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Abstract: There has been an increasing trend of integrating photovoltaic power plants (PVs). One of
the important challenges for distribution system operators is to evaluate the total installed power of a
PV that a particular network can host (or PV hosting capacity) while keeping voltage and element
constraints within required limits. The major drawback of the existing methods for calculating PV
hosting capacity is that they use the same installed power of the PV systems for all simulated PVs, as
these methods do not use external data sources about building roofs. As a consequence, this has a
significant impact on the final accuracy of the results. This paper presents a probabilistic methodology
for calculating the PV hosting capacity in low voltage (LV) networks. The main contribution of this
paper is the improved modeling of PV generation using actual building roof data when calculating the
PV hosting capacity, as every building is treated according to its actual solar potential. Monte Carlo
simulations with incorporated stochastic consumption and PV generation models are utilized for
load flow calculations of the actual LV network. The simulation results presented in this paper prove
that the proposed methodology increases the accuracy of the final PV hosting capacity calculations.

Keywords: LV networks; hosting capacity; Monte Carlo; PV

1. Introduction

There has been an increasing trend of installed photovoltaic power plants (PVs) in the European
Union (EU) due to various national subsidies and net-metering schemes. Solar energy has great
potential, mainly due to unutilized building roof surfaces. High distributed generation penetration,
however, can cause overloads and voltage violations. Therefore, it is important to analyze different
network development scenarios in advance [1–3].

Regulation in many countries promotes new smart grid technologies that enable higher PV
penetration in the network, so assessment of the most appropriate technology for a particular network
has become crucial. Calculating network hosting capacity is important for the comparison of benefits
introduced by different smart grid technologies [4–6].

PV hosting capacity is a special case of network hosting capacity, where different PV penetration
scenarios are analyzed. The PV hosting capacity can be interpreted as the maximum installed power of
PVs (or a maximum number of consumers with PVs) that a particular network can host while still
keeping voltage and element constraints within the required limits. A major benefit of the PV hosting
capacity concept is the clear criteria for the PV penetration assessment, which makes the PV hosting
capacity concept specific, measurable, and practical [6]. In order to statistically assess the PV hosting
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capacity, various scenarios must be calculated for different PV locations and penetrations. This can
provide a statistical description of the possible levels of PV penetration while voltages and element
loadings are still within the required range.

Many papers have dealt with this kind of problem. The obtained results are usually presented as
a network violation probability, depending on the number of consumers with installed PVs or total
nominal power of PVs in the network. The paper [7] described low voltage (LV) network planning
based on the Monte Carlo approach, taking into account different random distributed generation (DG)
locations. The probabilities of voltage levels and the maximum PV penetration limits were assessed.
The study in Reference [8] proposed a similar approach, where the PV hosting capacity was evaluated
considering the probability of voltage limit violation occurrences at the customer level, according to
different PV power factors. The approach developed by the Electric Power Research Institute (EPRI) [9]
also proposed a stochastic approach when creating PV deployment scenarios. The stochastic nature of
the analysis takes into account the uncertainty in the size and location of the future PV systems [9].
In Reference [10], the work proposed a Monte Carlo-based technique to assess the impacts of different
PV penetrations on LV networks, in order to estimate their corresponding hosting capabilities. Similarly,
the authors in Reference [11] proposed a probabilistic methodology for evaluating the impacts of
PVs, electric heat pumps, micro combined heat and power units, and electrical vehicles on network
operation states. The authors in Reference [12] studied how to improve PV hosting capacity with a
battery storage system. They developed a method to select the optimal size of the battery and converter
unit, as well as the optimal placement of an LV-central battery storage system. PV hosting capacity
increase potential for different local Volt/var control strategies and the associated grid losses for various
types of LV feeders have been analyzed and compared in Reference [13]. The authors in Reference [14]
proposed and demonstrated an integrated planning model that allowed distribution PV network
hosting capacity constraints to be included in long-term grid planning. They demonstrated the impact
of integrating a large amount of distributed small-scale storage batteries for use as hosting capacity
enhancement in the distribution network in order to quantify its benefit in terms of overall system costs.
In Reference [15], a probabilistic-based framework to determine the maximum integration limits of DGs
considering the voltage rise and voltage deviation constraints was proposed. This framework required
the use of the hosting capacity model, which was formulated as a non-linear optimization problem.
The authors in Reference [16] performed extensive sensitivity studies to quantify the effects of several
factors on the PV hosting capacity. The effects of number of customers with PV generators, PV power
factor, voltage magnitude on the medium voltage system, load level, and conductor impedances were
investigated. The authors in Reference [17] addressed the applicability of PV hosting capacity, studying
the methodologies of harmonic voltage distortion caused by PV. The voltage rise due to harmonic
injection was analyzed and discussed, with the aim of validating the discussed model and also putting
forward recommendations for connecting PV generators across other network systems. The authors in
Reference [18] studied the impact of single-phase PVs on PV hosting capacity by utilizing different
percentages of PVs per phase and, consequently, studying the voltage unbalance. Similar approaches
to those mentioned above were also presented in references [19–23]. Finally, comprehensive literature
reviews have been provided in References [24,25].

