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Abstract: Although the latest energy-efficient buildings use a large number of sensors and measuring
instruments to predict consumption more accurately, it is generally not possible to identify which
data are the most valuable or key for analysis among the tens of thousands of data points. This study
selected the electric energy as a subset of total building energy consumption because it accounts for
more than 65% of the total building energy consumption, and identified the variables that contribute
to electric energy use. However, this study aimed to confirm data from a building using clustering
in machine learning, instead of a calculation method from engineering simulation, to examine the
variables that were identified and determine whether these variables had a strong correlation with
energy consumption. Three different methods confirmed that the major variables related to electric
energy consumption were significant. This research has significance because it was able to identify
the factors in electric energy, accounting for more than half of the total building energy consumption,
that had a major effect on energy consumption and revealed that these key variables alone, not the
default values of many different items in simulation analysis, can ensure the reliable prediction of
energy consumption.

Keywords: feature selection; prediction of energy consumption; electricity consumption; machine
learning; non-residential buildings

1. Introduction

As carbon emissions and energy problems have become key issues in major cities worldwide [1],
there has been an increasing awareness regarding the need for energy and carbon emission reductions
in the urban development industry (including construction). After the Paris Climate Conference
in 2015, in contrast to the arrangements under the Kyoto Protocol, cities around the world must
now propose their own reduction goals, the target ranges must be expanded, and the established
reduction goals must be actively presented. Therefore, the importance of energy reduction in the
building industry, which accounts for at least 25% of all energy usage, must be recognized, and detailed
stage-based energy reduction strategies have become an urgent requirement [2]. Energy consumption
in the building sector has significantly increased in the last few decades. Energy is an essential part
of our lives, and almost all things in some way are associated with electricity [3,4]. According to a
report issued by the US Energy Information Administration (EIA), 28% growth in the global energy
demand may occur until 2040 [5]. Because of improper usage, a tremendous amount of energy is
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wasted annually; thus, energy wastage can be avoided by the efficient utilization of energy. In addition,
the third largest use of electricity among total energy sources [6] may have a direct impact on the
aforementioned CO; savings. Most studies that have analyzed the energy performance of buildings
have focused on an analysis or estimation of the energy consumption by each area of a building, on the
quantitative prediction of energy savings, and on verification of the efficiency of heating and cooling
systems. Rather than relying on actual, measured data, these studies have provided estimates by
modeling the physical characteristics of buildings (e.g., building surfaces and volumes), the number
and behavior of occupants, and the functioning of the heating/cooling systems [7].

An issue arising from such dynamic simulation is that the succession of estimates obtained from
calculation formulas can cause an increasing discrepancy between the estimated and actual values of
energy consumption, saving, and efficiency. This limitation has been pointed out in earlier studies [8].
Another drawback is that the reliability of the results of dynamic simulation depends on the skill of
the expert who performs the simulation. Because an increasing number of buildings are operated
automatically, the number of studies in which sets of data from buildings are analyzed by means of
analytical tools initially devised for other fields is also increasing.

Machine learning algorithms have recently been used in academic fields including medicine,
as well as industry [9]. Estimates obtained through machine learning have contributed to resolving
the discrepancy between estimated and measured values [10]. In addition, such algorithms provide
objective results that are independent of the operator’s skills (i.e., the same estimate is produced by any
operator when the same process is performed). This research aims to identify the major variables that
affect the energy consumption in highly energy-demanding buildings, using the clustering method.
With respect to the prediction of major variables through the machine learning algorithm, an estimate
that takes all variables of the dynamic simulation and all parameters into account can be expected to
eliminate the discrepancy between estimated and actual values which arises from the use of calculated
values. It can also be expected to enhance the reliability of such estimates (regardless of the operator
performing the analysis).

This study focused on electric energy consumption in office buildings [11], which has been
increasing [12], and identified the factors contributing to electric energy consumption. Energy
consumption prediction based on traditional dynamic simulation methods produces values predicted
by default values, which cannot exactly reflect the physical conditions prior to a building’s design or
construction, e.g., building area, window-to-wall ratio, envelope thermal efficiency, and number of
occupants. This study identified which factors in the measured data of electric energy consumed by
users in an actual building had the largest effect on electric energy consumption. The variables that
could predict electric energy consumption most accurately were identified among other data measured
from an office building using data-driven clustering, and it was confirmed that the combinations of
these major variables predicted an electric energy consumption similar to that which occurred when
all kinds of information were used together. Based on the assumption that only the electric energy
of the building is used, it is sufficient to measure only the major sensors and measuring instruments
related to the electric energy consumption derived by clustering. This is expected to greatly reduce the
cost and time in conventional energy or consumption analysis. The key significance of this study is
that a comparison of the results predicted using all information and the results predicted using only
major variables to test the research methods showed no significant difference.

Two additional procedures have also been adopted for validation of the results to improve the
reliability of the study. The significance of our study lies in the ability of the proposed method to
identify the fundamental cause of excessive energy consumption in buildings with diverse functions,
not only in office buildings, which are the primary subject of the study.

The rest of the paper is organized as follows. Related work is given in Section 2, and a detailed
explanation of the limitations of previous studies that have analyzed the building energy performance
using engineering methods for energy building analyses is first presented. Then, after a review of
the recent literature on building energy analysis conducted by machine learning, the novel approach
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used in this study is presented. In Section 3, for 11 non-residential office buildings located across
South Korea, the clustering analysis method of machine learning is employed to identify the major
variables that affect the energy usage. Section 4 shows the results of the main variables of building
electricity energy usage with features selected by machine learning. Section 5 validates the prediction
results using only the main variables and the prediction results using all variables in two different
ways. The paper’s conclusion and future work are discussed in Section 6.

