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Abstract: This work presents the Third-Order Adjoint Sensitivity Analysis Methodology (3rd-ASAM)
for response-coupled forward and adjoint linear systems. The 3rd-ASAM enables the efficient
computation of the exact expressions of the 3rd-order functional derivatives (“sensitivities”) of a
general system response, which depends on both the forward and adjoint state functions, with respect
to all of the parameters underlying the respective forward and adjoint systems. Such responses
are often encountered when representing mathematically detector responses and reaction rates
in reactor physics problems. The 3rd-ASAM extends the 2nd-ASAM in the quest to overcome
the “curse of dimensionality” in sensitivity analysis, uncertainty quantification and predictive
modeling. This work also presents new formulas that incorporate the contributions of the 3rd-order
sensitivities into the expressions of the first four cumulants of the response distribution in the
phase-space of model parameters. Using these newly developed formulas, this work also presents a
new mathematical formalism, called the 2nd/3rd-BERRU-PM “Second/Third-Order Best-Estimated
Results with Reduced Uncertainties Predictive Modeling”) formalism, which combines experimental
and computational information in the joint phase-space of responses and model parameters,
including not only the 1st-order response sensitivities, but also the complete hessian matrix of
2nd-order second-sensitivities and also the 3rd-order sensitivities, all computed using the 3rd-ASAM.
The 2nd/3rd-BERRU-PM uses the maximum entropy principle to eliminate the need for introducing and
“minimizing” a user-chosen “cost functional quantifying the discrepancies between measurements and
computations,” thus yielding results that are free of subjective user-interferences while generalizing
and significantly extending the 4D-VAR data assimilation procedures. Incorporating correlations,
including those between the imprecisely known model parameters and computed model responses,
the 2nd/3rd-BERRU-PM also provides a quantitative metric, constructed from sensitivity and
covariance matrices, for determining the degree of agreement among the various computational
and experimental data while eliminating discrepant information. The mathematical framework
of the 2nd/3rd-BERRU-PM formalism requires the inversion of a single matrix of size Nr × Nr,
where Nr denotes the number of considered responses. In the overwhelming majority of practical
situations, the number of responses is much less than the number of model parameters. Thus, the
2nd-BERRU-PM methodology overcomes the curse of dimensionality which affects the inversion of
hessian matrices in the parameter space.
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1. Introduction

The functional derivatives (also called “sensitivities”) of results (also called “responses”) are
needed for many purposes, including: (i) understanding the model by ranking the importance of the
various parameters; (ii) performing “reduced-order modeling” by eliminating unimportant parameters
and/or processes; (iii) quantifying the uncertainties induced in a model response due to model parameter
uncertainties; (iv) performing “model validation,” by comparing computations to experiments to
address the question “does the model represent reality?” (v) prioritizing improvements in the model;
(vi) performing data assimilation and model calibration as part of forward “predictive modeling” to
obtain best-estimate predicted results with reduced predicted uncertainties; (vii) performing inverse
“predictive modeling”; (viii) designing and optimizing the system. As is well known, even the
approximate determination of the first-order sensitivities ∂R/∂αi , i = 1, . . . , Nα of a model response R to
Nα parameters αi using conventional finite-difference methods would already require Nα large-scale
computations with altered parameter values, which is unfeasible for large-scale models comprising
many parameters. The computation of higher-order sensitivities by conventional methods is limited in
practice by the so-called “curse of dimensionality,” since the number of such large-scale computations
increases exponentially with the order of the response sensitivities. For the exact computation of the
first- and second-order response sensitivities to parameters, the “curse of dimensionality” has been
overcome by the Second-Order Adjoint Sensitivity Analysis Methodology (2nd-ASAM) conceived and
developed by Cacuci [1–3]. The unique capability of the 2nd-ASAM to compute comprehensively and
efficiently the exact first-and second-order sensitivities of a response to parameters in a large-scale
physical system has been demonstrated [4–6] by an application to a reactor physics system which
comprises 21,976 first-order sensitivities and 482,944,576 second-order sensitivities.

