wellbore pressure exceeds the minimum in-situ
stress. The safe mud window determined by the Drucker–Prager criterion has the widest range, while
the window calculated by the Mohr–Coulomb criterion is the narrowest for the entire interval. The
critical wellbore pressure window obtained from Mogi–Coulomb is slightly narrower than that of the
modified Lade.

Figure 2 includes the transition depths where the calculated critical pressure for a certain shear
failure criterion is no longer valid (dotted lines). Tensile failure is the most likely type of the failure
to occur at shallower depths for all criteria. The critical pressures and corresponding depths of the
tensile-shear failure transition are included in Figure 2 for each shear failure criterion. As the well
penetrates deeper formations, tensile failure is less likely to occur than upper-bound shear failure.
Deeper in the wellbore the critical pressure for tensile failure would need to be higher than for shear
failure. Tensile failure is expected at the upper-bound of the critical wellbore pressure window for well
depths shallower than 1188 (Mohr–Coulomb), 1862 (Mogi–Coulomb), and 1998 m (Modified Lade).
According to the Drucker–Prager criterion, however, the upper-bound shear failure cannot occur even
when a well reaches 3048 m depth. Consequently, upper-bound shear failure is generally more likely
to occur at the greater depths (instead of tensile failure) if the wellbore pressure reaches the upper
critical wellbore pressure.

Figure 2 also shows that the pore pressure line cuts across the calculated lower critical wellbore
pressure. In other words, the pore pressure becomes lower than the critical wellbore pressure
at lower-bound shear failure when a well gets deeper. Since the wellbore pressure needs to be
maintained higher than the dashed lines for the stability, the desirable wellbore pressure will be higher
than the formation pore pressure. For such cases, the wellbore pressure needs to be significantly
overbalancing the pore pressure at depths of 622, 911, 1001 and 1640 m, according to the Mohr–Coulomb,
Mogi–Coulomb, modified Lade and the Drucker–Prager criteria, respectively (see also magnified frame
in Figure 2, Table 4). The risk of loss of costly drilling mud increases with depth. Remediation requires
properly designed drilling fluid to create an impermeable mud cake at the wellbore wall to prevent
any mud loss to the formation. Additional caution needs to be taken when natural fractures occur,
which may be difficult to plug with standard drilling fluid. When formations are naturally fractured
(prior to drilling), mud loss will be more likely to occur at greater depths.

Table 4. Depths at the positive net pressure required to prevent shear failure.

Andersonian Type Compressional (m) Strike-Slip (m) Extensional (m)

Mohr–Coulomb 688 872 1188

Mogi–Coulomb 1035 1379 1862

Modified Lade 1128 1470 2002

Drucker–Prager 2109 - -

When calculating the critical wellbore pressure with the selected failure criteria, the locally induced
principal stress condition at wellbore wall is calculated using the Kirsch equations and integrated
with the failure criteria. In order to closely investigate behavior of the critical wellbore pressure, the
principal stress condition at the failure location was further analyzed for the lower-bound shear failure
(at θ = π/2 or 3π/2) , and upper-bound shear failure (at θ = 0 or π). Figure 3a,b show the radial
and tangential stresses at the lower-bound and upper-bound shear failure locations, respectively. For
both cases, the axial stress (σz) is represented with a black solid line as it is a function of the in-situ
stresses and Poisson’s ratio (See the supplementary file)). The tangential (solid; σθ) and radial (dashed;
σr) stresses depend on the wellbore pressure and vary with the failure criteria. At the location of the
lower-bound shear failure, the tangential and radial (near wellbore) stresses are the maximum and
minimum principal stresses for the entire depth, respectively. On the other hand, the tangential and
radial (near wellbore) stresses are the minimum and maximum principal stresses at upper-bound shear
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failure location, respectively. For both failure locations, the axial stress is the intermediate principal
stress. For the reverse faulting case, the order of the principal stresses remains consistent in vertical
wells up to 3048 m deep.
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Figure 3. Reverse faulting regime—compressional basin. Locally induced principal stresses at a
moment of (a) lower-bound and (b) upper-bound shear failure under the reverse faulting regime with
the vertical, maximum and minimum horizontal stresses of 22.6, 29.4, and 24.9 kPa/m, respectively.
The black solid lines represent the axial stress ( σz). The tangential (σθ ; solid) and radial (σr; dashed)
stresses are calculated by the Mohr–Coulomb (MC; red), Mogi–Coulomb (MG; blue), modified Lade
(ML; yellow), and Drucker–Prager (DP; green) failure criteria.
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3.2. Strike-Slip Basin Case

Figure 4 shows the calculated critical wellbore pressure for the strike-slip basin case. Similar to
the observations from the compressional basin case (Figure 2), the Drucker–Prager criterion estimates
the widest safe window of the drilling fluid weight and the Mohr–Coulomb criterion yields the most
conservative result. The magnified inset frame in Figure 4 indicates that the lower critical wellbore
pressures for shear failure at the lower-bound are higher than the pore pressure at depths greater than
871, 1379, and 1470 m, based on the Mohr–Coulomb, Mogi–Coulomb and modified Lade shear failure
criteria (Table 4). Beyond these depths, the wellbore pressure needs to be maintained higher than the
pore pressure to prevent shear failure. However, if the formation rock follows the Drucker–Prager
criterion, even an underbalanced wellbore pressure can still provide stability. The interval where the
wellbore pressure must exceed the formation pore pressure to prevent shear failure according to the
three conservative criteria (Mohr–Coulomb, Mogi–Coulomb and modified Lade) (Figure 4) generally
occurs deeper than for the reverse faulting case (Figure 2).
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Figure 4. Strike-slip regime—strike-slip basin. Critical wellbore pressure at lower- (colored dashed),
upper-bound shear (colored solid), and tensile (TF; black solid) failures under the strike-slip regime
with the vertical, maximum and minimum horizontal stress gradients of 22.6, 24.9, and 20.4 kPa/m,
respectively. The pore pressure gradient is 10.2 kPa/m (black dashed). The wellbore pressures were
calculated by the Mohr–Coulomb (MC; red), Mogi–Coulomb (MG; blue), modified Lade (ML; yellow),
and Drucker–Prager (DP; green) failure criteria. The minimum horizontal in-situ stress is depicted with
the dash-dotted black line. The magnified frame indicates that the calculated lower critical wellbore
pressures exceed the pore pressure at certain depths.

At the upper-bound of the safe wellbore pressure window, tensile failure is more likely to occur
than shear failure for well depths shallower than 1868 and 2840 m, according to the Mohr–Coulomb
and Mogi–Coulomb criteria, respectively. However, the results from the modified Lade and the
Drucker–Prager criteria show that the tensile failure will occur up to 3048 m (instead of the upper-bound
shear failure), which would require higher wellbore pressure.

Figure 5a,b show the radial, axial and tangential stresses at the lower-bound and upper-bound
shear failure locations. Like the reverse faulting case (Figure 3), the tangential and radial stresses are
the maximum and minimum principal stresses at the locations of lower-bound shear failure (Figure 4).
The vertical stress is the intermediate principal stress, and the order of the principal stresses retain the
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same orientation with respect to the wellbore and are consistent with a compressional tectonic regime
over the entire interval at both the upper and lower-bound failure locations.
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Figure 5. Strike-slip regime—strike-slip basin. Locally induced principal stresses at a moment of
(a) lower-bound and (b) upper-bound shear failure under the strike-slip regime with the vertical,
maximum and minimum horizontal stresses of 22.6, 24.9, and 20.4 kPa/m, respectively. The black
solid lines represent the axial stress (σz). The tangential (σθ; solid) and radial (σr; dashed) stresses are
calculated by the Mohr–Coulomb (MC; red), Mogi–Coulomb (MG; blue), modified Lade (ML; yellow),
and Drucker–Prager (DP; green) failure criteria.
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3.3. Extensional Basin (Normal Faulting) Case

Figure 6 shows the critical wellbore pressure at shear and tensile failures for the extensional basin
case. In accordance with the calculated safe windows of the other two cases of Andersonian tectonics
(Figures 2 and 4), the safe drilling windows calculated by the Drucker–Prager and Mohr–Coulomb
criteria again have the widest and narrowest widths (Figure 6), respectively. The result from the
Mohr–Coulomb criterion shows that the upper-bound shear failure is expected for the wellbore
pressure exceeding the critical pressure at depth greater than 2905 m. For the other shear failure criteria,
tensile failure will be more likely to occur than shear failure for the entire 3048 m deep well. As the
dashed lines in Figure 6 indicate, the critical wellbore pressure at the lower-bound of the safe window is
lower than the pore pressure at specific depths. According to the Mohr–Coulomb, Mogi–Coulomb and
modified Lade criteria, the shear failure can occur even when the wellbore is maintained over-balanced
at a depth greater than 1188, 1864, or 2002 m (magnified frame (a) in Figure 6). However, the result from
the Drucker–Prager criterion shows that shear failure can be prevented at all depths up to 3048 m deep,
even when the wellbore fluid pressure is lower (underbalanced) than the pore pressure. Compared to
the other Andersonian cases (Figures 2 and 4), the interval that requires higher wellbore pressure than
the pore pressure is located at deeper formations for the extensional basin (Table 4). Our conclusion is
that the normal faulting case is the Andersonian case with the deepest intervals requiring overbalanced
drilling to support wellbore stability.

Energies 2019, 12, x FOR PEER REVIEW 13 of 43 

 

 

 

Figure 6. Normal faulting regime—extensional basin. Critical wellbore pressure at lower- (colored 
dashed), upper-bound shear (colored solid), and tensile (TF; black solid) failures under the normal 
faulting case with the vertical, maximum and minimum horizontal stress gradients of 22.6, 20.4, and 
15.8 kPa/m, respectively. The pore pressure gradient is 10.2 kPa/m (black dashed). The wellbore 
pressures were calculated by the Mohr–Coulomb (MC; red), Mogi–Coulomb (MG; blue), modified 
Lade (ML; yellow), and Drucker–Prager (DP; green) failure criteria. The minimum horizontal in-situ 
stress is depicted with the dash-dotted black line. The magnified frame (a) indicates that the calculated 
lower critical wellbore pressures exceed the pore pressure at certain depths. The magnified frame (b) 
shows the alteration of the upper critical wellbore pressure gradient calculated by the Mohr–Coulomb 
(red) and Mogi–Coulomb (blue) criteria. 