2. Related Works

Methodologies for building energy analyses have been developed over the last 50 years. Because
the results obtained by these methods vary, based on their suitability, accuracy, sensitivity, and
purpose [13], it is important to identify the correct method for research purposes, target applications,
and the environment. Over the last 20 years, steady-state data-based simulation and dynamic
simulation-based engineering analysis methods have typically been used for building energy analyses
in Korea [14]. These methods estimate the energy usage from the environmental conditions of a
building and physical data such as the building envelope, building heat-cooling-ventilation system,
and a thermodynamic equation. They also predict the building’s energy consumption and performance
of the equipment system [15]. Dynamic simulation programs such as BLAST, ESP, EnergyPlus, ESP-r,
and TRNSYS are widely used, as they are accurate and can be utilized without restrictions of purpose
and usage.

However, there are disadvantages to using these programs, as usage becomes more complex
as the number of variables increases. In contrast, data-driven (machine learning-based) prediction
method approaches in conjunction with machine learning techniques use data covering the building’s
entire history to predict the amount of energy that will be used in the future under detailed, but limited,
conditions. However, the applicability of such methods is often hindered by malfunctions and defects
in the equipment system [16]. Popular algorithms that are used for such methods include linear
regression, artificial neural networks, and support vector regression [17]. It has been reported that the
prediction accuracy can be improved using ensemble-algorithms, which have an improved accuracy
and reliability compared with a single-algorithm prediction model under the same building energy
usage and system performance conditions.

2.1. Engineering Analysis Method and Its Threshold

Dynamic simulations, which are widely used in industry as well as in academia, use a calculation
method that treats heat movement by considering indoor and outdoor conditions and assumes that
heat movement occurring indoors will vary with time. BLAST, EnergyPlus, ESP-r, and TRNSYS are
some of the main dynamic simulation applications [18]. Although the calculations are relatively
accurate, and these methods are widely applicable, they do have limitations because of the difference
between the calculations performed in the simulation and the actual measurements pertaining to the
building. This occurs because of the increasing amount of data and variables and because there is
a drastic difference in the results, depending on the user’s understanding of the variables (i.e., user
bias) [19]. The energy performance gap (EPG) is a representative example of the difference between
dynamic simulation results and the actual energy consumption in buildings. Table 1 indicates the
differences between the energy consumption estimated by simulation and the actual consumption
measured after the building was constructed.

Regarding the characteristics of the majority of engineering analysis methods used in studies
and reports published outside Korea, a potential common disadvantage is that the results may
vary according to the user, as well as by time and money requirements. Another limitation seen
in international settings is related to the supply of low-energy buildings and sustainable buildings.
Research results for the initial design concerning energy usage and the performance of key technologies
used in these types of buildings are different from the results obtained after the buildings are actually
built. This phenomenon is referred to as the EPG [20]. In some of these studies, the difference between
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the values predicted by the engineering analysis method and the values measured in the actual building
differ significantly [21], suggesting that the fundamental cause of these EPGs differs, according to
the design—construction—-operation method, as well as occupants [22]. Moreover, the difference in
the results also results from errors in the energy modeling program used in the engineering analysis
method. The second cause is the construction quality of the actual building under study. The EPG
often occurs as a result of not having a detailed understanding regarding the implementation of
certain technologies (e.g., envelope construction, window sealing, and ventilation system) regarding
construction, which is due to a lack of awareness regarding eco-friendly buildings and a dearth
of skilled workers. Furthermore, EPGs also occur when a detailed performance inspection is not
properly conducted during the construction process, or when the construction is completed, but the
performance was not fully guaranteed. Lastly, EPGs are caused by a delay in verification techniques
and performance measurements for each specific technology once the building is constructed.

Table 1. Published papers on the building energy performance.

Author Building Use Target/Energy Source Evaluations
Yu et al. [16] Domestic Gas, Electricity Data Mining
Wilde et al. [20] Domestic Gas, Electricity Monitoring
Menezes et al. [21] Non-Domestic Ventilation Post-Occupancy Evaluation (POE)
Olivia et al. [22] Hospital, School Indoor Comfort POE, Monitoring
Choi et al. [23] Non-Domestic Ventilation POE
Hossein et al. [24] Non-Domestic Electricity POE
Salehi et al. [25] Non-Domestic Ventilation Dynamic Simulation
Niu et al. [26] Domestic Ventilation POE
Herrando et al. [27] Non-Domestic Ventilation Dynamic Simulation
Min et al. [28] Non-Domestic Air Handling Unit Facility Management Review

In summary, because the energy consumption analysis or prediction studies traditionally used in
the building field have been performed by experts who are highly experienced in the field and are time-
and labor-intensive, it would be difficult to rely on the analysis results without expertise. Like the
aforementioned EPG results, this research found a large difference in the reliability and resulting
values of the analyzed results. For this reason, analysis methods have recently been developed that
identify, analyze, and diagnose phenomena using data from only the actual building, instead of results
calculated by default values embedded in the program.

2.2. Data-Driven Analysis Method

In recent years, many studies employing building energy prediction and analysis methods
have incorporated machine learning, which helps to address the limitations of engineering analysis.
This involves the extensive use of building control and energy management systems (BEMS) and BEMS
data, whose use is linked to increases in the amount of energy data derived from buildings and the
number of analysis variables that must be considered. Machine learning is a technique employed for
discovering models, patterns, and rules within data [9]. It can be used to extract previously unknown
but useful knowledge, by recognizing complex patterns in data and building statistical models based
on those findings [29]. As a result, it is utilized not only in engineering, but also in various other fields,
such as medicine [30]. There are also studies that have applied machine learning to the field of building
energy. Building energy forecasting methodologies based on machine learning use historical data to
predict the future energy use under specific constraints. These methodologies also involve analyzing
building energy systems to detect malfunctions or defects [31].