Sections 2 and 3 of this work present the Third-Order Adjoint Sensitivity Analysis Methodology
(3rd-ASAM) for coupled forward and adjoint linear systems, which evidently extends and generalizes
the 2nd-ASAM. The 3rd-ASAM aims at the efficient computation of the exact expressions of the
3rd-order functional derivatives (“sensitivities”) of a system response that depends on both the forward
and adjoint state functions with respect to all of the parameter underlying the respective forward and
adjoint systems. Such responses are often encountered when representing mathematically detector
responses and reaction rates in reactor physics problems. The 3rd-ASAM will be applied to the reactor
physics system analyzed in [4–7] to compute the exact magnitude of the 3rd-order sensitivities to
the model parameters that were found in [4–7] to have unexpectedly large 2nd-order sensitivities.
Furthermore, the 3rd-order sensitivities computed using the 3rd-ASAM are incorporated in the new
formulas, presented in Section 4, for computing to 3rd-order the first four cumulants of the response
distribution in the phase-space of model parameters. Section 5 presents a new mathematical formalism,
which will be called the “Second/Third-Order Best-Estimated Results with Reduced Uncertainties
Predictive Modeling (2nd/3rd-BERRU-PM).” Set in the joint phase-space of responses and parameters,
the 2nd/3rd-BERRU-PM incorporates experimental and computational information, including the
complete (as opposed to partial) vector of 1st-order response sensitivities, the complete hessian matrix
of 2nd-order second-sensitivities and also the 3rd-order sensitivities, all computed using the 3rd-ASAM
presented in Section 3. Thus, the 2nd/3rd-BERRU-PM extends the “BERRU Predictive Modeling” [7],
thereby generalizing and including, as particular cases, similar formulas used in other fields e.g., [8–10].
The 2nd/3rd-BERRU-PM uses the maximum entropy (MaxEnt) principle [11] to eliminate the need for
introducing and “minimizing” a user-chosen “cost functional quantifying the discrepancies between
measurements and computations.” Incorporating correlations, including those between the imprecisely
known model parameters and computed model responses, the 2nd/3rd-BERRU-PM also provides
a quantitative metric, constructed from sensitivity and covariance matrices, for determining the
degree of agreement among the various computational and experimental data and helping eliminate
discrepant information. Conclusions regarding the significance of this work’s novel results in the
quest to overcome the curse of dimensionality in sensitivity analysis, uncertainty quantification and
predictive modeling are presented in Section 6.
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2. Mathematical Description of the Physical System

A linear physical system is generally represented by means of Nu coupled operator equations of

the form
Nu∑
j=1

Li j(α)ϕ j(x) = Qi(α), i = 1, . . . , Nu, x ∈ Ωx, in which the operators Li j(α) act linearly on

the state functions ϕ j(x). The above system of equations can be written in matrix form as follows:

L[α(x)]ϕ(x) = Q[α(x)] , x ∈ Ωx (1)

Matrices and vectors will be denoted using bold letters. Since the right-side of Equation (1) may
contain distributions, the equality in this equation is considered to hold in the weak (“distributional”)
sense. Similarly, all of the equalities that involve differential equations in this work will be considered
to hold in the weak/distributional sense. All vectors in this work are considered to be column vectors,
and transposition will be indicated by a dagger (†) superscript. The vectors, matrices and operators
appearing in Equation (1) are defined as follows:

1. α , (α1, . . . ,αNα
)† denotes a Nα-dimensional column vector whose components are the physical

system’s imprecisely known parameters, which are subject to uncertainties; α ∈ Eα ⊂ RNα , where
Eα denotes a subset of the Nα-dimensional real vector space RNα . The symbol “,” will be used
to denote “is defined as” or “is by definition equal to.” The vector α ∈ Eα ⊂ RNα is considered
to include any imprecisely known model parameters that may enter into defining the system’s
boundary in the phase space of independent variables.