At upper-bound of the critical pressure window, shear failure gradients calculated by the Mohr–
Coulomb and Mogi–Coulomb criteria show a sudden change in slope at 1147 m depth (inset (b) of 
Figure 6). We recall that the upper-bound shear failure gradients for the other two Andersonian cases 
(Figure 2 and Figure 4) remained constant or only gradually changed. As the magnified frame (b) in 
Figure 6 shows, the upper critical wellbore pressure gradients calculated by the Mohr–Coulomb and 
Mogi–Coulomb criteria at 1147 m change from 15.8 and 14.3 kPa/m to 14.7 and 16.1 kPa/m, 
respectively. 

In order to further unearth the cause of the abrupt change in the shear failure gradient, the locally 
induced stresses at the failure points were analyzed (Figure 7a,b). As for the other Andersonian cases 
(Figure 3 and Figure 5), the tangential, axial and radial stresses are the maximum, intermediate and 
minimum principal stresses. The principal stress order at the lower-bound shear failure envelope 
(𝜃 = 𝜋/2  or 3𝜋/2) remains consistent for the entire drilling interval (Figure 7a). However, the 
principal stress condition at the upper-bound shear failure location, 𝜃 = 0  or 𝜋  (magnified in 
Figure 7b) shows that the axial stress becomes the intermediate principal stress at shallow depth 
(instead of the radial stress). Consequently, the order of the principal stresses at the upper-bound 

Figure 6. Normal faulting regime—extensional basin. Critical wellbore pressure at lower- (colored
dashed), upper-bound shear (colored solid), and tensile (TF; black solid) failures under the normal
faulting case with the vertical, maximum and minimum horizontal stress gradients of 22.6, 20.4, and
15.8 kPa/m, respectively. The pore pressure gradient is 10.2 kPa/m (black dashed). The wellbore
pressures were calculated by the Mohr–Coulomb (MC; red), Mogi–Coulomb (MG; blue), modified Lade
(ML; yellow), and Drucker–Prager (DP; green) failure criteria. The minimum horizontal in-situ stress is
depicted with the dash-dotted black line. The magnified frame (a) indicates that the calculated lower
critical wellbore pressures exceed the pore pressure at certain depths. The magnified frame (b) shows
the alteration of the upper critical wellbore pressure gradient calculated by the Mohr–Coulomb (red)
and Mogi–Coulomb (blue) criteria.
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At upper-bound of the critical pressure window, shear failure gradients calculated by the
Mohr–Coulomb and Mogi–Coulomb criteria show a sudden change in slope at 1147 m depth (inset (b)
of Figure 6). We recall that the upper-bound shear failure gradients for the other two Andersonian
cases (Figures 2 and 4) remained constant or only gradually changed. As the magnified frame (b) in
Figure 6 shows, the upper critical wellbore pressure gradients calculated by the Mohr–Coulomb and
Mogi–Coulomb criteria at 1147 m change from 15.8 and 14.3 kPa/m to 14.7 and 16.1 kPa/m, respectively.

In order to further unearth the cause of the abrupt change in the shear failure gradient, the locally
induced stresses at the failure points were analyzed (Figure 7a,b). As for the other Andersonian cases
(Figures 3 and 5), the tangential, axial and radial stresses are the maximum, intermediate and minimum
principal stresses. The principal stress order at the lower-bound shear failure envelope (θ = π/2 or
3π/2) remains consistent for the entire drilling interval (Figure 7a). However, the principal stress
condition at the upper-bound shear failure location, θ = 0 or π (magnified in Figure 7b) shows that the
axial stress becomes the intermediate principal stress at shallow depth (instead of the radial stress).
Consequently, the order of the principal stresses at the upper-bound shear failure location reverses
from σr > σz > σθ to σz > σr > σθ at exactly the depth where the shear failure gradient changes slope.
The principal stress order reversals occur at depths of 1147 (Mohr–Coulomb), 1147 (Mogi–Coulomb),
and 1367 m (modified Lade), see red circles in the magnified frame of Figure 7b.
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Figure 7. Normal faulting regime. Locally induced principal stresses at a moment of (a) lower-bound
and (b) upper-bound shear failure under the normal faulting regime with the vertical, maximum
and minimum horizontal stresses of 22.6, 20.4, and 15.8 kPa/m, respectively. The black solid lines
represent the axial stress (σz). The tangential (σθ; solid) and radial (σr; dashed) stresses are calculated
by the Mohr–Coulomb (MC; red), Mogi–Coulomb (MG; blue), modified Lade (ML; yellow), and
Drucker–Prager (DP; green) failure criteria. The magnified frame in (b) indicate reverse of the principal
stress order. (c) Critical wellbore pressure difference at upper-bound shear failure. Difference between
the Mohr–Coulomb (MC) and Mogi–Coulomb (MG), and the Mogi–Coulomb and modified Lade (ML)
are shown in red and yellow curves, respectively. At 1147 m, the red curve reaches 0 and the yellow
curve shows the maximum value.
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Since the Mohr–Coulomb and Mogi–Coulomb criteria take into account the order of the principal
stresses in critical wellbore pressure calculation, the gradients show a sudden alteration at the depths
where the principal stress order reverses. However, such a reversal does not have an influence on
the critical wellbore pressure gradient calculated by the modified Lade criterion as the criterion
does not take into account the order of the principal stresses. The difference between the critical
wellbore pressures at the upper-bound calculated from the Mogi–Coulomb and modified Lade criteria
is maximum at 1147 m depth (yellow curve in Figure 7c). As described in Section 2.2, the stress states
at failure of the Mogi–Coulomb and modified Lade are slightly different, except when the two larger
principal stresses have the same magnitudes (dashed circle in Figure 1b). In addition, the upper critical
wellbore pressure determined by the Mohr–Coulomb and Mogi–Coulomb criteria are identical as the
magnitudes of the intermediate principal stress are equal to the maximum principal stress (red curve
in Figure 7c), where the effect of the intermediate principal stress is negligible (σ2 = σ3).
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4. Wellbore Stability Model Expanded with Principal Stress Trajectories and Deviatoric Stress
Magnitude Contours

In the second part of this study, both the deviatoric stress magnitudes and stress trajectories around
the wellbore are determined at every depth for each of the three Andersonian cases at the margins of
the safe drilling envelope. The method is based on Weijermars [25], who first advocated simply using
deviatoric stresses

(
τi j

)
(rather than total stress, σi j) to determine the redistributed stress conditions

around the wellbore. The advantage of taking out the confining pressure term (using τi j = σi j − P),
which has a magnitude equal to the scalar value of the mean stress, is that even when P changes with
depth, the deviatoric stresses and critical trajectories at the moment of failure (as separately quantified
by applying a range of failure criteria, applying total stress) can be directly compared. The stress
trajectory analysis, practical for predicting the potential failure locations and fracture propagation
directions [26], is based on the Kirsch equations, and assumes the wellbore remains parallel to one
of the principal stress axes, such that the other two principal stress axes act in the plane of the stress
trajectories studied.

Rather than working with the dimensional values of the resulting radial and tangential stresses
(τr, τθ), obtained by solving the Kirsch equations, a prior study [1] introduced two normalization
parameters, essentially non-dimensionalizing (τr, τθ) by one of the two principal deviatoric stresses
acting in the plane of study. To achieve the required non-dimensionalization, two dimensionless
scaling factors (χ, F) were introduced (see details in Appendix A of Thomas and Weijermars [1]) each
accounting for key terms in the Kirsch equations.

One scaling factor, coined the Bi-axial Stress scalar (χ) [1], scales the relative magnitude of the
two far-field (deviatoric) stresses in the plane of study:

χi =
−τk∣∣∣τ j

∣∣∣ (1)

The subscripts i, j and k differ for the compressional, strike-slip and extensional basins, with
i indicating the direction of the wellbore, and j and k are the maximum and minimum principal
stress axes in the plane of study, i.e., normal to the wellbore. For example, a vertical wellbore in
compressional, strike-slip and extensional basins, will have the indices (i, j, k) as follows: (3,1,2), (2,1,3),
and (1,2,3), respectively. When the wellbore is horizontal, the indices switch accordingly (see details in
Appendix B and summary in Table A1).

The other scaling factor, coined the Frac number (F) [2], scales the net pressure (PNET) on the
wellbore via normalization by the same far-field stress as is used in the denominator of χi :

Fi =
PNET∣∣∣τ j

∣∣∣ (2)

where, PNET is the difference between the internal wellbore pressure and the formation pore pressure,
i.e., Pw −Pp. The subscript i indicates the principal stress that the wellbore is aligned with. For a vertical
wellbore, the subscript i in the compressional, strike-slip and extensional basins is either 3, 2, or 1,
respectively (see also Table A1). All possible states of deviatoric stress can be scaled by (χ, F) pairs
and stress magnitude and trajectory contour plots only depend on these scaling factors. Appendices B
and C provide detailed information about the dimensionless variables (χ, F) expressed in both total
and deviatoric stress forms.

One should note that the radial and tangential stresses (τr, τθ) near the wellbore, and the local
principal stress magnitudes derived thereof by applying the standard expression (Appendix C.2), are
all normalized by the selected far-field deviatoric stress τ j normal to the wellbore. Therefore, the
absolute deviatoric stress magnitudes in each location can be obtained by multiplication with the same
far-field stress τ j. Meanwhile, it is not necessary to put additional effort in differentiating the total and
deviatoric stress trajectories as these remain identical for both the total and deviatoric stresses. The



Energies 2019, 12, 4019 16 of 40

magnitude of the dimensional deviatoric stress in each location can be translated to the total stress by
adding back in the dimensional confining pressure component (τi j = σi j + P).

With the above conventions in place, we now proceed to develop an alternative way to represent
the safe drilling window by specifying the values of (χ, F) pairs at each depth for the critical wellbore
pressure. The added advantage is that one will know the corresponding stress trajectory patterns at
the moment of failure. The stress patterns will change with depth, in our examples gradually, but
not necessarily so when formation properties change abruptly, such as the far-field stress magnitude
varying at each depth due to differences in the elastic constants of each formation. Examples of the
application of our new method are given using the same three synthetic, Andersonian cases used in
the evaluation of failure criteria with the classical safe drilling window presentation in Section 3. This
approach ensures we can compare and combine the two approaches as each have their own merits.

4.1. Compressional Basin Case

Figure 8a shows the critical F3 values at shear and tensile failures for the reverse faulting case. Such
a reverse faulting regime corresponds to a compressional basin case, where typically the maximum
(σ1), intermediate (σ2), and minimum (σ3) principal in-situ stresses are the maximum and minimum
horizontal stresses (σH and σh) and the vertical stress (σV), respectively. Using (σH, σh, σV) values
from Table 2, the F3 and χ3 values can be calculated using the simple equations at the bottom row
in Table A1, assumes a vertical wellbore aligned with the minimum principal in-situ stress, σ3. The
χi-value can be used later to compute the stress distribution around the wellbore (Appendix C).