The above overviewed methods, however, did not leverage building roof data when randomly
allocating PVs in the network. Therefore, when performing simulations, buildings that had high PV
potential and buildings that did not have PV potential were treated equally. As a consequence, the final
results of PV hosting capacity were significantly impacted, which has also been shown in Reference [7].
The method proposed in this paper utilizes roof data and outperforms these other methods, which is
shown in the use-case section.

In comparison with other approaches, the proposed method extends the current input data with
actual building roof data. This has become possible with the availability of new data sources. With
3D-point cloud data derived from light detection and ranging (LIDAR) and land register geographic
information system (GIS) data, it is possible to form 3D roof models. Further, the solar irradiance for



Energies 2019, 12, 4086 3 of 15

every roof can be determined by using actual tilts and orientations of particular roof surfaces. This
enables the calculation of PV system nominal power and stochastic generation for every roof from
solar irradiance measurements.

The main contribution of this paper is the improved modeling of PV generation using actual
building roof data when calculating the PV hosting capacity, as every building is treated according to
its actual solar potential.

The structure of the paper is as follows: in Section 2, the proposed methodology is thoroughly
described. In Section 3, the proposed methodology is demonstrated in a real LV network, using
actual LIDAR and GIS data of an analyzed village. Finally, the discussion and conclusion are given in
Sections 4 and 5, respectively.

2. Methodology

The PV hosting capacity is the maximum installed power of PVs that a particular network can
host while still keeping network constraints within the required limits. It depends on a location and
installed power of PV systems. We cannot predict the location nor the installed power of future PVs,
so the problem can be formulated as follows: given the LV network with N number of consumers, the
PV hosting capacity can be evaluated by examining all possible combinations of locations and installed
power of PV systems. Calculating load flow for all possible combinations is computationally almost
impossible, so we leverage the Monte Carlo method for solving this problem.

The proposed methodology includes three steps. The first (and the most time-consuming) step
is the acquisition and preprocessing of data from various sources, as shown in Figure 1. The second
step is stochastic modeling of consumption and solar generation, which is used for probabilistic load
flow calculations. The third and final step is the improved calculation of the PV hosting capacity using
actual building roof data and leveraging Monte Carlo simulations, which is also the major contribution
of this paper.

Figure 1. Photovoltaic power plant (PV) generation modeling.

2.1. Input Data Preparation

Input data preparation is an important part of the proposed methodology. The required input
data sources are

• electrical network data;
• measurements from smart meters (not essential);
• LIDAR;
• GIS (land register); and
• solar irradiance data.
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Network data are collected and pre-processed for a selected middle voltage (MV) feeder and
corresponding LV grid. Low voltage consumers are modeled using smart metering data. In the absence
of such data, stochastic models for similar areas can be used [7].

For modeling the solar irradiance on a building roofs, a digital elevation model (DEM) has to
be obtained from 3D point cloud data, where the 3D point cloud data can be derived from LIDAR.
LIDAR provides unstructured 3D point cloud data consisting of millions of points with x, y, and z
components. LIDAR data preprocessing has been described, in detail, in Reference [26]. Further, the
tilt and orientation have to be calculated for every grid cell and converted into a vector polygon format.
GIS data from the land register is used for extracting building roofs from LIDAR and linking the roofs
to the LV network. The output of the LIDAR and GIS data preparation are polygons of building roofs,
with tilt and orientation information for every grid cell of 1 m × 1 m (step A in Figure 1) and are further
represented in a matrix form.