A single prediction model is run using one learning algorithm and training a monolithic model
throughout the model development process [32]. Various machine learning algorithms, such as
Multiple Linear Regression (MLR) [33], Artificial Neural Networks (ANNSs) [34], decision trees [35],
and Support Vector Regression (SVR) [36], have been introduced to building energy prediction and
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have provided promising prediction results during the past two decades. These algorithms can process
continuous real-time data derived from buildings to predict the energy use and the performance of
certain equipment systems, or to detect malfunctions. Figure 1 shows a schematic diagram of a typical
single prediction model. The historical data recorded from the building are divided into training (60%),
verification (20%), and testing (20%) sets, after removing outliers during preprocessing. The procedures
are repeated until the final result is obtained.
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Figure 1. The process of machine learning analysis. Source: https://blog.algorithmia.com/page/50 [37].

2.2.1. Analysis of Building Energy Consumption Using Machine Learning

Although there have not been as many studies utilizing machine learning in the building energy
sector as there have been in other fields of research, there has been much research on building energy
consumption predictions and analytical studies that utilize machine learning. Studies by Paudel
et al.,, [38] Yildiz et al,, [39] and Rahman et al. [40] used machine learning to predict the energy
consumption in buildings. Table 2 shows the target buildings and evaluation indexes for predicting
building energy use. Although similarities exist with respect to utilizing actual energy usage data,
predicting the usage volume, and presenting the mean absolute percentage error (MAPE) and RMSE
as evaluation indicators, there is a lack of research on the analysis of the causes that induce a specific
energy usage, which is one of the objectives of this study. Moreover, there has not been specific and
persuasive evidence on the standard by which the variables of datasets were selected and utilized by
the machine learning algorithms. The variables selected for predicting the energy use of buildings
should not be based on researchers’ experience; instead, they should be chosen to ensure the reliability
of the results and consistency of the research process using statistical methods. Therefore, the use of
machine learning for variable selection remains very important.
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Table 2. Prediction of building energy consumption through machine learning.

Authors Research Topic Target Building Algorithm Evaluation Indices
Prediction of building energy
consumption - a1 2
Paudel et al. [38] All data vs. relevant data Low-energy buildings SVR RMSE, R
compared
Yildiz et al. [39] Buﬂdmg electnc.lty Comme.raal buﬂ‘cpr‘lgs, ANN,. SVR, MAPE, RMSE, R
consumption prediction educational facilities Regression tree
, Prediction of building’s fuel use Office buildings, MLR, ANN, SVR,
Rahman et al. [40] supermarkets, RMSE
Hourly data used over one year GP
restaurants
Moon et al. [41] Prediction of building’s University buildings ANN, SVR MAPE, RMSE
electricity use
Seong etal. [42]  Cnergy optimization model for Office buildings ANN MBE, CVRMSE
buildings
Support Vector Regression (SVR) Root Mean Square Error (RMSE)
Artificial Neural Network (ANN) Mean Absolute Percentage Error (MAPE)
Multi Liner Regression (MLR) Coefficient of Variation of the Root Mean Square Error (CVRMSE)

2.2.2. Analysis of Building Energy Consumption by the Clustering Method

Clustering is a common technique in unsupervised learning, which is the machine learning
method of identifying a specific pattern in data without the ground level. Clustering refers to a group of
methodologies that classify data with similar attributes into a number of groups [29]. Few studies have
used the clustering analysis method for the analysis of building energy [43—47]. Most of them have
focused on the analysis of consumption patterns of specific buildings. However, they only mention the
possible causes of transmission and distribution, instead of providing details through experimental
results, indicating that they only used the method with the aim of studying the methodology itself.

Table 3 outlines the results of recent studies that employed the clustering method and classifies
them in terms of the algorithms used and their evaluation indices. Recent studies on clustering that
are related to this study tend to use centroid-based K-means algorithms, and most studies were not
studies looking for key variables that contribute to energy consumption, but were only used to analyze
building energy consumption patterns with clustering algorithms.

Table 3. Building energy analysis using the clustering method.

Authors Research Topic Target Building Algorithm Evaluation Indices
Identifying the loss of energy
Nagane[if;]a netal during transmission and 105 buildings K-means -
; distribution
Improving the estimation
Ko et al. [44] accuracy of building energy Office buildings K-means R?
consumption
Yangetal, (5] analysing builing energyuce  Educational K-Shape RMS
ang etal. 1% analyzing bu § energy use facilities SVR
patterns
Analysis of cooling and
Moon et al. [46] heating energy consumption Office buildings K-medoids -
patterns in office buildings
Building energy demand . . . .
Hwangetal. [47]  predictions using hierarchical No 1nf0rm.atlf)n on H1erarch1cal APE, R?
> target buildings Clustering
clustering

To summarize the literature review, there are studies that have used machine learning methods
to predict the energy consumption in buildings, and some studies have used clustering methods to
analyze energy usage patterns. However, there are no studies that have used machine learning and
clustering at the same time to determine the cause of energy consumption.



Energies 2019, 12, 4046 7 of 23

3. Approach

The purpose of this study was to identify the power consumption of buildings and determine
the variables that contribute to their use. This study confirms that key variables obtained using
clustering in machine learning strongly correlate with the energy consumption of buildings. For this
purpose, it is important to first identify building energy consumption patterns. This was done based
on a total of 16 variables related to building energy usage, in addition to the electricity consumption
of the target building. Then, the variables that best define the energy consumption patterns were
identified. The major elements affecting consumption are not identified by simulation, or by the
analyst’s experience, but through a machine learning process. The structure of the research work is
described below and Figure 2 shows simplify the process of this study from the number one to six.

Major Variables for building energy
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Figure 2. Schematic representation of the research process.