The F values are the net pressure on the wellbore, normalized by the maximum principal deviatoric
stress (τ1) For the compressional basin σ1 = σH (see Table 3) and σH =29.4 kPa/m (Table 2), which
corresponds to τ1 increasing with depth with a gradient of 3.8 kPa/m (Equation (A3), Appendix B).
This τ1 gradient gives the value of τ1 at each depth needed to normalize the net pressure to obtain F
values according to Equation (2).

The F values at lower-bound shear failure are larger in magnitude at shallow depths and decreases
with depth (Figure 8a). In addition, the Mohr–Coulomb and Drucker–Prager criteria yield the narrowest
and the widest safe drilling windows. On the other hand, the F value at tensile failure (black solid)
remains constant for the entire depth. This is because the F values at tensile failure with the zero
tensile strength solely depends on the in-situ stress and pore pressure (see Equations (1)). And since its
gradients are assumed as constant for the entire depth, so are the F values.

The magnitudes and trajectories of the maximum and minimum principal stresses in the plane of
observation normal to the wellbore, at the moment of failure for each criterion, are depicted in Figure 9.
At the center of the figure, the critical F3 values at shear and tensile failure are graphed. Examples of
the stress magnitude and trajectory plots are given for key depths for both the lower-bound of the
safe drilling window (left panel) and upper-bound (right panel). In all images, the horizontal axes
remain aligned with the maximum far-field in-situ stress direction (τ1). The critical stress states at the
lower-bound shear failure envelope are plotted on the left-hand side. The upper-bound shear and
tensile failure envelopes occur on the right-hand side. At the top of the stress magnitude contour plots
a scale is given for the normalized magnitudes of τ1 and τ2. The normalized magnitudes of the local
deviatoric stresses near the wellbore appear smaller as the wellbore gets deeper (Figures 9–11), because
the local deviatoric stresses increase slower with depth than the far-field deviatoric stress (3.8 kPa/m).
The slow increase with depth of the local deviatoric stress occurs due to the χ-value (χ3 = 0.2) being
small and fixed, while F-values are large at shallow depths (and decrease with increasing depth), as
follows from Equation A16a–c.
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Figure 8. Frac number (F) versus depth at failure. F values at lower-bound (colored dashed) and
upper-bound shear failure (colored solid) calculated by the Mohr–Coulomb (MC; red), Mogi–Coulomb
(MG; blue), modified Lade (ML; yellow), and Drucker–Prager (DP; green) criteria, for the following
cases: (a) Reverse faulting (χ3 = 0.2), (b) strike-slip (χ2 = 1), and (c) normal faulting (χ1 = 5). F
values at tensile failure (TF; assuming zero tensile strength) are depicted with the black solid line.
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Figure 9. Dimensionless deviatoric stress magnitudes and trajectories for the compressional basin (reverse faulting) case at upper-bound (left-hand side) and
lower-bound shear failure (right-hand side). For the zero tensile strength, tensile failure will occur at F = 6.6. The color indices above the magnitude plots indicate the
local stress intensity is normalized by the larger (compressional) far-field stress (see Appendix B.6). The triangles and dashed lines on the magnitude plots of the
maximum principal stress at shear failure and of the minimum principal stress at tensile failure show the expected locations of failure. The blue and green curves,
and the red dots in the stress trajectory plots represent the maximum and minimum principal stress trajectories, and the neutral points, respectively. The tables
beneath the F curves show the depths for each F value calculated by the Mohr–Coulomb (MC), Mogi–Coulomb (MG), modified Lade (ML), and Drucker–Prager (DP)
failure criteria.
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hand side). For the zero tensile strength, tensile failure will occur at 𝐹    = 7.0. The color indices above the magnitude plots indicate the local stress intensity is normalized 
by the larger (compressional) far-field stress (see Appendix B4). The triangles and dashed lines on the magnitude plots of the maximum principal stress at shear failure and 
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Figure 10. Dimensionless deviatoric stress magnitudes and trajectories for the strike-slip basin case at upper-bound (left-hand side) and lower-bound shear failure
(right-hand side). For the zero tensile strength, tensile failure will occur at F = 7.0. The color indices above the magnitude plots indicate the local stress intensity is
normalized by the larger (compressional) far-field stress (see Appendix B.4). The triangles and dashed lines on the magnitude plots of the maximum principal stress at
shear failure and of the minimum principal stress at tensile failure show the expected locations of failure. The blue and green curves, and the red dots in the stress
trajectory plots represent the maximum and minimum principal stress trajectories, and the neutral points, respectively. The tables beneath the F curves show the
depths for each F value calculated by the Mohr–Coulomb (MC), Mogi–Coulomb (MG), modified Lade (ML), and Drucker–Prager (DP) failure criteria.
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Figure 11. Dimensionless deviatoric stress magnitudes and trajectories for the extensional basin (normal faulting) case at upper-bound (left-hand side) and lower-bound
shear failure (right-hand side). For the zero tensile strength, tensile failure will occur at F = 9.0. The color indices above the magnitude plots indicate the local stress
intensity is normalized by the intermediate (compressional) far-field stress (see Appendix B.5). The triangles and dashed lines on the magnitude plots of the maximum
principal stress at shear failure and of the minimum principal stress at tensile failure show the expected locations of failure. The blue and green curves, and the red
dots in the stress trajectory plots represent the maximum and minimum principal stress trajectories, and the neutral points, respectively. The tables beneath the F
curves show the depths for each F value calculated by the Mohr–Coulomb (MC), Mogi–Coulomb (MG), modified Lade (ML), and Drucker–Prager (DP) failure criteria.
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The pairs of triangles on the maximum dimensionless principal stress plots and the dashed black
lines on the minimum dimensionless principal stress plots indicate the locations of potential failure
(triangles for shear failure and dashed lines for tensile failure). In the trajectory plots, the blue and
green curves indicate the maximum and minimum principal stresses, respectively. The vertical and
horizontal dimensions of the plots (in both the stress magnitude and trajectory plots) range from –5 to
+5 times the wellbore radius. The magnitudes and trajectories are calculated for conditions at the failure
envelope. Examples shown are for F values of –10, –5, 0, 1.05, 5.88, 6.26, and 6.6, and are connected
with the black-boxed intervals by black arrows. Beneath the F chart, the depths are calculated for each
of the four failure criteria to obtain the selected F values.

At the third column of both sides of Figure 9, the maximum and minimum principal stress
trajectories around the wellbore are depicted with blue and green curves, respectively. The red dots
on the stress trajectory plots indicate the neutral points, where the principal stresses reverse their
relationships with the radial and tangential stresses. For underbalanced wells (F < 0), the ellipse
contoured by the trajectories within the neutral points indicates the fracture cage. The concept of the
fracture cage was introduced by [2], who indicated that any radial fractures induced/present at the
wellbore will, when propagating further, stay trapped inside the cage space. This is because the radial
stress at the wellbore is negative and minimum, and the tangential stress is the maximum compressive
stress within the fracture cage. Instead, concentric spalling may lead to wellbore widening. The
fracture cage is not observed at the depths where F ≥ 0, which means that fracture propagation radially
away from the wellbore with risk of lost circulation is more likely to occur at the deeper portion of the
vertical wellbore.

At the upper limit of the safe drilling mud weight window, the ellipse contoured by the stress
trajectory (between the neutral points) has its long axis oriented vertically in the plot and thus is
normal to the maximum horizontal stress, unlike the fracture cage at the lower-bound, which always
has its long axis parallel to the maximum horizontal stress. For the upper-bound case (F > 0), the
stress trajectory ellipse through the neutral points around the wellbore is termed a stress cage, inside
which the induced stress concentration is higher than the minimum horizontal stress, and all tangential
stress is tensional, as opposed to the fracture cage, where all tangential stress is compressional [27]. See
Section 5.3, for more detailed explanation about fracture and stress cages.

The stress trajectories visualized in this section do not imply that failure will occur everywhere
along the stress trajectories, because failure can only be determined by incorporating a failure criterion.
The stress trajectories in fact show the static stress right before failure occurs and since failure is a
dynamic process, the growth of either shear or tensile failure will progressively modify the stress
distribution. However, the proposed stress trajectory visualization method provides important
information about the potential failure paths. Additional discussion is given in Section 5.3.

4.2. Strike-Slip Basin Case

For the strike-slip case, the χ-value (χ2 = 1) is computed by converting (σH, σV , σh) to (σ1, σ2, σ3)

using Table 3 with values from Table 2. For this case, the maximum principal deviatoric stress normal
to the wellbore (τ2) increases with depth with a gradient of 2.3 kPa/m, which can be calculated by
Equation (A17).

The critical F2 values at shear and tensile failure for the strike-slip case is shown in Figure 8b.
Similar to the reverse faulting case (Figure 8a), the safe drilling window is wider for the shallow
formations and narrows with depth. Although the strike-slip basin case has narrower width of the safe
window in terms of the pressure shows than the compressional basin case (Figures 2 and 4), the range
of F values indicates an opposite trend (compare Figure 8a,b). This occurs because the gradient of the
maximum deviatoric principal stress for the strike-slip case (2.3 kPa/m) is lower than for the reverse
faulting case (3.8 kPa/m). Therefore, the critical F values at lower-bound shear failure for the strike-slip
case at the depth of 152 m are larger in magnitude and range from –21.78 to –12.64, while tensile failure
is expected to occur at F = 7.0.
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In Figure 10, the dimensionless magnitudes, trajectories of the principal stresses and the depths
for selected F values are depicted. The range of values along the stress contour scale is larger for the
strike-slip case (±25 for the lower-bound shear failure and ±15 for the upper-bound shear or tensile
failure; Figure 10) than for the reverse faulting case (±15 for the lower-bound shear failure and ±10 for
the upper-bound shear or tensile failure; Figure 9). This is because the maximum deviatoric principal
stress gradient used to normalize the stress magnitudes for the strike-slip case (2.3 kPa/m) is lower
than for the reverse faulting case (3.8 kPa/m). However, the (χ, F) pairs for both Figures 9 and 10 are
correct and universal as (χ, F) plots have no “memory” for the normalization process itself. In other
words, the normalization ensures unique solutions for the stress magnitude and stress trajectories
are obtained. The principal stress trajectories indicate the likely occurrence of the fracture cage and
stress cage at shallow depths for the lower and upper limit of the safe drilling window, respectively.
However, the fracture caging effect is not observed below depths of 871, 1379, and 1473 m according
to the Mohr–Coulomb, Mogi–Coulomb and modified Lade criteria. In addition, the strike-slip basin
results show that the fracture caging effect disappears not until greater depths (Figure 10), which
implies that the circumferential spalling fractures are more likely to occur and deeper than for the
reverse faulting case (Figure 9).