Next, all possible combinations of tilt and orientation using 5◦ step are calculated, where tilt goes
from 0◦ to 90◦ and orientation goes from 0◦ to 180◦. A final number of combinations is denoted as n,
which is 648. Finally, A is area matrix of roof surfaces in m2 for every tilt-orientation combination and
for every building roof polygon, where r is the number of roofs in LV network. The following matrix
represents tilt-orientation information for every roof:

A =


a1,1 . . . a1,r

...
...

...
an,1 . . . an,r

, where A∈ Rnxr (1)

For the stochastic modeling of PV generation, hourly measurements of global horizontal irradiance
(GHI) and diffuse horizontal irradiance (DHI) have to be obtained from the nearest weather station.
The two input solar irradiance time-series vectors (which will be used in the later analysis) are defined
as follows:

• Im
[

W
m2

]
represents the GHI measurements; and

• Im, d
[

W
m2

]
represents the DHI measurements, for the last few years and with an hourly resolution.

Next, these two vectors have to be transposed and stacked vertically in order to form a solar
irradiance measurements dataset matrix X.

X =

[
IT

m
IT

m, d

]
, where X ∈ R2xm (2)

In the equation above, m denotes the number of observations.
GHI and DHI measurements, together with tilt and orientation information for every roof,

are essential for modeling PV solar generation in further calculations and will be described in the
next section.

2.2. Consumption and PV Generation Modeling

Deterministic load flow analyses are not appropriate for modeling the LV network operating
conditions due to the stochastic nature of consumers and PVs [3,27,28]. Instead, probabilistic load flow
analyses must be carried out, taking into account the stochastic modeling of demand and generation.
The proposed approach relies on the already developed stochastic load models derived from smart
metering data in Slovenia, which have been described in Reference [7].

The most important step of the proposed methodology is the stochastic PV generation modeling
of the building roofs, having different tilts and orientations.

A detailed PV generation modeling is important for two reasons,

• selecting roofs with high PV potential; and
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• accurate modeling of stochastic PV generation on different roof surfaces.

First, the variables that will be used in the further analysis are presented in Table 1.

Table 1. Solar irradiance variables.

Variable Name Unit Explanation

Irradiance I
[

W
m2

]
radiant flux received by a surface per unit area;

Radiant exposure H
[

Wh
m2

]
radiant energy received by a surface per unit area.

2.2.1. Solar Irradiance on Tilted and Oriented Surfaces

Different buildings have differently oriented and tilted roofs; thus, this has to be incorporated
when modeling solar irradiance. Solar irradiance measurements from weather stations usually include
global and diffuse solar irradiance data on a horizontal surface [29,30]. Therefore, there are various
models which are able to predict irradiance on a tilted and oriented surface (hereafter denoted by IT)
from measured GHI and DHI. In order to calculate solar irradiance on a particular roof surface from Im

and Im, d weather station measurements, the well-known model developed by Klucher [29] was be
used. The Klucher model is defined by the following equation [29,30]:

IT = Ih, bRb + Ih, d

(
1 + cos β

2

) [
1 + F′ sin3

(
β

2

)] [
1 + F′ cos2 θ sin3 θz

]
+ Ihρ

(
1− cos β

2

)
(3)

where IT denotes solar irradiance on a tilted surface, Ih, b denotes the direct-normal component of solar
irradiance on the horizontal surface, Rb denotes a variable geometric factor which is the ratio of tilted
and horizontal solar beam irradiance, Ih, d denotes the global diffuse horizontal solar irradiance, β
denotes surface tilt angle from horizon, θ denotes incident angle of the surface, θz denotes the zenith
angle, Ih denotes global horizontal solar irradiance, and ρ denotes the hemispherical–hemispherical
ground reflectance.

The Klucher model is crucial in the proposed methodology and can be understood as a function
mapping GHI and DHI weather station measurement to global irradiance (GI) on a desired tilted and
oriented surface (step B in Figure 1).