(1) This study targets 11 office buildings in eight different regions of South Korea. Their heating
and cooling systems use electricity. The 11 buildings all have different areas, building designs, and
heating and cooling systems, and are used for different purposes. In the data analysis, the physical
qualities are referred to as nominal variables. In this study, only the continuous data that change
in real time as a result of the actions of the occupants were used for the analysis. Four categories
of variables were identified for the analysis, i.e., the amount of electric energy used by the building,
external environmental data, building system data, and occupancy schedules. In total, 16 continuous
variables were selected;

(2) Before analyzing the large amount of data used in machine learning, preprocessing is a
necessary step that prepares data by processing missing values, removing noise, or removing outliers.
In data preprocessing, cleaning is a process that fills in or removes missing values, corrects noisy data,
identifies outliers, and therefore ensures the consistency of data outcomes [48];

(3) The data set in this research contains time variables (such as the year, month, day, day of the
week, and hour), external environment variables (including temperature, humidity, sunlight, airflow,
wind speed, and soil temperature), and energy variables that track the energy consumed during the
building operating hours (in 2016, use of electricity consumption hourly data of 11 offices) [49];

(4) To determine the most important variables, unsupervised learning, which does not require a
ground truth, was used. This involved using clustering to extract the most important variables that
control the building energy usage and cluster similar variables together;

(5) In addition, using the t-test, we aimed to verify the validity of the variables, derived from
machine learning, that affect the building energy consumption;
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(6) For each target building, the first 16 variables related to energy consumption, and five variables
derived from machine learning, were compared with the same verification logic.

As stated in Section 3, this study aims to use energy data derived from a building and identify
important variables that control most of the energy consumption. Two representative clustering
methodologies used for this purpose are the Density-Based Spatial Clustering of Applications with
Noise (DBSCAN) and K-means.

3.1. Clustering: DBSCAN and K-Means

Density-based spatial clustering of applications with noise, one of the most widely used
density-based clustering methods, explores core objects that have a high density in a neighborhood [50].
Centroid-based clustering methods of K-means predetermine the K value and the number of clusters,
and then assign each datum to one of the K clusters to minimize dispersion. Centroid-based algorithms
have the advantages of clustering many data points quickly and easily, and spherical data have a
relatively better reliability [28,50].

Table 4 shows a sequential list of operations performed through DBSCAN and K-means using the
open-source program R 3.6.1. [51] To summarize the clustering process for extracting key variables,
first, similar characteristics (density center, distance-based) in the various data were assessed to create
the first cluster. Although N clusters were formed, it was impossible to determine which clusters were
meaningful. Then, results were extracted only for clusters containing a large amount of data. Based on
these results, the data were classified into high-energy-consumption and low-energy-consumption data
clusters. Lastly, for the two clusters with large amounts of high-energy-consumption data, box plots
were used to confirm which of the 16 variables related to building energy were the most important.

Table 4. Clustering process.

Order

R-Code and Clusters

Contents

» #4-1. pescan clustering
> # dbscan
> library(dbscan)

> db <- dbscan{pca$scores[, 1:2], eps

> plat(pcasscares, cal = (dbscluste
> pairs(pcasscores[, 1:5], col = (d

» Table(dbscluster)

g L g2 8 er &8
189 233032 37 €75 0 475
30 31 32 3 M B/ 36
4 A 11 & 5 5 6

» t < table(dbScluster)
> names(t) < paste(names(t), "(",

o(black) 1(red)  2(greeny)
189 23 3032
12{cyan) 13(magenta) 14Cyellow)

24(black) 25(red) 26(greend)
58 48 157

5
36(cyan) 37(magenta)
[ 5

= 0.1, winpts = §
rel), peh = 19, main =
bicluster + 1))

"pescan”)

9 1w 1

7B 12 13 1 15 16 17
52 15 7 6 5 3
37

18 19 20 2 2 23
$ 5 24 9 6 8 7sun 5

rep(palette(), 10)[1:Tength(t)], )", sep = ™)
3(bTue)

)
15(gray)

4(cyany S(magenta)  6(yellow)  7(gray)  B(black) 9(red)

675 9 2475 52 115 7

16(black)  17(red) 1s(greend)  19(blue)  20(cyan) 21(magenta)
4 L

27 (blue) 28(cyan) 29(magenta) 30(yellow) 3(gray)  32(black) 33(red)
3% Fa 36 1 2 1 g

First cluster is formed based on
similar characteristics in the data
(density center). It is unable to
distinguish which cluster data are
significant among n clusters
through seven repeated colors.

DBSCAN

Com.1

Results of re-executed DBSCAN

code for n clusters sorted by the

amount of data in the clusters in
descending order.
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Table 4. Cont.

9 of 23

Order R-Code and Clusters Contents
> SOrt(t) #
27 (cyan) 4(redy 21(blue) 6(green3) 2(black)
396 675 1111 2475 3032
> selectcluster <- c(2, 4, 6, 21, 27)
> 1dx < which(dbScluster ¥in% selectcluster) Extraction of results only for
. subclusterdata <- pcalscores[idx, ] # pca .
> Zubcluster < dbscluster (1dx] # clusters allocating a large amount
i :.El?ﬁﬁﬂz?u:[e.-um[‘ 1:2], col = as.factor(subcluster + 1), pch =19, cex = 0.5) of data; re_ChlSterlng 1s performed
3 e L L o e based on these results for energy
2(black)  aCred) S(green3) zi(blue) 27(cyan) Consumption (real-time
3032 675 75 1L 396
> tabletkpelidx, 1$energylevel.re, dbscluster [1dx)) Consumption) with a relatively
as22 0805 13 o large amount of data.
B 747 1 518 269 o
C Se6 33 ars aar 11
D 608 66 455 303 77
E 289 576 221 79 308
-
o
Formation of five clusters with
i large amounts of data. In
T particular, the red cluster (4) and
=]
4 o the sky-blue cluster (27) are
classified as high energy
consumption clusters (clusters
& with assigned high consumption
level E).
.
< |
2 o Coml 2 4
s
= s
o o, 4 ] = o, 27
24
The important variables of Cluster
g 4 and Cluster 27 are displayed in a
- . box p.lot. Among the 16 energy
L variables, in the red cluster,
5 ) baseload and heating energy were

u determined to be important
variables, while in the sky-blue
cluster, cooling energy and
humidity were determined to be
important variables.