4.3. Extensional Basin Case

The χ-value (χ1 = 5) for the extensional basin case can be similarly computed as for the other
Andersonian cases by converting the (σH, σh, σV) values from Table 2 to (σ1, σ2, σ3) values (Table 3).
Since the maximum in-situ horizontal stress is the intermediate principal stress (σ2 = σH), the gradient
of the maximum principal deviatoric stress normal to the wellbore (τ2) is 0.7 kPa/m (Equation (A3),
Appendix B).

Figure 8c shows the F1 values at shear failure and tensile failure for the normal faulting case. The
F values have a larger range in magnitude at shallow depth, which decreases downward with depth.
Due to the low gradient of the intermediate deviatoric stress (0.7 kPa/m), the F values occupy a broad
range at the margins of the safe drilling window for the normal faulting case (Figure 11). In contrast,
the window of the critical wellbore pressure in the traditional presentation (Figure 6) is the narrowest
of all the Andersonian cases. However, we emphasize that the traditional method of representing the
safe drilling window graphs the wellbore pressure at failure (Section 3), whereas our complementary
method graphs the F scalar, which is the normalized net pressure on the wellbore. The combination of
(χ, F) values then shows the unique stress trajectory patterns and stress magnitude contour plots in
the plane of study normal to the wellbore, which we suggest provides valuable additional insight on
wellbore stability and the failure paths in case the safe drilling window is overstepped. In accordance
with the wellbore pressure values at failure (Figure 6), the Mohr–Coulomb criterion yields the most
conservative results (Figure 11). Meanwhile, the values from the Drucker–Prager criterion show the
widest safe window and a larger range of F values.

Examples of the stress magnitudes and stress trajectories calculated for the selected F values
of –40, –20, 0, 1.7, 8.86, and 9.0 for the normal faulting case are shown in Figure 11. Similar to the
other Andersonian cases (Figures 9 and 10), the fracture and stress caging effects are significant at
shallow depth and decrease as the wellbore advances deeper. According to the Mohr–Coulomb,
Mogi–Coulomb and modified Lade criteria, the fracture caging effect disappears for wells deeper than
1188, 1862, and 2003 m. Compared to the other Andersonian cases (Figures 9 and 10), the depths where
fracture caging disappears for the normal faulting case (Figure 11) are the deepest. Therefore, the
potential instability caused by circumferential fracture propagation is expected to persist deeper in
such wells. In other words, the normal faulting case is the most prone to the fracture caging effect that
induces the potential instability with circumferential fracture propagation. At the upper-bound, we
observe that the stress caging effect persists up to 3048 m depth
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5. Discussion

A systematic analysis of the stress distributions around the wellbore at failure has practical value
in wellbore stability analysis. In this discussion section, we highlight several key aspects observed
from our analysis. Section 5.1 evaluates the impact of the rock strengths (such as cohesion and angle of
internal friction) on the WBS model. Section 5.2 emphasizes the effect of the locally induced principal
stresses at the failure locations on the WBS results. Implications of the stress trajectories are further
discussed with the stress and fracture caging effects in Section 5.3. Section 5.4 briefly elaborates on the
terms ‘over-’ and ‘underbalanced wellbore’ used in this study. Sections 5.5 and 5.6 analyze the induced
tensile failure and the effect of depth on the occurrence of fracture cages, respectively. Directions for
future work are given in Section 5.7.

5.1. Sensitivity Analysis: Effect of Rock Strength Variations

In Sections 3 and 4, a systematic wellbore stability analysis was performed using input parameters
selected from the gathered field data (Sections 2.1 and 2.2). Since the present study covers a wide range
of depths, the initial analysis assumed constant strengths at each depth. In any particular drilling
location, the rock strengths may vary with depth, lithology, discontinuities, etc. Here we expand our
analysis with critical wellbore pressures by considering a certain variation in the rock strength, related
to such factors as the cohesion and internal friction angle. For the cohesion, a higher value of 13.8
MPa was selected (instead of 6.9 MPa used in the main analysis, Section 2.1) as there are field cases
with the cohesion value of 12.4 and 19.8 MPa (Table 1). In addition, the internal friction angle can be
very low for shale formation (as low as 15◦), where many wellbore instability problems occur [28].
Therefore, the internal friction angle of 15◦ (instead of 40◦ used in the main analysis, Section 2.1) was
evaluated for a comparison of the critical wellbore pressure. In this section, only the Mogi–Coulomb
failure criterion was evaluated, as it yields critical values that are intermediate in the range between
the conservative Mohr–Coulomb and the more liberal Drucker–Prager criteria.

Figure 12a shows the upper and lower critical wellbore pressures, calculated by the Mogi–Coulomb
failure criterion. Different line colors distinguish the three Andersonian cases, i.e., reverse faulting (RF;
compressional basin; red), strike-slip (SS; green) and normal faulting (NF; extensional basin; blue). The
solid lines represent the results for the base case (the cohesion of 6.9 MPa and the internal friction angle
of 40◦), while the dashed lines show the effect of the higher cohesion case (13.8 MPa). The lower-bound
shear failure is expected to occur at lower wellbore pressure for all the Andersonian cases if a wellbore
is drilled in a formation with the higher cohesion of 13.8 MPa (Figure 12a). In the same manner, the
upper critical wellbore pressure will be higher than for the base case when the formation has the
decreased internal friction angle of 15◦ (Figure 12b). The critical wellbore pressures at tensile failure
for both the base and modified cases are identical, due to the zero tensile strength assumption.

Arrows at the base of the plots (Figure 12a,b) indicate the width of the safe drilling window for
each of the Andersonian cases. The results indicate that, for all three Andersonian cases evaluated here,
when a wellbore penetrates a formation with a higher cohesion, the safe windows will be wider than
for the lower cohesion formations. On the other hand, when a wellbore encounters a formation with a
lower cohesion, the safe window will further narrow than for the 6.9 MPa cohesion used in the base
case. Separately, if a well encounters a formation with the lower internal friction angle (φ = 15◦) the
safe drilling window will be significantly narrower than for the base case (φ = 40◦) (Figure 12b). This
conclusion applies to all three Andersonian cases evaluated. In such weaker formations, the lower and
upper critical wellbore pressures attain a very narrow range for safe drilling. In fact, we can conclude
from Figure 12b that, under the normal faulting regime, a safe margin for the drilling fluid weight
does not exist if the wellbore trajectory crosses a formation with such a low friction angle (15◦). As the
dashed blue curves show in Figure 12b, the two failure gradients converge and cross over at a certain
depth, indicating that shear failure will always be induced beyond that drilling depth, regardless of the
wellbore pressure. As stated above, the low internal friction angles (as low as 15◦) are particular for
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shale formation, which according to our analysis may be a root cause of wellbore instability problems
in shales.
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Figure 12. Comparison of the critical wellbore pressure calculated by the Mogi–Coulomb failure
criterion. The dashed lines show the critical wellbore pressure with (a) the cohesion of 13.8 MPa and
(b) the internal friction angle of 15◦. The solid lines indicate the base case (the cohesion of 6.9 MPa and
the internal friction angle of 40◦). The colors represent the Andersonian cases, i.e., reverse faulting (RF;
compressional basin; red), strike-slip (SS; green) and normal faulting (NF; extensional basin; blue). The
arrows below the plots indicate the safe windows at 3048 m.

As many shale drilling operations occur in normal faulting basins, additional analysis was
performed to determine the critical wellbore pressure comparing the effect of various shear failure
criteria: i.e., the Mohr–Coulomb, Mogi–Coulomb and modified-Lade failure criteria (Figure 13). For all
shear failure criteria, wellbore instability problems become unavoidable when the low internal friction
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angle (15◦) is adopted, and will occur at 2046, 2581, and 2702 m, respectively (failure depths are marked
by red, blue and green dots in the magnified section, Figure 13). For the Drucker–Prager (DP) failure
criterion, the most liberal failure criterion, (green lines in Figure 13), the drilling window converges
slower and becomes unsafe beyond 3048 m depth. Our findings suggest that for the safe drilling
window determination in shale formations, laboratory measurements of the internal friction angle
using core samples is extremely important. Such measurements can reduce the considerable uncertainty
in the determination of the safe drilling window. The importance of reduction in uncertainty was
previously highlighted by McLean and Addis [29] who stated that the WBS effects overlooked due
to analysis in the plane normal to the wellbore (and implied neglect of the third principal stress axis
parallel to the wellbore) is relatively small as compared to the inaccuracies related to (and lack of)
measurements of the variability in rock strengths and in-situ stresses.
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Figure 13. Critical wellbore pressure at lower- (colored dashed), upper-bound shear (colored solid)
and tensile (TF; black solid) failures under the normal faulting case with the vertical, maximum, and
minimum horizontal stress gradients of 22.6, 20.4, and 15.8 kPa/m, respectively. The internal friction
angle is 15◦. The pore pressure gradient is 10.2 kPa/m (black dashed). The wellbore pressures were
calculated by the Mohr–Coulomb (MC; red), Mogi–Coulomb (MG; blue), modified Lade (ML; yellow),
and Drucker–Prager (DP; green) failure criteria. The minimum horizontal in-situ stress is depicted with
the dash-dotted black line. The magnified frame indicates that the lower and upper critical wellbore
pressures cross at certain depths, according to the MC (red circle), MG (blue circle), and ML criteria
(yellow circle).
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5.2. Effect of Principal Stresses at Failure Location

During the wellbore stability analysis, calculating the critical wellbore pressures that induces shear
or tensile failure, and results in potential instability is one of the crucial steps. Since each failure criterion
yields different outcomes, how to select the reliable failure criterion has been a question drawing
researchers’ interest. Although there have been many studies focusing on the topic, a comprehensive
analysis in a wellbore stability setting to explain differences in the results has not been attempted before.
For example, prior studies have noted that the Mohr–Coulomb criterion, by not taking into account
the effect of the intermediate stress, underestimates the rock strength [12–15]. In order to closely
investigate the differences yielded by the criteria, however, it is necessary to include in the analysis
the principal stresses at the failure location as influenced by the presence of the wellbore. The local
stress deviations are limited to a region within 10 times wellbore radius away from the wellbore [30].
However, such localized stress redistributions and stress concentrations near the wellbore are very
important in the wellbore stability analysis, because prediction of the instability is determined by
the deviated stress conditions at the potential failure locations. Based on our analysis on the local
principal stresses, we conclude that the locally induced axial principal stress is always intermediate for
all the cases, except for the upper-bound shear failure for the normal faulting case. For this case, the
radial principal stress is the maximum principal stress at shallow depth and becomes the intermediate
one. This phenomenon is exclusively observed in the normal faulting case because the vertical in-situ
stress gradient, which affects the axial stress, is maximum. As a result, the calculated critical wellbore
pressure shows unique behaviors where reversal of the principal stress occurs, such as the sudden
change of the gradient (Figure 6b). Therefore, the principal stress condition at the failure location needs
to be taken into account for the critical wellbore pressure analysis.