2.2.2. Selecting Roofs with High PV Potential

Different roofs are characterized with different surfaces and, consequently, different solar potentials.
This section describes how to extract the most suitable surfaces for every roof (e.g., north-facing surfaces
for a particular roof will not be used in a model).

First, mean annual irradiance vectors IA,m and IA,m,d are calculated from Im and Im,d, transposed
and stacked vertically.

XA =

 IT
A, m

IT
A, m, d

, where XA∈ R2x8760 (4)

The resulting matrix XA has 8760 columns, as analyzed data have hourly resolution and columns
in a matrix XA represent annual data (365 days × 24 h).

Next, the Klucher model is applied to XA for all possible combinations of tilt and orientation
using 5◦ step (n combinations).

IA =


iA, 1, 1 . . . iA, 1, 8760

...
...

...
iA, n, 1 . . . iA, n, 8760

, where IA∈ Rnx8760 (5)
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In the last step, values in a matrix IA are summarized for every row separately to obtain annual
solar radiant exposure for every tilt-orientation combination. The result is represented as a column
vector H.

H =
8760∑
j=1

IA, :, j, where H ∈ Rnx1 (6)

Further, vector H is normalized.

Hnorm =
H

max(H)
(7)

Next, Hnorm is further changed in such way that only surfaces having normalized annual solar
radiant exposure greater than 0.8 are selected, which means that in further simulations PV systems will
be placed only on the most suitable roof surfaces. This vector represents a metric of the PV potential
for every surface (n combinations) depending on how much annual solar radiant exposure a particular
surface receives.

It is not optimal to cover the whole roof surface with PVs, and in some cases, a roof does not have
any potential. It turns out that using a threshold of 0.8 leads to the installed power of PV panels being
similar to those actually used in our country. This means that only roof surfaces with tilt-orientation
combinations greater than 80% of the optimal annual radiant exposure are selected for PV placement
in our further calculations.

Next, Boolean column vector Hmetric is calculated from Hnorm having n rows for all tilt-orientation
combinations and equals to 1 for all suitable tilt-orientation combinations and to zero for other surfaces.
The resulting vector Hmetric serves as a metric for selecting only the most suitable roof surfaces in
further analysis (step C and D in Figure 1).

After selecting roofs with high PV potential, stochastic PV generation for various weather scenarios
on different roofs must be developed.

2.2.3. Stochastic PV Generation Modeling using Actual Roofs Surfaces

This section presents the development of stochastic PV generation models for differently oriented
and tilted roofs and for various weather scenarios (step E in Figure 1). The main contribution of this
paper is the improved modeling of PV generation using actual building roof data, as described below.

PV generation is calculated from the solar irradiance for every surface of a particular roof. This
brings a new challenge, as solar irradiance and, consequently, daily profiles are different for every tilt
and orientation of the roof. Consequently, PV stochastic modeling in such cases is more complex, as
the stochastic generation should be modeled for every tilt-orientation combination separately and,
then, aggregated for every roof.

The following solar irradiance matrix I is calculated from X using the Klucher model for all n
tilt-orientation combinations and only for summer days (the highest solar irradiance in Slovenia is in
summer), where s denotes the number of summer days in a dataset X

I =


i1,1 . . . i1,s

...
...

...
in,1 . . . in,s

, where I ∈ Rnxs (8)

where i1,1 is the GI on a tilt 0◦ and an orientation 0◦ for first summer solar irradiance measurement,
whereas in,s is the GI on a tilt 90◦ and an orientation 180◦ calculated from the last summer solar
irradiance measurement.

PV generation for a chosen hour in the Monte Carlo simulations is acquired as follows:

1. Randomly choose one column for a previously chosen hour from matrix I. Here we utilize random
sampling with replacement from a finite population, which means that one column can be selected
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more than once. The result is a vector D ∈ Rnx1 holding irradiance for every tilt-orientation
combination on a particular day and represents one weather scenario.

2. Select roofs with high PV potential using Hmetric and utilize PV systems (µPV) and inverter
efficiency (µinverter) to derive PV generation for all tilt-orientation combinations from vector D (Pg

has unit [W/m2])
Pg = µPV·µinverter·Hmetric·D, where Pg ∈ Rnx1 (9)

PV systems’ and inverters’ efficiencies of 15% and 95% are utilized in the calculations to obtain
actual PV generations.