= - - 222 S

month temp basee heate Thurd Satd

Figure 3 shows the results after clustering using the density-based DBSCAN code to derive the
clusters for the 11 buildings, where two parameters were required for DBSCAN: epsilon (¢) and the
minimum number of points required to form a cluster (minPts). Epsilon is a distance parameter that
defines the radius used to search for nearby neighbors. In Figure 4, the distance-based K-means results
are shown. The consumption data were categorized based on energy usage and divided into five
classes (energy consumption level A to E), with A representing the lowest energy consumption and
E representing the highest. The energy consumption cluster results (e.g., size and shape, density
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of clusters, and number) of the buildings for each region are different. This occurs because the
characteristics of the 11 regions” building envelope, heating and cooling systems, and building use
are different.

Seoul HQ Gyeonggi HQ Northern Gyeonggi HQ
e
{ 30t o pone g )
\ ” % N & ‘e
7 %\ \ /‘,: ‘\kl B
o Y
. \ 1 %
-*-\\ 3 \r‘ 3 "/ A K
Y W ¥ 30 e
~ 1on
Incheon HQ Daegu HQ

Figure 3. Result of DBSCAN clustering.
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A 7 ;" i
b 1 o, !
o . '\-»:‘{J':
> 10} PR
\‘. r ‘\

Figure 4. Result of K-means clustering.
3.2. Clustering Result

This study identified important variables affecting the energy consumption of 11 regional buildings.
It classified them into high and low energy consumption categories to identify the clusters. Data
obtained from a building are a mix of continuous and categorical data; hence, it is difficult to determine
the unique features of the building using only the building energy data. Therefore, two different
clustering algorithms were employed. A comparison was made to determine which of the two
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clustering algorithms correctly analyzes building energy data characteristics and energy consumption
patterns. The four qualitative evaluation items are as follows [7,52]: the shape of a cluster and
density of color, slope of an inverse model, sensitivity of an outlier (determined by the mean of the
absolute values of the standardized variables), and grades that are accurately distributed against the
amount of energy consumption when it is graded based on relative criteria. Table 4 was developed
to determine which of the two clustering algorithms can accurately analyze the data features and
energy consumption patterns of the building by weighting the above-mentioned four qualitative
evaluation indices. The selected clustering algorithm was then used to categorize buildings only with
variables contributing to the energy consumption, which were identified from the buildings; this result
is expected to lead to a consistent analysis and provide meaningful results.

Table 5 shows the results of four qualitative indicators for assessing the two aforementioned
clustering algorithms. The cluster density using DBSCAN was 2.53, which was 1.03 times higher
than that using K-means based on converting data into the energy consumption based on the outdoor
temperature. This result means that the use of DBSCAN rather than K-means can lead to meaningful
results for deriving the key variables that directly affect consumption among the 16 variables that affect
the building energy consumption.

Table 5. Comparison of DBSCAN and K-means.

DBSCAN K-Means
- Level of Inverse . Energy. Level of Inverse . Energy.
Criteria . Outlier Consumption . Outlier Consumption

Clustering Model * Gradi Clustering Model .

rading Grading
Weighted value 1.00 0.75 0.50 0.25 1.00 0.75 0.50 0.25
Seoul 3.00 2.25 1.50 0.75 1.00 2.25 1.50 0.75
Gyeonggi 3.00 2.25 1.50 0.50 2.00 2.25 1.00 0.50
Northern Gyeonggi 3.00 2.25 1.00 2.00 1.00 2.25 1.50 0.75
Incheon 3.00 1.50 1.50 0.75 2.00 2.25 1.50 0.75
Daegu 3.00 2.25 1.00 0.75 1.00 1.50 1.50 0.75
Gyeongnam 3.00 2.25 1.50 0.50 1.00 1.50 1.50 0.50
Pusan 3.00 0.75 1.50 0.50 1.00 1.50 1.50 0.50
Jeonbuk 3.00 1.50 1.00 0.50 1.00 1.50 1.50 0.75
Gwangju 3.00 2.25 1.00 0.25 1.00 1.50 1.50 0.75
Chung cheong 3.00 1.50 1.00 0.50 1.00 1.50 1.50 0.25
Kangwon 3.00 1.50 1.00 0.25 1.00 1.50 1.00 0.50
mean 3.00 1.84 1.23 0.66 1.18 1.77 141 0.61

* A graph showing both winter heating energy consumption (left slope) and summer cooling energy consumption
(right slope) compared with outdoor air temperature, with the interim period without heating or cooling in
the middle.

4. Research Results

This section discusses the result of clustering (DBSCAN) of the main variables affecting building
energy consumption in 11 buildings in eight regions.