In practice, not only does the order of the local principal stresses affect the rock strength, but it
may also have an influence on the failure behavior. When the axial stress is the maximum and the
tangential stress is the minimum, the failure plane will have a high angle and tend to align with the
axial/tangential direction (see Table 3 in Pašić, et al. [31]). When the radial stress is the maximum
and the tangential stress is the minimum (at the interval less than 1147 m for the extensional basin
case), the rock has nowhere to go because there is no room for detached shear movement ‘into’ the
wellbore. However, this kinematic aspect is different from the dynamic aspect: Elastic deformations
are small and the rock will still fail when the stress reaches the shear failure criterion. However, when
the kinematics prevents the fragment from shearing ‘into’ the wellbore, then what happens is that the
fragment tends to stay in place, unless ripped out by the flow of drilling fluid up the annulus.

5.3. Importance of Stress Trajectories, Stress Cages, and Fracture Cages

When the stress condition around the wellbore is analyzed, the stress concentrations are
traditionally the only parameters of interest in the standard wellbore stability analysis tools. However,
the trajectories of the principal stresses also provide valuable information about the potential instability
and the induced fracture propagation direction as we highlighted in Section 4 of this study. Our study
computes and visualizes the stress trajectories around the wellbore at the moment of failure. We would
like to emphasize that the stress trajectory lines themselves are not valid rock failure criteria, because
they do not prove failure in compression nor failure in tension. To predict the likely failure locations,
the stress magnitudes must be compared to failure criteria, in order to determine if fractures will be
created. We therefore apply the relevant shear criterion for shear fractures (and possible axial splitting
in the case of extremely low effective minimum stress), and a tensile criterion (zero tensile strength) is
used for tensile fractures. Prior work [31,32] has indicated that the induced tensile failure direction will
align with the direction of the maximum principal stress for a given differential stress condition. Shear
failure occurs along slip lines at 45◦ to the principal stress trajectories or at a lower angle according to
the internal friction angle friction for a specific rock formation [1].

In addition to the stress trajectories, determination of the detailed locations of the neutral (or
isotropic) stress points provides useful information about the fracture and stress caging effects. The
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terms ‘fracture cage’ and ‘stress cage’ are used in our study to distinguish the following stress states
around the wellbore, when the neutral points are no longer occurring at the wellbore rim (as is the case
for a Frac number equal to zero), but at some distance. The two states can be distinguished [1,33] as
follows:

(1) When the radial deviatoric stress in an elliptical region near the wellbore is compressive (positive
convention used here) and thus maximum, and the tangential stress is the minimum tensile stress,
this is called a stress cage. The term ‘stress cage’ has been used to describe the rise in tangential
stresses around a wellbore due to dilation and propping of early radial fractures [27,34,35].
According to our approach a positive Frac number is a prerequisite for the occurrence of a
stress cage.

(2) When the radial deviatoric stress in an elliptical region near the wellbore is tensile (negative)
and thus minimum, and the tangential stress is the maximum compressive stress, this is called a
fracture cage. The term was first introduced in Weijermars [30] as follows: “—Confined space
around borehole where the principal deviatoric tension stress follows concentric rings so that
any radial fracture emanating from the wellbore into the fracture cage space will remain trapped
inside and rotate into the direction of the concentric tension rings. A negative Frac number is a
prerequisite for the occurrence of a fracture cage.”

The terms ‘fracture cage’ and ‘stress cage’ refer to the stress state near the wellbore, which in turn
is due to the state of the actual pressure balance at each depth (related to borehole stability). Fracture
cages occur in wellbores with underbalanced pressure. Stress cages occur when the wellbore pressure
is overbalanced.

5.4. Underbalanced and Overbalanced Wellbore Pressures

Industry commonly relates the terms underbalanced and overbalanced to mud weight versus
pore pressure, which are design terms when used in conjunction with “drilling” as in underbalanced
drilling and overbalanced drilling. Generally, the casing program is designed to maintain a slight
overbalance in the corresponding wellbore section (until protected by casing). In our study, the terms
underbalanced and overbalanced wellbore are employed to describe the actual pressure balance at
specific depths in the wellbore. For example, in practical drilling operations an overbalanced drilling
program may still encounter, due to incomplete information, anomalously high formation pressures
that can render a specific section of the wellbore underbalanced. Ultimately, the state of the actual
pressure balance at each depth (related to borehole stability) depends upon: (1) The native stress and
pore pressure state, (2) mechanical properties of the formation (here assumed isotropic elastic), and (3)
the orientation of the wellbore (here assumed parallel to one of the principal stresses), with the safe
mud pressure window defined by the failure criteria at each depth.

5.5. Tensile Failure and Fracture Propagation

At very shallow depths at the upper-bound of the safe drilling window (Figures 9–11), tensile
failure may occur. As soon as tensile radial fractures form in the wellbore, part of the excess fluid
pressure in the fracture space will be relieved. However, not all excess pressure may be instantaneously
relieved when such radial fractures form. Considering that the whole wellbore is filled with drilling
fluid, only a large amount of circulation loss would significantly decrease the wellbore pressure
instantly. However, this does not need to be the case for every generated tensile fracture. In addition,
when the targets are ultra-low permeability reservoirs (such as unconventional shale formations),
the magnitude of the leak-off fluid and associated wellbore pressure reduction commonly remains
limited. Therefore, one may suggest that induced tensile fractures may propagate some distance,
especially in shales, and will closely follow the maximum principal stress trajectories (which are radial
in stress cages) at initial failure, until the tangential stress becomes higher than the fluid pressure in the
tensile fracture.
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Tensile failure is rarely considered at the lower-bound of the safe drilling window (Figures 9–11),
but may be more common than actually recognized. Generally at shallower depths (less than 914
to 1524 m deep), the stress condition of a fracture cage occurs in wellbores, as highlighted by the
stress trajectories at the lower-bound failure envelopes (Figures 9–11). Spalling (tangential tensile
fractures) may occur when the wellbore pressure is lower than the formation pore pressure, and two
distinct conditions need to be considered. In high permeability rocks any pore fluid leading to the
excess formation pressure simply flows into the well immediately after the rock is penetrated by the
drill bit. Consequently, spalling and sustained underbalanced wellbore pressure are less likely to
occur in high permeability rocks and in the absence of clay smear on the wellbore. However, in low
permeability rocks like shales, the occurrence of anomalously high formation pressures is common. The
overpressure is confined in the nano-pores of such rocks and may not quickly escape to the wellbore
and thus favors the occurrence of spalling.

As Weijermars, Zhang and Schultz-Ela [2] indicated, the fracture caging effect is very important to
analyze in wellbore stability studies, especially when initial cracks occur in the formation. Natural
fractures are abundant in nature, but when a wellbore with a relatively low mud weight penetrates an
over-pressured formation, the stress condition of a fracture cage may preclude the radial propagation
of any fractures initially at a high angle to the wellbore, because the compressional tangential stress of
the fracture cage would close the radial fracture. Figure 14a,b show a numerical model of the situation
with a negative radial deviatoric stress, due to the formation fluid pressure in an open wellbore being
higher than the pressure due to the weight of the drilling fluid column (or when casing shields the
wellbore rock from the pressure of the drilling fluid inside the casing [36]). The stress magnitudes
indicated in Figure 14a,b are total stresses for an assumed plane stress condition meaning that the axial
stress along the wellbore (normal to the image) is equal to the mean stress or confining pressure state
in the rock (here equal to (40 + 80)/2 = 60 MPa). The radial stress on the wellbore is independently
controlled by the net pressure due to the fluid pressure in the pore network of the rock on the exterior
of the wellbore and the pressure due to the weight of the drilling fluid on the interior of the wellbore.

The directions of the numerical fracture propagation (Figure 14a,b) and independently modeled
analytical stress trajectory contours are overlaid in Figure 14c, and match very closely. As shown
in Figure 14c, the tip of the long crack initially placed out of the fracture cage propagates outward,
and escapes the cage and will eventually align with the far-field maximum principal stress direction.
However, the short crack cannot escape the fracture cage and its propagation turns around the wellbore
following the maximum stress trajectory, essentially acting as a nucleus for spalling of rock inside the
fracture cage. The fracture propagation in the numerical model of Figure 14a,b is only possible when
the fluid injected in the fractures does not result in removal of the negative net pressure on the wellbore.

The source of fluid fill of a pre-existing radial fracture cannot be the wellbore fluid (and was
indeed a separate injector [30] in the models of Figure 14a,b), because (1) compressional tangential
stress of the fracture cage would tend to close and possibly seal the radial fracture, and (2) the pore
pressure is higher than the wellbore pressure. This might suggest that the risk of failing a fracture
cage is very low. Yet, we propose not to rule out the tensile failure of a fracture cage. The wellbore
penetration lowers the minimum tensile stress near the wellbore, and in an over-pressured formation
the source of the injection fluid may be from the rock matrix, with the tip of a radial fracture of suitable
length acting as the initiation point of the tangential tensile failure.
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Figure 14. Comparison of the stress trajectories with the numerical simulation results when maximum
and minimum total principal stresses normal to the wellbore are 80 MPa and 40 MPa, respectively [2].
Two initial cracks are placed at the wellbore wall with the length of 0.64 (right fracture) and 1.28 times
(left fracture) the wellbore radius. The dimensionless variables χ and F are –0.5 and –1.66, respectively.
The results are (a) at time 0.0004 and (b) 0.6031 second. (c) The numerical fracture propagation result
and the analytical stress trajectory contours are overlaid and match closely.