2. x , (x1, . . . , xNx)
†
∈ RNx denotes the Nx-dimensional phase-space position vector, defined on a

phase-space domain denoted as Ωx.
3. ϕ(x) , [ϕ1(x), . . . ,ϕNu(x)]

† denotes a Nu-dimensional column vector whose components
represent the system’s dependent variables (also called “state functions”). In virtually all
of the physical systems represented by Equation (1), the components ϕi(x), i = 1, . . . , Nu are
square-integrable functions and ϕ(x) ∈ Hϕ, where Hϕ is a Hilbert space endowed with an inner
product that will be denoted as

〈
ϕ(x),ψ(x)

〉
ϕ, ψ(x) ∈ Hϕ, and which is defined as follows:

〈
ϕ(x),ψ(x)

〉
ϕ ,

∫
Ωx

ϕ(x)·ψ(x)dx ,
Nu∑
i=1

∫
Ωx

ϕi(x)ψi(x)dx. (2)

4. Q(α) , [Q1(α), . . . , QNu(α)]
† denotes a Nu-dimensional column vector. The components of Q

are operators acting (in general nonlinearly) on α and x;
5. L(α) , [L1(α), . . . , LNu(α)]

† denotes a Nu-component column vector. The components of L(α) are
operators acting linearly onϕ and nonlinearly onα. When L(α) contains differential operators, a set
of boundary and/or initial conditions which define the domain of L(α) must also be given. Since
L(α) is considered to act linearly on ϕ(x), the accompanying boundary and/or initial conditions
must also be linear in ϕ(x). Such linear boundary and/or initial conditions are represented in the
following operator form:

BF(α)ϕ(x)−CF(α) = 0, x ∈ ∂Ωx. (3)

In Equation (3), the operator BF(α) ,
[
Bi j(α)

]
; i = 1, . . . , NB; j = 1, . . . , Nu is a matrix comprising,

as components, operators that act linearly on ϕ(x) and nonlinearly on α; the quantity NB denotes

the total number of boundary and initial conditions. The operator CF(α) ,
[
C1(α), . . . , CNB(α)

]†
is a

NB-dimensional vector comprising components that are operators acting, in general, nonlinearly on α.
The subscript “F” in Equation (3) indicates boundary conditions associated with the “forward” system
of equations.
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In most practical situations the Hilbert space Hϕ is self-dual. The operator L(α) admits an adjoint
(operator), which will be denoted as L+(α), and which is defined through the following relation for an
arbitrary vector ψ(x) ∈ Hϕ: 〈

ψ(x), L(α) ϕ(x)
〉
ϕ =

〈
L+(α) ψ(x), ϕ(x)

〉
ϕ

(4)

In Equation (4), the formal adjoint operator L+(α) is the Nu ×Nu matrix:

L+(α) ,
[
L+

ji (α)
]
, i, j = 1, . . . , Nu , (5)

comprising elements L+
ji (α) obtained by transposing the formal adjoints of the operators Li j(α). Thus,

the system adjoint to Equations (1) and (3) has the following general representation in operator form:

L+(α)ψ(x) = Q+(α) , x ∈ Ωx, (6)

BA(α)ψ(x)−CA(α) = 0, x ∈ ∂Ωx. (7)

The domain of L+(α) is determined by selecting the adjoint boundary and/or initial conditions
represented in operator form in Equation (7), where the letter “A” indicates “adjoint” and the letter
“B” indicates “boundary and/or initial conditions.” These adjoint boundary and/or initial conditions are
selected so as to ensure that the boundary terms that arise when going from the left-side to the right
side of Equation (4) vanish, in conjunction with the forward boundary conditions given in Equation (3).
The source term Q+[α(x)] in Equation (6) is associated with the system’s response which, in this work,
is considered to be a scalar-valued nonlinear functional of the adjoint and forward fluxes, which will be
denoted as R[ϕ(x),ψ(x);α]. Such responses are often encountered when representing mathematically
detector responses and reaction rates in reactor physics problems, and can be generally represented in
the following inner-product form:

R[ϕ(x);ψ(x);α] ,
〈
S(ϕ;ψ;α), 1

〉
ϕ (8)

where S(ϕ;ψ;α) denotes a suitably differentiable function of its arguments. The nominal solution of
Equations (1) and (3) is denoted as ϕ0(x), and is obtained by solving these equations at the nominal
parameter valuesα0. The superscript “zero” will henceforth be used to denote “nominal” or “expected”
or “mean” values. Thus, the vectors ϕ0(x) and α0 satisfy the following equations:

L
(
α0

)
ϕ0(x) = Q

[
α0(x)

]
, x ∈ Ωx, (9)

BF
(
α0

)
ϕ0(x) −CF

(
α0

)
= 0, x ∈ ∂Ωx. (10)