Figure 5 shows the results of classifying the energy consumption (A to E) of each building and
deriving the variables that affect the high-energy-use clusters. First, the data were sorted into energy
consumption levels A to E by hour, from a low to high energy consumption. Clusters with more levels
D and E than A and B can be considered high-energy-consumption clusters. The important variables
(abbreviated I-V) are arranged by rank among the high-energy-consumption clusters. We conducted a
level-of-importance analysis for those clusters with large amounts of high-energy-consumption data to
obtain the important variables, which were then ranked by order of importance (Figure 5). For example,
for the Seoul headquarters, clusters 3 and 26 contain large amounts of high-energy-consumption data.
Through an analysis of the cluster attributes, we found the important variables to be the heating energy,
the intermediate energy, and the lighting energy, in order of importance. January and March were
identified as the months with large effects on the energy consumption.
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Energyl Seoul HQ Gyeonggi HQ Northern Gyeonggi HQ
consumption |
level 5 2 B 26 3 7 0 25 | 0 ] 4 20
A 747 791 0 0 673 874 12 8 35 1,563 0 1
B 777 761 0 0 827 781 16 9 13 1,626 2§ 6
€ 802 640 0 2 844 600 49 42 64 1,503 1 52
D 55 184 14 796 507 115 118 733 | 21 451 297 479
E 15 146 390 708 298 19 236 233 212 212 324 521
D+E 70 330 404 1,504 805 134 354 966 423 663 621 1,000
AtoE 2,396 2,522 404 1,506 3,149 2,389 431 1,025 535 5,355 623 1,059
DE % 2.92% 13.08% 100% 9987% | 25.56% 5.61% 82.13% 94,24% 79.07% 12.38% 99.68% 94.43%
I-v humidity heating time intermediate season humidity heating
I-v time intermediate season operation temperature base load intermediate season
I-v temperature lighting Sun base load operation temperature
I-v Operation, Sat month, day energy level humidity time lighting
month Jan Jan, Mar Jan Jan, Apr jan Jan, Apr
Energy- Incheon HQ Daegu HQ Gyeongnam HQ
consumption i
level 2 8 3 34 2 6 4 32 | 2 13 0 4
A 754 781 0 4 670 687 0 0 ! 441 957 23 6
B 644 833 0 10 599 733 0 2 i 675 709 7 4
(o 777 552 0 6 506 766 0 17 903 496 10 7
D 246 176 12 808 207 173 198 465 | 552 118 128 669
E 45 11 529 685 155 34 345 655 53 10 160 1079
D+E 291 187 541 1,493 362 207 543 1,120 605 128 288 1,748
AtoE 2,466 2,353 541 1,513 2137 2,393 543 1139 2,624 2,290 328 1,765
DE % 11.80% 7.95% 100% 98.68% 16.94% 8.65% 100% 98.33% 23.06% 5.59% 87.80% 99.04%
I-v time heating humidity intermediate season humidity intermediate season
I-v humidity intermediate season time heating temperature lighting
I-v temperature lighting temperature lighting operation month
I-v operation, Sunday base load operation, Sat base load saturday time
month Jan Jan, Apr Jan Jan, Apr Jan Jan
Energy y
consumption Pusan HQ Jeonbuk HQ Gwangju HQ
level 2 6 28 39 2 4 0 a1 | 2 7 3 32
A 483 944 17 0 647 897 10 0 532 950 0 6
B 682 696 137 0 810 765 12 1 692 816 1 14
€ 944 335 144 0 902 521 35 6 887 348 91 136
D 359 144 722 70 513 159 158 470 269 80 319 729
E 542 176 106 296 26 3 196 919 568 48 331 122
D+E 901 320 828 366 539 162 354 1389 837 128 650 851
AtoE 3010 2295 1126 366 2898 2345 411 1406 2948 2242 742 1007
DE % i 29.93% 13.94% 73.53% 100% 18.60% 6.91% 86.13% 98.79% 28.39% 5.71% 87.60% 84.51%
I-v humidity intermediate season humidity intermediate season time heating
I-v time lighting time lighting humidity intermediate season
I-v temperature lighting-v temperature month temperature lighting
I-v Saturday operation operation, Sat energy level base load month
month Jan march, July Jan Jan, Apr Jan Jan, Apr
Energy | h
constmption | Chungcheong HQ Kangwon HQ
level 2 6 el 8 3 7 0 el
A 519 996 10 0 650 894 17 0
B 778 773 9 0 916 663 27 0
G 908 291 270 3 1022 505 68 11
D 299 129 879 128 1175 186 106 137
E 406 165 208 513 967 110 185 319
D+E 705 294 1087 641 2142 296 291 456
AtoE 2910 2354 1376 644 4730 2358 403 467
DE % 2423%  1249%  79.00%  9953% | 4529% 12.55% 72.21% 97.64%
I-v humidity intermediate season temperature heating
I-v time heating humidity lighting
I-v temperature base load operation date
I-v operation, Sat lighting month base load
month Jan Apr Jan Jan

A: the lowest energy consumption
E: the highest energy consumption
D + E: relatively high energy consumption

A to E: total energy consumption
D, E%: high energy consumption/total energy consumption
I-V: Important variables by consumption section

Figure 5. Result of the clustering of 11 buildings.

Figures 6 and 7 show the location of the buildings and the classification of the important variables
derived from the high-energy clusters of the 11 regions, respectively. The temperature and humidity,
which can be called environmental variables, were excluded because of duplicate derivation from the
11 regions. In the Seoul, Gyeonggi, Incheon, Daegu, and Gyeongnam buildings, lighting and heating
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energy were the most influential variables, followed by baseload energy and intermediate energy.
It can be concluded that occupancy is closely related to building energy consumption. Moreover,
the difference in energy consumption between winter heating and summer cooling was also found
to be an important variable for office buildings. Lighting and baseload energy were also found
to be important variables (in that order) in the six regions of North Gyeonggi, Busan, Jeonbuk,
Gwangju, Chungcheong, and Kangwon. Occupancy and related lighting energy variables, which
can be considered characteristics of office buildings, were found to be variables affecting high energy
consumption for all 11 regions, rather than regional variables related to the building’s location (i.e.,
latitude and topography). In addition, baseload energy, which is involved in the operation of the
building’s systems and the outlet load, is also considered to be related to occupancy and was found to
have the greatest effect on energy consumption in office buildings. These results indicate that the most
important variables for energy usage in non-residential buildings are related to lighting and baseload
energy consumption, based on the building’s occupancy, rather than to regional and topographical
characteristics based on the building’s location.