5.6. Fracture Caging and Depth

Another important insight from the present systematic study is that the risk of fracture caging
effects tends to disappear as the well gets deeper. The fracture caging phenomenon is mostly observed
in the shallower portions of the wellbore, i.e., at the depths where the F values are negative. Practical
observations of the shape of drill cuttings may help to identify the depth where the fracture caging
effect ceases to occur. Assume a vertical wellbore is drilled in a formation as shown in Figure 15a.
The blue and red lines indicate the lower and upper critical wellbore pressures, respectively. The
yellow tubulars represent the casings of wellbore segments. At the bottom of each casing change, the
occurrence of the fragments due to shear failure is likely to be observed in the shale shaker. When
the critical wellbore pressure is converted to the F domain (Figure 15b), the corresponding stress
trajectories at failure for each depth can be obtained (Figure 15c,d, respectively). When the well depth
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is shallow and the fracture caging effect exists, the rock fragments will be gently curved as the cavings
are bounded by the principal stress trajectories (τ1 and τ3 in Figure 15b). For deeper wells, the fracture
caging effect wanes and the caving fragments are more likely to appear as angular cavings with shapes
controlled by the shear failure process (Figure 15c). In this case, the cavings are most likely to be
bounded by the shear slip lines.
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5.7. Further Work

Examples of WBS analyses for horizontal wellbores, using field data from US shale basins and
accounting for elastic anisotropy (assuming transverse isotropy) have been given in recent companion
studies [37–39]. Although the analyses performed in the present is study solely focus on a vertical
wellbore under three Andersonian cases, and assuming linear and isotropic elasticity, the proposed
procedures can be equally applied to a horizontal wellbore. Instead of using synthetic cases, the method
can be applied to an actual wellbore using a 3D Mechanical Earth Model, in which case abnormal
pore pressures and local variations of the in-situ stresses can all be accounted for by computing the
Frac number and the Bi-axial Stress scalar. Further validation of our model using specific field data is
planned in future work.

6. Conclusions

This study presents a new interface that provides practical information for WBS studies and
uniquely includes the stress trajectories and deviatoric stress magnitudes at every depth in a vertical
wellbore at the moment of failure. Three Andersonian cases were considered, using field data from
literature. The Mohr–Coulomb, Mogi–Coulomb, modified Lade and Drucker–Prager failure criteria
were used to determine the critical wellbore pressures at upper- and lower-bound shear failure. Tensile
strength was also calculated to examine whether the stresses induced by the wellbore pressure would
favor tensile failure or shear failure. Key aspects observed from this study are as follows,



Energies 2019, 12, 4019 31 of 40

(1) At shallow depth, at the upper-bound of the safe drilling window, tensile failure is more likely to
occur than shear failure. In the upper section of the well trajectory, tensile failure is triggered
by lower wellbore pressures than shear failure. The traditional analysis of the safe drilling
window shows that at the upper boundary, tensile failure prevails at shallower depths and shear
failure prevails in deeper wells. the stress trajectories show the likely locations and propagation
directions of the tensile failure and shear failure (the latter assuming transposition of stress
trajectories with shear slip lines).

(2) The actual transition depth for either tensile of shear failure to prevail was evaluated for each of the
three Andersonian cases and varies with the shear failure criterion used. All plausible cases have
been evaluated in our study. The critical wellbore pressure gradients for both shear and tensile
failure normally appear either linear or change gradually when the formation properties remain
constant with depth. However, the shear failure gradient at the upper-bound of the safe window,
in the extensional basin (normal faulting) case, showed a sudden change in the gradient occurs at
a depth of 1147 m. According to the integrated analysis with the local principal stress states at the
failure location, the change in the critical wellbore pressure gradients is caused by a reversal of
the principal stress order. In all cases, our analysis shows that the locally induced principal stress
condition needs to be taken into account for a more reliable wellbore stability analysis.

(3) As previous studies pointed out [1], the pattern of deviatoric stress concentrations and stress
trajectories near the wellbore solely depend on two dimensionless variables, the Frac number
(F) and the Bi-axial Stress scalar (χ). The range of plausible F values was analyzed for three
Andersonian cases (each with a fixed χ value). The F chart is a new graphical interface that can
provide valuable additional information for wellbore stability analysis, both prior to drilling and
real-time during drilling operations to enhance monitoring of the well response. The examples
presented in Figures 9–11 show that the range of F values narrows with increasing depth at the
boundaries of the safe drilling window. The F value at tensile failure depends on gradients of the
in-situ stress and pore pressure, which are assumed constant in this study.

(4) According to the magnitudes and trajectories of the maximum and minimum principal stresses,
fracture caging effects are most significant for shallower wells and decreases with depth. In
contrast, the stress cage effect at the upper-bound of the safe drilling window occurs at all depths
in the well for each of the Andersonian cases considered here.

For a comparison analysis on rock strengths, additional cases for higher cohesion (13.8 MPa) and
lower internal friction angle (15◦) were investigated. The results indicate that if a well penetrates a
formation with the higher cohesion value, the margins of the safe drilling windows will be wider,
for all three Andersonian cases. The results further indicate that under the normal faulting regime,
wellbore instability is unavoidable for formations with a low internal friction angle: shear failure will
always occur beyond a certain drilling depth, regardless of the wellbore pressure. Since many shale
drilling operations occur in normal faulting basins, the low internal friction angles (as low as 15◦),
which may particularly apply to shale formations, may be a potential cause of the observed wellbore
instability problems at those depths where a safe margin for the drilling fluid weight does not exist.

Supplementary Materials: Detailed algorithms for the various rock failure criteria used in this study are given in
an online supplement to this article. The following are available online at http://www.mdpi.com/1996-1073/12/20/
4019/s1.
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Nomenclature

Fi Frac number when the wellbore is aligned with σi (dimensionless)
P Mean stress (Pa)
PNET Net pressure, i.e., Pw − Pp (Pa)
Pw Wellbore pressure (Pa)
Pp Pore pressure (Pa)
χi Bi-axial stress scalar when the wellbore is aligned with σi (dimensionless)
σV Vertical principal stress (Pa)
σH Maximum horizontal principal stress (Pa)
σh Minimum horizontal principal stress (Pa)
σ1 Maximum principal total stress (Pa)
σ2 Intermediate principal total stress (Pa)
σ3 Minimum principal total stress (Pa)
σz Total axial stress (Pa)
σr Total radial stress (Pa)
σθ Total tangential stress (Pa)
τ1 Maximum principal deviatoric stress (Pa)
τ2 Intermediate principal deviatoric stress (Pa)
τ3 Minimum principal deviatoric stress (Pa)
τr Deviatoric radial stress (Pa)
τθ Deviatoric tangential stress (Pa)
τ∗ Deviatoric principal stress normalized by the maximum principal stress (Pa)
θ Angle from maximum horizontal principal stress (radian)

Appendix A. In-Situ Stress Data from Field Studies

For the field cases studied, Table 1 gives a summary of the in-situ stresses, the rock failure properties and the
type of Andersonian tectonics. The cases are briefly outlined below.

Woodland [4] analyzed drilling problems in shale formations of 450 wells in Western Canada, which were
drilled after 1970 and were over 3048 m deep. The vertical, maximum and minimum horizontal stress gradients
were determined respectively as 24.9 ± 0.7, 28.0 and 19.2 ± 1.4 kPa/m from density logging data, hydraulic fracture
treatments and a minifrac test. Due to extremely low permeability of the shale formation critical for wellbore
stability, direct measurement of the pore pressure was unfeasible [2]. Instead, the pore pressure gradient was
assumed as 9.7 kPa/m, based on analogy with the other drilling locations in Western Canada.

McLean and Addis [5] conducted a wellbore stability analysis and determined the vertical in-situ stress
gradient of 22.6 kPa/m from the weight of overburden, the horizontal stress gradients were assumed to increase
by 17.0 kPa/m. The local rock properties, determined from test data, are a cohesion of 5.9 MPa, internal friction
angle of 43.8◦ and mean Poisson’s ratio of 0.20.

A wellbore stability analysis in the Mansouri oil field in Iran [6], located in a strike-slip fault regime, used
density logs to estimate the vertical stress gradient of 25.3 kPa/m, and the maximum and minimum horizontal
stress gradients were 27.6 and 14.3 kPa/m, based on empirical correlations in [40].

Ramos, et al. [7] analyzed the in-situ stress gradients in the Pagerungan Island gas field, Indonesia, by leak-off
tests and wellbore breakout interpretation. From the leak-off tests in two wells, the maximum and minimum
horizontal stress gradients were 27.6 and 19.7 kPa/m, respectively. According to the breakout interpretation,
the horizontal stresses vary from layer to layer. The results show that the vertical, maximum and minimum
horizontal stress gradients are 22.6, 20.4–28.7, and 15.8–19.5 kPa/m, respectively. From a set of laboratory tests on
lamination-free specimens, the cohesion, internal friction angle and Poisson’s ratio of the rock were determined as
12.4 MPa, 35.0◦ and 0.20, respectively.

Analyzing wellbore breakouts and injection tests, Onaisi, et al. [8] determined the in-situ stresses in the
ABK field, offshore Abu-Dhabi. The gradients of vertical, maximum and minimum horizontal stresses are 22.6,
34.4, and 24.4 kPa/m, respectively. The authors also performed a set of differential strain analysis tests using
core specimens, but concluded that the testing results were not reliable for in-situ stress determination. The rock
properties from laboratory tests showed that the unconfined compressive strength (UCS), internal friction angle
and Poisson’s ratio are 5.5 MPa, 50.2◦ and 0.30, respectively.

Awal, et al. [9] analyzed the instability problems for two offshore wells in the Arabian Gulf. The vertical,
maximum and minimum horizontal stress gradients are 24.9, 22.6, and 20.4 kPa/m. Although the authors did
not specify the measurement method for the rock mechanical properties, the parameters used for the wellbore
stability analysis are the cohesion of 6.0 MPa and the internal friction angle of 31.3◦.

Focusing on the effect of the bedding plane slippage on well stability, Willson, et al. [10] analyzed an appraisal
well in the Cusiana field, Colombia, in which the maximum horizontal stress is greater than the overburden stress.
The gradients of the vertical, maximum, minimum horizontal stresses, and the pore pressure are 24.4, 30.8, 17.0,
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and 9.5 kPa/m, respectively. In the same field, the in-situ stresses and pore pressure gradients were measured
during drilling [11]. The results show that the vertical, maximum, minimum horizontal stresses and the pore
pressure have the gradients of 24.9, 31.7, 15.8, and 10.0 kPa/m, respectively.

Appendix B. Converting Non-Dimensional Stress Trajectory Scalars Using Dimensional Total
Stress Inputs

Practical wellbore stability analysis commonly uses dimensional data collected from wellbore logs and other
sources, such as the total principal stresses for a specific drilling location. The brief sections below outline how
certain non-dimensional scalars (F, χ), previously introduced to characterize stress trajectory patterns around
wellbores using deviatoric stress only [2,26], can be converted for use with dimensional, total stress inputs. The
Kirsch equations are strictly formulated for the two principal stresses in the plane normal to the wellbore, and
below derivations show that one needs to be specific about which of the two from the 3D stress state are used.
Kirsch [41] assumed a thin plate theory with zero stress normal to the plate. When the 2D solution are applied,
one needs to be specific about the state of stress parallel to the wellbore as occurring in the subsurface.