Equations (9) and (10) represent the “base-case” or nominal state of the forward physical system.
Similarly, the “base-case” or nominal state of the adjoint physical system is given by the following
equations:

L+
(
α0

)
ψ0(x) = Q+

(
α0

)
, x ∈ Ωx, (11)

BA
(
α0

)
ψ0(x)−CA

(
α0

)
= 0, x ∈ ∂Ωx. (12)

The nominal value of the response, R
[
ϕ0(x),ψ0(x);α0

]
, is determined by using the nominal

parameter values α0, the nominal value of the forward function ϕ0(x) obtained by solving Equations
(9) and (10), and the nominal value of the adjoint function obtained by solving Equations (11) and (12).
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3. The Third-Order Adjoint Sensitivity Analysis Methodology (3rd-ASAM) for Coupled Linear
Forward and Adjoint Systems: Another Step Towards Overcoming the Curse of Dimensionality
in the Exact Computation of High-Order Response Sensitivities

The model parameters αi are imprecisely known quantities, so their actual values may differ from
their nominal values by quantities denoted as δαi , αi −α

0
i , i = 1, . . . , Nα. Since the model parameters

α and the state functions are related to each other through the forward and adjoint systems, it follows
that variations δα , (δα1, . . . , δαNα

) in the model parameters will cause corresponding variations δϕ ,
(δϕ1, . . . , δϕNu), δϕi , ϕi −ϕ

0
i , i = 1, . . . , Nu and δψ ,

(
δψ1, . . . , δψNu

)
, δψi , ψi −ψ

0
i , i = 1, . . . , Nu

in the forward and adjoint state functions. In turn, the variations δα, δϕ, and δψ cause a response
variation R

(
ϕ0 + δϕ;ψ0 + δψ;α0 + δα

)
around the nominal response value R

[
ϕ0(x),ψ0(x);α0

]
.

3.1. The First-Level Adjoint System (1st-LASS) for Computing Exactly and Efficiently the First-Order Model
Response Sensitivities to Parameters

The total first-order sensitivity of the response R[ϕ(x),ψ(x);α] to variations δα , [δα1, . . . , δαNα ]
†

in the model parameters is given by the definition of the Gateaux (G-) differential, denoted as
δR

(
ϕ0;ψ0;α0; δϕ; δψ; δα

)
of R[ϕ(x),ψ(x);α] around the nominal values

(
ϕ0;ψ0;α0

)
. By definition,

this G-differential is:

δR
(
ϕ0;ψ0;α0; δϕ; δψ; δα

)
, d

dε

{
R
(
ϕ0 + εδϕ;ψ0 + εδψ;α0 + εδα

)}
ε=0

=
{
δR

(
ϕ0;ψ0;α0; δα

)}
dir

+
{
δR

(
ϕ0;ψ0;α0; δϕ; δψ

)}
ind

,
(13)

where the “direct-effect term”
{
δR

(
ϕ0;ψ0;α0; δα

)}
dir

depends solely on the parameter variations δα
and is generally defined as follows:{

δR (ϕ;ψ;α; δα)
}
dir ,

〈
[∂S(ϕ;ψ;α)/∂α] δα, 1

〉
ϕ (14)

while the “indirect-effect term”
{
δR

(
ϕ0;ψ0;α0; δϕ; δψ

)}
ind

depends solely on the variations δϕ and
δψ in the forward and, respectively, adjoint functions, and is generally defined as follows:{

δR (ϕ;ψ;α; δϕ; δψ)
}
ind ,

〈
[∂S(ϕ;ψ;α)/∂ϕ] δϕ, 1

〉
ϕ +

〈
[∂S(ϕ;ψ;α)/∂ψ] δψ, 1

〉
ϕ. (15)

Since the nominal values of the forward and adjoint functions are known after having solved
Equations (9) through (12), it follows that the direct-effect term

{
δR

(
ϕ0;ψ0;α0; δα

)}
dir

can already

be computed at this stage. The indirect-effect term
{
δR

(
ϕ0;ψ0;α0; δϕ; δψ

)}
ind

can be computed only
after having determined the functions δϕ and δψ. These functions are obtained by solving the 1st-Level
Forward Sensitivity System (1st-LFSS), which is obtained by G-differentiating the original forward and
adjoint transport equations and respective boundary conditions given in Equations (1), (3), (6) and (7).
Performing these differentiations yields the following 1st-LFSS:{(