3. Let matrix B represent a subset of matrix A, where B holds only the selected columns (randomly
chosen roofs during PV hosting capacity calculations) and the total number of chosen roofs is
denoted as i. For every column j in a matrix B (every selected roof), we calculate

Pg, roo f , j =
n∑

i=1

(
Bi,j·Pg

)
, where Pg, roo f , j ∈ R (10)

4. Which means that PV generation is summarized for all surfaces in a particular roof to create PV
generation on a particular day. After calculating PV generation for every roof in step 3, the results
are stacked vertically to create a PV generation vector.

Pg, PV =


Pg, roo f , 1

...
Pg, roo f , i

, where Pg, PV ∈ Rix1 (11)

5. Output of the procedure in step 4 is PV generated power for every chosen roof on a particular
day, which is further used in load flow calculations.

2.3. Calculating PV Hosting Capacity Using the Monte Carlo Method

This section explains how the final load flow calculations are performed using the Monte Carlo
method in order to calculate the PV hosting capacity.

Probabilistic load flow analyses with the Monte Carlo method have been widely used for simulating
LV networks operating states, considering various DG types [31–36]. In order to perform analyses for
different seasons, day types, or hours, sequential Monte Carlo has to be used and stochastic models
have to be made for every calculated sequence separately. The results of the Monte Carlo load flow
simulations are computed based on repeated random sampling and statistical analysis.

Probabilistic load flow calculations using Monte Carlo methods actually perform deterministic
load flow calculations for a large number of times using different combinations of nodal load and
generation values [3]. In further load flow calculations, the load, PV generation and the location of
consumers with PVs are represented as random variables. The result of the proposed algorithm is a
set C of possible PV hosting capacity values. Further, the probability distribution for a set C can be
analyzed and interpreted.

The proposed algorithm workflow for calculating the PV hosting capacity using actual roof
surfaces is shown in Figure 2. The term “network violations” in Figure 2 refers to the following
constraints: The voltage limits considered are in accordance with the SIST EN 50160 standard, which
defines voltage limits for MV and LV networks within±10% of the nominal voltage (Un). The maximally
allowed voltage at MV and LV levels were 110% of Un. The maximally allowed cable loading was set
to 75% nominal apparent power (Sn; due to cable installation factors) and 100% Sn for the transformer.
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Figure 2. PV hosting capacity algorithm workflow.

The proposed algorithm workflow shown in Figure 2, for every hour, is as follows (numbers in
the list below refer to Figure 2):

1. Choose real number K which denotes the number of iterations and equals to a size of a final set C.
2. Set i = 0, where i denotes the total number of chosen roofs and create empty matrix B, which later

holds the information about the roof data.
3. Randomly select one column from a matrix A holding roofs data and add a selected column to B.

Here, we utilize random sampling without replacement, which means that every roof (location)
has the same chance of being chosen and that every roof is chosen only once (until the network
violation occur and all the locations are reset).

4. Generate stochastic load (described in Section 2.2) for all consumers and form a load matrix Pl of
size r (number of roofs and consumers).

Pl =


Pl, consumer 1

...
Pl, consumer r

, where Pl ∈ Rrx1 (12)

5. Generate stochastic PV generation (described in Section 2.2.3) for all chosen roofs and form a PV
generation matrix Pg,PV using roof matrix B from step 3.
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6. Calculate load flow. Here, we solve the following equations:

PGk − PDk = Vk
N∑

j=1
V j

[
Gkj cos

(
δk − δ j

)
+ Bkj sin

(
δk − δ j

)]
; k = 1, 2, . . .N

QGk −QDk = Vk
N∑

j=1
V j

[
Gkj sin

(
δk − δ j

)
− Bkj cos

(
δk − δ j

)]
Gkj + jBkj = (k, j) element o f the bus admittance matrix

(13)

where PGk is active power generation, PDk is active power demand, QGk is reactive power
generation, QDk is reactive power demand, Vk is voltage, and δk is voltage angle for a particular
node k in a network. Vj is voltage and δj is voltage angle for a node j which is close to the node k.
In our case, PGk, PDk, QGk, and QDk are random variables representing consumer demand and PV
generation. PDk equals to Pl (calculated in step 7), QDk = 0.33 Pl, PGk for every bus equals to Pg,PV