To sum up, the beginning of this study assumed that “only key data can be used to effectively
analyze building electricity consumption”. This study focused on operational buildings, i.e., not
buildings that are yet to be built or recently completed buildings. In the case of existing office buildings,
this study aimed to determine which of the continuous energy data derived from the buildings had
more influence on the electricity consumption. In general, the U-value of building materials was treated
as a categorical variable because it is a set value that does not vary over time. Based on these results,
we concluded that the electricity of a building can be effectively managed if only four or five major
energy variables derived from the building are controlled or used as key points of operation [53,54].

3871 1 T
2N Nor n Gyeonggi HBM
. angwoILBHI
® Seoul LHBM
w Incheon rHBM
LJ
37°N . Gyeonggi LHIC
a -
Chungcheong LBHM
L) 36°N 'J'egnbukirHIC )
m Daegu LB
o
China Japan = Gyeongnan.n LHIC
35°N e usan LBCM

126°FE 127°R 128°E 129°E

Figure 6. Office location of 11 regions. (L: Lighting energy; H: Heating energy; B: Baseload energy;
C: Cooling energy; I: Intermediate energy; M: Month-time).
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Northern Gyeonggi HQ
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Figure 7. Results of the clustering of 11 regions and important variables.

5. Validation

5.1. Validation of Variables for High and Low Energy Consumption with a t-Test

Although a clustering algorithm was used to categorize the building energy data into high-
and low-energy-consumption clusters, the t-test was used as a method to determine whether the
difference between the averages of these two clusters was significant. The important variables of
each cluster derived by the boxplot can also be compared using the averages of the absolute values.
This comparison, however, does not reflect the range and variance of the actual values. For this reason,
the t-test was performed to analyze whether the difference between the averages of the two different
clusters, which considers the variations between them, was significant.

X1-Xp 517 S
b= LT8R gp o[22 1
SEz1 %, SEz1-%2 m )
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The t-test explored whether the difference between the averages of the two different clusters (high
and low energy consumption) from the building under analysis was significant. Table 6 shows the
t-test determined six explanatory variables that led to high or low energy consumption of the building
under analysis: month, temp (temperature), humi (humidity), lighting.e (energy), base.e (baseload
energy), and heat.e (energy). The mean and variance of the day of the week and date variables in
the two clusters were almost the same, so they were considered unnecessary for an analysis of the
energy consumption.

Table 6. Result of the ¢-test of the 11 regions.

Region Seoul Gyeonggi N-Gy Incheon Daegu G-Nam Pusan Jeonbuk Gw-Ju Ch-Ch Ka-W

month 0.000 0.001 0.000 0.000 0.000 0.620 0.000 0.000 0.000  0.000  0.000
date 0.803 0.616 0.728 0.219 0.024 0.531 0.450 0.484 0288 0177  0.739
hour 0.992 0.563 0.980 0.021 0.015 0.551 0.428 0.008 0.573  0.258  0.161
temp 0.000 0.098 0.000 0.000 0.000 0.000 0.000 0.000 0.000  0.000  0.000
humi 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000  0.000  0.000
base.e 0.000 0.006 0.000 0.000 0.000 0.544 0.000 0.170 0.000  0.000  0.000
lit.e 0.000 0.000 0.280 0.000 0.000 0.000 0.000 0.000 0.000  0.000  0.000
heat.e 0.000 0.000 0.000 0.000 0.000 0.000 0.500 0.000 0.000  0.000  0.000
inter.e 0.318 0.000 0.000 0.500 0.500 0.000 0.318 0.000 0.000  0.318  0.000
cool.e 0.500 0.000 0.016 0.500 0.500 0.000 0.000 0.000 0.500  0.500  0.000
Mon 0.056 0.359 0.492 0.673 0.487 0.012 0.801 0.069 0.219  0.011 0.162
Tue 0.563 0.310 0.967 0.825 0.212 0.015 0.801 0.768 0395  0.145 0.892
Wed 0.473 0.071 0.532 0.129 0.005 0.045 0.326 0.195 0.781 0.209  0.508
Thu 0.551 0.278 0.005 0.454 0.005 0.023 0.903 0.036 0477 0818  0.226
Sat 0.500 0.500 0.318 0.500 0.500 0.500 0.500 0.500 0.500  0.500  0.500
Sun 0.500 0.318 0.157 0.500 0.500 0.500 0.500 0.500 0.500  0.500  0.500

5.2. Regression Results

A regression analysis was performed using only the 16 major variables from each building,
derived from the analysis process, and five or six variables selected by machine learning, to verify that
the observed values, i.e., the Y variable, were well-described. Two validations were carried out for
this purpose.

The coefficient of determination (R?) of the 16 original variables was 0.8356 in the Figure 8.
whereas that of the important variables was 0.8261 from the Figure 9. This suggests that the important
variables alone are able to explain most of the observed variance, as the performance of the regression
equation built using only the important variables is practically identical to that obtained using all the
original variables.
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5.3. Mean Squared Error (MSE) and Mean Absolute Percentage Error (MAPE)

The MSE takes the square root of the average of the squares of the errors from an observation
and compares it to deviation between the observed values. As a measure that generalizes standard
deviations, MSE is used to validate the amount of difference between the actual value and estimated
value using a regression equation. Table 7 shows the results were obtained from the two regression
analyses performed for the 16 original variables and important variables based on the computation of
their MSE and MAPE. The MSE and MAPE results of these two regression analyses show that even
though the MSE and MAPE of the important variables were only slightly higher than those of the 16
original variables, and Table 8 shows the regression analysis error and coefficient of determination of
the key variables were as significant as those of the 16 original variables, which were larger in number.