Appendix B.1. Stress Trajectory Scalars Expressed in Deviatoric Stress

Recent studies [2,33] have highlighted the systematic variation of stress trajectory patterns around wellbores
due to the relative magnitude of the internal net pressure on the wellbore and a uniaxial far-field stress. Stress
trajectory patterns near a wellbore subjected to any deviatoric far-field stress can be characterized by the Frac
number [2], defined by the ratio of the net pressure, PNET, on the wellbore, and the absolute magnitude of the
largest far-field deviatoric stress |τ1|, as first given in Weijermars, Zhang and Schultz-Ela [2]:

F =
PNET
|τ1|

(A1a)

For cases where the maximum principal stress is not in the plane of study, but parallel to the wellbore, it may
be more practical to normalize PNET instead by another appropriate principal stress as follows:

Fi =
PNET∣∣∣τ j

∣∣∣ (A1b)

The subscript i indicates the principal stress that the wellbore is aligned with. For a vertical wellbore, the
subscript i in the compressional, strike-slip and extensional basins is either 3, 2, or 1, respectively. Subscript j = 1,
when i = 3 or 2. However, for i = 1 (such as for a vertical wellbore in an extensional basin) we prefer using j = 2
(see Appendix B.5), because the principal stresses in the plane normal to the wellbore are τ2 and τ3. For a perfect
Andersonian extension τ2 = 0 and τ3 = − τ1, which is why normalization by τ1 in Equation (A1b) is warranted
for such cases. Positive Frac numbers characterize overpressured wellbores with stress cage effects, and negative
Frac numbers with fracture cage effects occur for underbalanced wellbores [33].

The stress trajectory patterns described in the Kirsch equations may either be due to a uniaxial deviatoric stress
state, or a bi-axial deviatoric stress state as detailed in [1]. The latter study introduced a second non-dimensional
scalar, χ, named the Bi-axial Stress scalar, to characterize the far-field deviatoric stress in the plane of study:

χ =
−τ3
|τ1|

(A1c)

One implied assumption in our prior studies [1,26] is that τ1 and τ3 are considered to act in the plane
perpendicular to the wellbore, and τ2 assumed parallel to the wellbore. However, for practical situations such
as vertical and horizontal wellbores, one of the two other principal stresses (τ1 or τ3) may be aligned with the
wellbore, rather than τ2. For such case, we modify expression (A1c) as follows:

χi =
−τk∣∣∣τ j

∣∣∣ (A1d)

At all times, the value (1, 2, or 3) of subscript j should be identical to the one used for normalization of PNET
used in Equation (A1b), because each pair of (F, χ) values solves the Kirsch equations for the radial and tangential
stresses (τr, τθ), which can be translated to dimensional stress multiplying each value by τk (duly observing for
any undue sign switches; see details in Appendix A of [1]). The subscripts i, j, k in Equation (A1d) will differ for
the compressional, strike-slip and extensional basins, with i indicating the direction of the wellbore, and j and k
are the appropriate complementary principal stress axes in the plane of study. For example, a vertical wellbore
in compressional, strike-slip and extensional basins, will have the indices (i, j, k) as follows: (3,1,2), (2,1,3) and
(1,2,3), respectively. When the wellbore is horizontal, the indices switch accordingly. For plane stress, χ = 1, and
for uniaxial stress, χ = 0, with χ expressing both end members and any intermediate state of far-field deviatoric



Energies 2019, 12, 4019 34 of 40

stress. The merit of using the non-dimensional scaling parameters is that each (F, χ) pair of values corresponds to
a unique stress trajectory pattern as has been mapped out in detail elsewhere [1,26].

Expressions to compute (F, χ) values and compare the stress trajectories for any 3D stress state are specified
below in terms of total stress inputs for practical conversion to deviatoric stresses, assuming the wellbore remains
aligned with an arbitrary principal stress axis.

Appendix B.2. Conversion of Deviatoric Stresses to Total Stresses

For practical wellbore stability analysis, stress and pressure inputs are commonly available as dimensional
quantities, which prompted us to reformulate the stress trajectory scalars (F, χ) in terms of total stress rather than
deviatoric stress. In order to do so, we must first explain how the total stress tensor elements, σi j, relate to the
deviatoric stress tensor elements, τi j, and local confining pressure, P:

σi j = τi j + P (A2)

A distinction can be made for strictly Andersonian far-field stress states, which are limited to plane 2D
deviatoric stress, i.e., τ2 =0, and cases without any such constraints, so that 3D deviatoric stress may exist. For the
2D deviatoric stress states, P = σ2, so that the local pressure is uniquely given by averaging just two principal
total stresses in the directions where deviatoric stresses do not vanish:

P = σmean =
(σ1 + σ3)

2
(A3a)

For the 3D deviatoric stress states, P is again the average of the three principal total stresses, but no
simplification is possible, all three principal stresses need to be taken into account to compute the local confining
pressure:

P = σmean =
(σ1 + σ2 + σ3)

3
(A3b)

Equations (A2)–(A3b) are useful when we need to express the stress trajectory scalars (F, χ) in terms of total
stress rather than deviatoric stress, for which we distinguish 2D (Supplementary Materials) and 3D deviatoric
stress cases (Supplementary Materials). An additional expression useful for our conversion of deviatoric and total
stresses is that the sum of the three principal, deviatoric stresses always needs to be zero, as can be verified from:

τ1 + τ2 + τ3 = (σ1 − P) + (σ2 − P) + (σ3 − P) (A4a)

Substituting Equation (A3b) into Equation (A4a) gives:

τ1 + τ2 + τ3 = 0 (A4b)

In contrast, total stresses (if not purely deviatoric) do never sum to zero, but are equal to 3P as per Equation
(A3b). Separately, Equation (A4a) confirms that when the intermediate deviatoric stress vanishes (τ2 = 0) (as for
the strict Andersonian cases), the deviatoric stress in the τ1, τ3-plane will be in a plane stress state (τ1 = −τ3),
which occurs when χ = 1 [cf. Equation (A1)]. However, for uniaxial deviatoric stress (χ = 0), with τ1 > 0 and
τ3 = 0, it follows τ2 < 0 (from Equation (A5b), which violates the ranking convention of the stress tensor elements
(τ1 ≥ τ2 ≥ τ3). Correcting the ordering means τ1 > 0 and τ3 < 0 and τ2 = 0. Consequently, what was assumed to
be a wellbore// τ2, is in fact// τ3. For such cases, we must use the definition of χ3 in terms of total stresses (see
Appendix B.5). Extension occurs in the direction of the wellbore and may cause transverse fractures.

Appendix B.3. Stress Trajectory Scalars Expressed in Total Stress: 2D Deviatoric (= Plane) Stress Cases

Deviatoric stress acting only in two dimensions, (i.e., τ2 = 0), is defined as follows:

τ1,3 = σ1,3 − P (A5a)

In the 2D analysis we can substitute Equation (A3a) for the pressure into Equation (A5a) and solve for
deviatoric stress as a function of total stresses only:

τ1,3 = σ1,3 −
(σ1 + σ3)

2
(A5b)
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Substituting Equation (A5b) into Equation (A1c) gives and expression for χ in terms of total stresses (2D
case):

χ2 =
−

(
σ3 −

(σ1+σ3)
2

)
∣∣∣∣σ1 −

(σ1+σ3)
2

∣∣∣∣ =
σ1 − σ3∣∣∣(σ1 − σ3)

∣∣∣ (A6)

Subscript 2 denotes χ is given for a case with the wellbore parallel to the intermediate principal stress axis.
The numerator and denominator in Equation (A6) for a 2D plane stress will always be equal in magnitude, and,
because per definition σ1 > σ3, the numerator and denominator will always have the same sign, which means the
χ value will always be 1. This result is obvious, because 2D deviatoric stress in a plane stress state requires that
τ1 = −τ3, which means expression (2) also will always be 1, consistent with the outcome of Equation (A6). When
using total stresses from a Mechanical Earth Model (MEM), the native state of stress can be characterized using χ2
from Equation (A6). For χ2 = 1, the occurrence of plane deviatoric state is confirmed [i.e., τ2 = 0 and σ2 = P], and
validity of Equation (A3a)]. However, Equation (A6) is only valid for plane stress (χ2 = 1) and when instead
τ2 , 0, we need to switch to using the 3D expression for χ given in Appendix B.4.

Appendix B.4. Intermediate Principal 3D Stress Parallel to Wellbore

We next examine the stress trajectory scalars expressed in total stress for 3D deviatoric stress cases. When
deviatoric stress occurs in three dimensions, the deviators acting in the τ1, τ3–plane normal to the wellbore given
by Equation (A5a) is still valid:

τ1,3 = σ1,3 − P (A7a)

In the 3D analysis we can substitute Equation (A4b) for the pressure into Equation (A7a) and solve for
deviatoric stress as a function of total stresses only:

τ1,3 = σ1,3 −
(σ1 + σ2 + σ3)

3
(A7b)

Substituting Equation (A7b) into Equation (A1) for χ denoted by subscript 2 for χ so we know χ2 is given for
a case with the wellbore parallel to the intermediate stress principal stress axis (3D case):

χ2 =
−

(
σ3 −

(σ1+σ2+σ3)
3

)
∣∣∣∣σ1 −

(σ1+σ2+σ3)
3

∣∣∣∣ =
σ1 + σ2 − 2σ3
|2σ1 − σ2 − σ3|

(A8a)

We can substitute a limiting case of σ1 = σ2 into Equation (A8a) which gives χ2 = 2 as the maximum
value. For this case (χ2 = 2), the deviatoric stress τ1 = τ2 (both having a positive sign), which is a uniform
radial compression in the τ1, τ2–plane, using Equation (A4b) with the stated condition gives τ3 = −2τ1, which
corresponds to χ2 = 2. Other possible cases for σ1 and σ2 both being positive and larger than P, means τ1 and
τ2 both being positive so in the observational plane normal to the wellbore τ1 ≤ −0.5τ3, which will occur for
1 ≤ χ2 ≤ 2, τ1 and τ2 both being positive and so that τ3 < 0. Applying Equation (A4b), we can conclude τ2 = τ3
(both having a positive sign), which is a uniform radial constriction in the τ1, τ2–plane. Our previous work [1,26]
stated χ would never exceed 1. Cases with 0 ≤ τ2 ≤ τ1 corresponding to a range for χ2 between 1 and 2, which
occur when some form of radial constriction exists in the τ1, τ2–plane, were not considered. Values of χ2 - cannot
exceed 2, because any τ3 > −2τ1 would require [applying Equation (A4b)] that τ2 > τ1, which would be counter
to the agreed convention of principal stress ranking according to τ1 ≥ τ2 ≥ τ3. The lower limit is obtained when
σ1 > σ2 = σ3, which gives χ2 = 0.5.