(calculated in step 8) and QGk = 0.
7. Check network violations (voltage limits and element loadings). If there are no violations, return

to a step 3. If there is at least one violation, go to the next step.
8. Aggregate the nominal power of all PVs in the network without the last one (there were no

violations until the last PV was added). If Pg,j denotes installed power of j-th added PV system in
the network and Ck is one value in a set C of PV hosting capacity values then Ck is calculated
as follows:

Ck =
i−1∑
j=1

Pg, j (14)

9. Add Ck to a set C which holds PV hosting capacities.

3. Case Study

3.1. Data Preparation

The proposed methodology was validated on a real LV network using LIDAR and land register
GIS data of actual buildings. The first step is network modeling. The chosen LV network was supplied
by a 250 kVA MV/LV transformer, having 7 feeders and 93 consumers. The main feeder lines were Al
70 mm2 cables, whereas the side branches were mainly Al 35 mm2 cables.

The output of the electrical network LIDAR and GIS data preparation was polygons of the building
roofs, along with tilt and orientation information for every 1 m x 1 m grid cell connected to the LV grid,
as described in Section 2.1.

3.2. Solar Potential Results for an Analyzed Village

After the appropriate network and roof modeling, solar radiant exposure for every roof was
calculated. This enabled assessment of the solar potential of the analyzed rural network (village) and
selection of the roofs that had high PV potential, which will be used in further analyses as described in
Section 2.2. As described in Section 2.2.2, the normalized column vector Hnorm was calculated. Here,
the vector Hnorm is reshaped to a matrix having orientation values on x-axis and tilt values on y-axis,
so that the resulting matrix for a chosen area can be plotted (shown in in Figure 3). In order to receive
as much radiant exposure as possible, it is important to have a slightly west oriented PV panel. The
optimal position around the analyzed weather station was at azimuth 198◦ and tilt 34◦. In order for the
surface to receive at least 90% of the maximal yearly radiant exposure (red color), there were a wide
range of tilt-orientation (azimuth) combinations available. The authors in Reference [37] performed a
national study of solar energy in Slovenia and came up with similar results.
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Figure 3. Normalized yearly solar radiant exposure on a tilted and oriented surface for an analyzed
area, which serves as a basis for selecting appropriate roof surfaces, depending on their solar potential.

The solar potential for the analyzed village for a part of the chosen LV network is presented in
Figure 4. Every color represents the normalized yearly radiant exposure that a particular polygon
receives, depending on an optimal yearly radiant exposure, as presented in Figure 3. Red denotes
that a particular surface has at least 80% of the optimal yearly radiance exposure; thus, those were the
most suitable roof surfaces (mostly south-facing parts of the roofs), followed by the orange, which was
within 60–80%. Finally, the light green color indicates the surfaces which were the least suitable for PV
placement. As defined by the methodology proposed in Section 2.2.2, PV panels were placed only on
the roof surfaces that were most suitable for PV placement and colored with red in Figure 4.

Figure 4. Solar irradiance on a building roofs enables assessment of the solar potential for an
analyzed village.

3.3. PV Hosting Capacity Results

The last step in the proposed methodology for calculating the PV hosting capacity was to perform
the load flow simulations using the Monte Carlo method, which enabled assessment of the PV hosting
capacity. The result of the proposed method is a set C of PV hosting capacity values. Here, we utilized
kernel density estimation of a set C, which is a non-parametric way to estimate the probability density
function of a random variable, to plot the results in Figure 5.
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Figure 5. Results of calculating PV hosting capacity with the proposed methodology. Figure shows
kernel density estimation of a set C of PV hosting capacity values calculated using the Monte
Carlo method.

Since it is easier to examine the quantiles of the sample from a cumulative histogram, we show
it in Figure 6. The label “actual roofs” refers to our proposed methodology using actual building
roof surfaces. The median PV hosting capacity is 189 kW. The values on the left part of the graph are
buildings that are far from the transformer station and have a greater impact on the network voltages
due to lesser short circuit apparent power. On the other hand, the values on the right of the graph are
the buildings near the transformer station.

Figure 6. Comparison of the proposed PV hosting capacity methodology using actual roof surfaces
(dashed red line) with existing ones, that use the same PV installed power per roof across all buildings
(blue and green line).