Table 7. Comparison of Mean Squared Error (MSE) and Mean Absolute Percentage Error (MAPE)
associated with the regression analyses.

Evaluation Index Original 16 Variables Major Variables Differences
MSE Training set 360.946 381.8843 21.938
MSE Test set 337.726 365.9697 28.243
MAPE Training set 11.65511 12.06266 0.40
MAPE Test set 11.65511 11.77404 0.12

Table 8. Verification of error rates with three algorithms.

Algorithms Original 16 Variables Major Variables Differences
Regression R? 0.835 0.826 0.009
Regression CvRMSE 13.84 14.60 0.8
SVM CvRMSE 7.69 9.03 1.34
Random Forest CvRMSE 6.74 7.20 0.46

Figures 10 and 11 show comparisons of energy consumption predictions, where one predicted
energy consumption uses the initial 16 variables and the other prediction only uses the major variables
derived by machine learning with the testbed as a subject. Apart from the R? value, which is the
coefficient of determination, and the MSE, which is an indicator of the error rate of prediction, the
results using the major variables showed error rates ranging from 7.2% to 14.6% compared with the
predictions using 16 variables. The error rate using the major variables was lower than the ASHRAE
Guideline 14 [55] criteria of 30%. Moreover, the random forest method showed the lowest error
rates among the three different methodologies (simple linear regression, support vector machine, and
random forest).
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6. Conclusions

6.1. Research Conclusions

The purposes of this study were to examine the factors contributing to electric energy use, which
accounts for more than 65% of the total building energy consumption, using clustering in machine
learning based on data measured from the actual building, and then to find which variables were
identified and which had a strong correlation with energy consumption.

Machine learning of the previous studies only predicted the energy usage of buildings in the
building sector or confirmed the patterns of usage through clustering methods. However, this study
found the key variables that affect the consumption of buildings with a high energy consumption
through two different characteristics of the clustering methodology.

The results suggest that the energy consumption predicted by the major variables alone is reliably
accurate and that the method can be expected to reduce energy consumption more when these major
variables are controlled, or their efficiency is improved. The results can be summarized as follows:

1.  The important variables for building energy consumption were derived based on machine
learning clustering and were clustered into high- and low-energy-consumption clusters;

2. Based on the clustering, the energy consumption of 11 regional buildings was analyzed according
to changes in the outdoor air temperature, which can reveal the building energy features;

3. T-tests were performed on the results of the buildings categorized into similar clusters to determine
the explanatory variables that led to a high or low energy consumption;

4. Lastly, the important variables identified from this methodology were validated.

- Comparison of R? values

- Validation of the two regression equations for the 16 original variables and important
variables by obtaining the MSE and MAPE.

With respect to Conclusion 3, the important variables that had a decisive effect on the energy
consumption of a single building under analysis and the 11 regional buildings (12 buildings in
total) were found to be two environmental variables (temperature and humidity), lighting energy,
heating energy, and a time variable (month);

5. This study determined the key variables affecting the electrical electricity consumption of
buildings, especially non-residential buildings. Except for the external environment (geographic
location, temperature, and humidity), the studied building’s electricity consumption was found
to be as important as its physical characteristics, such as an increased cooling energy, lighting
energy, and baseload, due to the working conditions of the occupants. Internal heat gains varied
according to occupancy time and density.

Buildings may appear similar, but vary in electricity consumption and patterns, depending on
their use, size, and occupants. Therefore, the results of this study cannot necessarily be applied to all
buildings. Since this study had a specific application (office building, commercial building), it can be
used as an example of variables affecting the electricity consumption of a non-residential building.
However, the main influencing factor may be different for a residential building or buildings with
other uses (e.g., where the working hours of the occupants are not common).

6.2. Significance and Application

The significance of this study relates to three aspects. First, the analysis of building energy use by
existing engineering methods was used to derive absolute values by load factors using a simulation
program and to predict reductions by subloads (cooling, heating, and ventilation). Although it may be
possible to predict the detailed reduction volume by energy loads or performance, the data were not
based on actual data, and the reliability of the results has thus been questioned. However, predicting
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building energy use using major variables derived from machine learning (as in this study) utilizes the
actual total energy volume of the target building, which helps to overcome the problem of reliability of
the resulting value. This might occur because of differences in the actual consumption or performance
versus the simulated amounts. Second, the prediction of building energy consumption applied with
machine learning leads to the same results, despite the lack of experience or intuition by the researcher.
Consistent results can be provided with no direct influence from an expert.

It is possible to derive major variables influencing the building energy consumption (high
consumption/low consumption), identify which energy source is most responsible for consumption,
and view how they influence consumption.

The major variables causing building energy consumption can be used to identify the status of
energy consumption of the building and as an indicator of post hoc maintenance.

The machine-learning methodology can be widely applied to various buildings with different
uses or located in different climates, and buildings can be classified by major variables influencing
building energy consumption.

This method can be used for selecting the variables affecting building energy consumption and
can be applied without constraints to non-residential buildings. Furthermore, if there is a collectible
data set, such as real-time information regarding a building service, variables that have an impact on
energy consumption can be identified without constraints.

From an economic perspective, the fourth significance is as follows. Utilizing this study’s
methodology in a practical work setting, it would be possible to present monitoring points for building
maintenance for aging buildings. Selecting and using energy measurement sensors also make it
possible to find the most significant measurement points because the data from actual equipment
systems can be used to obtain clustering results (for correlation analysis and the extraction of major
variables).
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