Since τ2 is defined as the stress that is parallel to the wellbore, σ2 is also parallel to the wellbore, and being
the intermediate stress, must be greater than (or equal to) σ3 and smaller than (or equal to) σ1. Also, note that for
the 2D deviatoric case, P = σ2, so that we can substitute in Equation (A8a) σ2 = P = (σ1 + σ3)/2, which gives (2D
case):

χ2 =
σ1 + σ2 − 2σ3
|2σ1 − σ2 − σ3|

=
3σ1 − 3σ3
|3σ1 − 3σ3|

(A8b)

As to be expected expression (A8b) is identical to Equation (A6). For completeness, the Frac number of
Equation (A1b) is here expressed in terms of total stress. First we express τ1 in terms of total stress:

τ1 = σ1 − P = σ1 −
(σ1 + σ2 + σ3)

3
=

2σ1 − σ2 − σ3
3

(A9)

Next we substitute Equation (A9) into Equation (A1b) to obtain:

F2 =
3PNET

|2σ1 − σ2 − σ3|
(A10)
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Jointly, the scaling parameters (F2, χ2) characterize a particular stress trajectory pattern given in terms of
total stress by Equations (A10) and (A8a), respectively, and representative solutions have been illustrated in
Thomas and Weijermars [1].

Appendix B.5. Largest Principal 3D Stress Parallel to Wellbore

Using pairs of (F, χ) corresponds to a unique stress trajectory pattern [1] and an implied assumption is
that τ1 and τ3 are considered to act in the plane perpendicular to the wellbore, so those previous cases are valid
for (F2, χ2) introduced in the present study. When we have instead τ2 and τ3 acting in the plane normal to the
wellbore, the Kirsch equations should be normalized with (F1, χ1) values, by first adjusting Equations (A1b) and
(A1d) using τ2 and τ3, as follows:

F1 =
PNET
|τ2|

(A11a)

χ1 =
−τ3
|τ2|

(A11b)

The corresponding expression using total principal stress inputs are:

F1 =
3PNET

|−σ1 + 2σ2 − σ3|
(A12a)

χ1 =
σ1 + σ2 − 2σ3
|−σ1 + 2σ2 − σ3|

(A12b)

This situation may arise in vertical wellbores placed in nearly perfect extensional as well as transtensional
zones. Note that perfect extension is not permitted due to requirement for Equations (A11a,b) that τ2 , 0. Also,
cases where τ1 and τ3 are both negative is not permissible due to the tensor ranking (τ1 ≥ τ2 ≥ τ3) and condition
τ1 + τ2 + τ3 = 0. Instead, τ1 ≥ 0 and τ2 and τ3 may both be negative. This situation may give rise to 1 ≤ χ1 ≤ ∞.
An alternative scaling for (F1, χ1) would be to normalize both values by |τ3|, such that F1 = PNET/|τ3| and
χ1 = −τ2/|τ3|, which for a vertical wellbore in a perfect extensional basin effectively means |τ3| = |τ1| such that
χ1 = −τ3/|τ1|. This option was not pursued in our present study.

Appendix B.6. Minimum Principal 3D Stress Parallel to Wellbore

Similarly, when we have instead τ1 and τ2 in the plane normal to the wellbore, the Kirsch equations should
be normalized with (F3, χ3) values, adjusting Equations (A1b) and (A1d) using τ1 and τ2, as follows:

F3 =
PNET
|τ1|

(A13a)

χ3 =
−τ2
|τ1|

(A12b)

The corresponding expression in total stresses are:

F3 =
3PNET

|2σ1 − σ2 − σ3|
(A14a)

χ3 =
σ1 − 2σ2 + σ3
|2σ1 − σ2 − σ3|

(A14b)

This situation may arise in vertical wellbores placed in transpressional zones, for which case the χ3 value is
limited between −1 ≤ χ3 ≤ 0.5, as in the example for the Andersonian reverse faulting case given in the main text.
A special case occurs when σ2 = σ3, for which χ3 will be 0, characterizing the far field stress to be uniaxial in the
plane normal to σ3.

The Frac number, for all cases considered, ranges −∞ ≤ F1,2,3 ≤ ∞. The characterization of the in situ stress
in the plane of analysis normal to the wellbore by χmay attain different ranges for the various cases (see Table A1).
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Table A1. Summary of (F, χ) values used for total stress inputs.

Orientation Wellbore Expressions to be Used Value Range

Vertical Horizontal F Values χ Values F χ

// σ1 // σ1 F1 = 3PNET
|−σ1+2σ2−σ3 |

χ1 = σ1+σ2− 2σ3
|−σ1+2σ2−σ3 |

−∞ ≤ F1 ≤ +∞ 1 ≤ χ1 ≤ ∞

// σ2 // σ2 F2 = 3PNET
|2σ1− σ2−σ3 |

χ2 = σ1+σ2− 2σ3
|2σ1−σ2−σ3 |

−∞ ≤ F2 ≤ +∞ 0.5 ≤ χ2 ≤ 2

// σ3 // σ3 F3 = 3PNET
|2σ1− σ2−σ3 |

χ3 = σ1−2σ2+σ3
|2σ1− σ2−σ3 |

−∞ ≤ F3 ≤ +∞ −1 ≤ χ3 ≤ 0.5

Appendix B.7. Summary of Inputs and Non-Dimensionalization Algorithms to be used in our Methodology

The summary Table A1 shows the stress states and definitions of (F, χ) values used for total stress inputs,
depending on which of the three principal stress axes is aligned with the wellbore.

The various design solutions for fracture treatments of horizontal and vertical wellbores in basins with
Andersonian native stress states have been highlighted in appendix B of Thomas and Weijermars [1]. For practical
applications it is highly recommended that Table A1 in the present study be used in conjunction with tables A1
and A2 given in the cited study.

Appendix C. Analysis of Stresses Around Wellbore

Appendix C.1. Deviatoric Stresses Around Wellbore

Once a wellbore is drilled in a formation and is filled with drilling fluid, the principal stress magnitudes
and trajectories around the wellbore are redistributed. The stress conditions are normally calculated by the
Kirsch equations, which was initially proposed to analytically model the stress around the circular hole around
the plate. Due to its simplicity and straightforwardness, the equations have been widely used for various field
applications [2,42]. Instead of using the total stresses, Weijermars [25] proposed a new approach in determination
of stresses around the wellbore using the deviatoric stress concept with an emphasis that the shape deformation
and the rock failure are directly related with the deviatoric stresses. The Kirsch equations can be derived from
an Airy stress function in cylindrical coordinates and be expressed with the deviatoric stresses [1,2]. The radial,
tangential, and shear deviatoric stresses around the wellbore are calculated from the equations as follows.

τr = PNET
a2

r2 +
1
2
(τ1 + τ3)

(
1−

a2

r2

)
+

1
2
(τ1 − τ3)

(
1− 4

a2

r2 + 3
a4

r4

)
cos 2θ (A15a)

τθ = −PNET
a2

r2 +
1
2
(τ1 + τ3)

(
1 +

a2

r2

)
−

1
2
(τ1 − τ3)

(
1 + 3

a4

r4

)
cos 2θ (A15b)

τrθ = −
1
2
(τ1 − τ3)

(
1 + 2

a2

r2 − 3
a4

r4

)
sin 2θ (A15c)

where, τ1 and τ3 are the maximum and minimum in-situ principal deviatoric stresses normal to the wellbore, a is
the wellbore radius, r is the distance from the wellbore center and θ is the angle from the maximum principal
stress direction. Readers should note that the subscription 1 and 3 need to be properly changed in accordance
with the plane normal to the wellbore.

Dividing Equations (A15a–c) by the maximum deviatoric principal stress normal to the wellbore, the deviatoric
stresses around the wellbore in cylindrical coordinates can be expressed with τ1-normalized dimensionless forms.
The readers should note that the absolute value, |τ1|, was used in calculation to avoid confusions in sign conventions.

τr
∗ =

τr

τ1
= Fic2 +

1
2
(1− χi)

(
1− c2

)
+

1
2
(1 + χi)

(
1− 4c2 + 3c4

)
cos 2θ (A16a)

τθ
∗ =

τθ
τ1

= −Fic2 +
1
2
(1− χi)

(
1 + c2

)
−

1
2
(1 + χi)

(
1 + 3c4

)
cos 2θ (A16b)

τrθ
∗ =

τrθ
τ1

= −
1
2
(1 + χi)

(
1 + 2c2

− 3c4
)

sin 2θ (A16c)

where, i is 1, 2, or 3 for the normal faulting, strike-slip and reverse faulting regimes, respectively. In addition, the
maximum principal deviatoric stress is τ1, except for the normal faulting regime (τ2). Therefore, the deviatoric
stress distribution around the wellbore solely depends on the F and χ.
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Appendix C.2. Stress Magnitude and Trajectory in Cartesian Coordinates

In order to quantify the principal stresses in the Cartesian coordinates, the following tensor transformation
can be used. [

τxx
∗ τxy

∗

τyx
∗ τyy

∗

]
=

[
cosθ − sinθ
sinθ cosθ

][
τr
∗ τrθ

∗

τθr
∗ τθ

∗

][
cosθ sinθ
− sinθ cosθ

]
(A17)

Then, the stress condition can to be transformed into the Cartesian coordinates by the following equations,

τxx
∗ =

1
2
τr
∗(1 + cos 2θ) − τrθ

∗ sin 2θ+
1
2
τθ
∗(1− cos 2θ) (A18a)

τyy
∗ =

1
2
τr
∗(1− cos 2θ) + τrθ

∗ sin 2θ+
1
2
τθ
∗(1 + cos 2θ) (A18b)

τxy
∗ =

1
2
(τr
∗
− τθ

∗) sin 2θ+ τrθ
∗ cos 2θ (A19)

The magnitudes of the deviatoric principal stresses can be obtained by,

τ1 =
1
2

(
τxx
∗ + τyy

∗
)
+

√(
τxy∗

)2
+

1
4

(
τxx∗ − τyy∗

)2
(A20a)

τ3 =
1
2

(
τxx
∗ + τyy

∗
)
−

√(
τxy∗

)2
+

1
4

(
τxx∗ − τyy∗

)2
(A20b)

In addition, the trajectories of the principal stresses can be determined by the inclination, β, given by,

β =
1
2

tan−1
(

2τxy
∗

τxx∗ − τyy∗

)
(A21)

The two conjugate solutions for β are separated by π/2. In order to outline the full trajectories of the
principal stresses, continuous solutions can be drawn by any commercial programming software. The trajectories
contain important characteristics of potential instability near the wellbore. Since induced tensile fractures will
always propagate in the direction of the maximum principal stress, the reliably determined trajectory provides
useful information in prediction of the direction of the induced fracture propagation and of potential location of
the instability.
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