Finally, the proposed methodology was compared with existing ones using the same PV installed
power for every roof in a model. Since other methods do not utilize LIDAR and GIS data for modeling
PV generation, those models cannot distinguish between different roofs. Therefore, other methods
usually utilize the most often installed power of PV systems such as 10 kW or 15 kW. The blue line
shows results when installed power of PVs is 15 kW, whereas the green shows results when installed
power is 10 kW. There are two major shortcomings of these approaches. First, all roofs are treated
equally, which means that roofs having high PV potential and roofs without PV potential are modeled
the same. Second, the chosen PV installed power such as 10 kW or 15 kW significantly impacts the
final results, as shown in Figure 6 (median hosting capacity when using 10 kW PVs is almost 50%
higher than median hosting capacity when using 15 kW).
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As described in the methodology, the algorithm randomly chose one roof at a time and performed
load flow analysis sequentially until a network violation occurred. This allows presenting the simulation
results depending on the total PV installed power in the network, as shown in Figure 7.

Figure 7. Umax depending on total PV installed power in the network for all simulations.

The maximal voltage in the LV network for every simulation is represented with a circle, which is
colored depending on violations. Green represents simulations without network violations, and red
represents the simulations where violations occurred. The sizes of the red circles are correlated to the
number of violations. It can be seen that violations started to occur when the total installed power of
PV was around 100 kW.

All the load flow calculations were performed using the PandaPower Python library [38].

4. Discussion

It was confirmed that the chosen PV installed power significantly impacted the final results of the
PV hosting capacity in our case study. It can be seen (from the blue line in Figure 6) that, when the
chosen PV installed power of all PVs in the network was 15 kW, the median PV hosting capacity was
160 kW. When the PV installed power was 10 kW, the median PV hosting capacity was 235 kW (the
green line in Figure 6). Furthermore, it can be seen that the difference was significant (50%) and that
the actual PV hosting capacity results (the dashed red line in Figure 6) lay somewhere in between.

Choosing the single most appropriate PV installed power for modeling all the PVs in the network
is hard as, in reality, every house will have a different PV panel. The major drawback of existing
methods is that they use the same installed power for all simulated PVs and, consequently, the results
can vary a lot, as shown in Figure 6; this problem has already been addressed in Reference [7].

This is the case because distribution system operators do not possess any additional data about
building roofs, and also as LIDAR data, which are essential for modeling building roofs, are not
available in all countries. Additionally, combining electrical LV network data with other data sources
is very hard and time-consuming, as it requires proper data science skills from preprocessing to
connecting all the data sources.

Our approach uses actual roof surfaces in load flow calculations, which consequently results in
the improved accuracy of calculating the PV hosting capacity. Additionally, using actual roof surfaces
in the calculations complicates stochastic PV generation modeling, due to the fact that generation
depends on the tilt and orientation of a PV system, as opposed to other approaches in the literature
where stochastic PV generation modeling is straightforward (where the same orientation and tilt is
used for all PVs).
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5. Conclusions

In this paper, we presented a probabilistic methodology for calculating the PV hosting capacity
using actual building roof data, which was achieved by combining electrical network, LIDAR, and GIS
data. Stochastic PV generation models were developed for differently oriented and tilted roofs and for
various weather scenarios. The proposed methodology was thoroughly described and confirmed in a
case study.

The major drawback of existing PV hosting capacity approaches is that they use the same installed
power of PV systems for all simulated PVs, as these methods do not use external data sources about
building roofs. Consequently, all roofs are treated equally, which means that roofs having high PV
potential and roofs without PV potential are modeled the same. Another problem with existing
methods is that a chosen PV installed power significantly impacts the final result, which was also
confirmed in our case study. The major motivation behind our paper was to improve PV generation
modeling by using external data sources.

The main contribution of this paper is the improved modeling of PV generation using actual
building roof data when calculating PV hosting capacity, as every building is treated according to its
actual solar potential. It was confirmed that using actual building roof data is important for accurate
calculation of PV hosting capacity in our case study by comparing our approach with existing ones.
Our approach uses actual roof data in simulations, which consequently results in improved accuracy
of final PV hosting capacity calculations.
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