L(α) 0
0 L+(α)

)}
(α0)

(
δϕ(x)
δψ(x)

)
=

 Q(1)
1 (ϕ;α; δα)

Q(1)
2 (ψ;α; δα)


(ϕ0;ψ0;α0)

, (16)

together with the following boundary conditions:{
BF(α)δϕ(x)

}
(α0) =

{
∂ [CF(α)−BF(α)ϕ(x)]/∂α

}
(ϕ0;α0)δα, x ∈ ∂Ωx,{

BA(α)δψ(x)
}
(α0) =

{
∂ [CA(α)−BA(α)ψ(x)]/∂α

}
(ψ0;α0)δα, x ∈ ∂Ωx.

(17)
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The source-terms Q(1)
1 (ϕ;α; δα) and Q(1)

2 (ψ;α; δα) in Equation (16) are defined as follows:

Q(1)
1 (ϕ;α;δα) ,

{
∂ [Q[α(x)]−L(α)ϕ(x)]/∂α

}
δα

Q(1)
2 (ψ;α;δα) ,

{
∂
[
Q+[α(x)]−L+(α)ψ(x)

]
/∂α

}
δα,

(18)

Solving the 1st-LFSS defined by Equations (16) and (17) is computationally expensive, since
the 1st-LFSS would need to be solved anew for every variation δαi, i = 1, . . . , Nα in the model
parameters, as each such variation would affect the source term on the right-side of Equation (16).
The computationally expensive evaluation of the indirect-effect term by using the 1st-LFSS can be
avoided by expressing this indirect-effect term

{
δR

(
ϕ0;ψ0;α0; δϕ; δψ

)}
ind

in terms of the solution
of the 1st-Level Adjoint Sensitivity System (1st-LASS), which is constructed by implementing the
following sequence of steps:

(i) Consider two vector-valued functions u(1)(x) ,
[
u(1)

1 (x), u(1)
2 (x)

]†
and v(1)(x) ,[

v(1)
1 (x), v(1)

2 (x)
]†

, each having two Nu-dimensional vector-components defined as

follows: u(1)
i (x) ,

[
u(1)

i,1 (x), . . . , u(1)
i, j (x), . . . , u(1)

i,Nu
(x)

]†
, i = 1, 2, and v(1)

i (x) ,[
v(1)i,1 (x), . . . , v(1)i, j (x), . . . , v(1)i,Nu

(x)
]†

, i = 1, 2,. The components of these vectors are assumed

to be square-integrable functions.
(ii) Introduce a Hilbert space, denoted as H(1), endowed with the following inner product, denoted

as
〈
u(1)(x), v(1)(x)

〉
(1)

, u(1)(x) ∈ H(1), v(1)(x) ∈ H(1), between the two functions defined in item

(i), above:

〈
u(1)(x), v(1)(x)

〉
(1)
,

2∑
i=1

〈
u(1)

i (x), v(1)
i (x)

〉
ϕ
=

2∑
i=1

Nu∑
j=1

∫
Ωx

[
u(1)

i, j (x)
][

v(1)i, j (x)
]
dx (19)

(iii) In the Hilbert space H(1), form the inner product of Equation (16) with a yet undefined

vector-valued function ψ(1)(x) ,
[
ψ

(1)
1 (x),ψ(1)

2 (x)
]†
∈ H(1) to obtain the following relation,

evaluated at
(
ϕ0;ψ0;α0

)
, in which the superscript “zero” is omitted to simplify the notation:

〈 ψ(1)
1
ψ

(1)
2


†

,
(

L(α) 0
0 L+(α)

)(
δϕ
δψ

)〉
(1)

=

〈 ψ(1)
1
ψ

(1)
2


†

,

 Q(1)
1 (ϕ;α; δα)

Q(1)
2 (ψ;α; δα)

〉
(1)

(20)

(iv) Use the definition of the adjoint operator in the Hilbert space H(1) to recast the left-side of
Equation (20) as follows:

〈 ψ(1)
1
ψ

(1)
2


†

,
(

L(α) 0
0 L+(α)

)(
δϕ
δψ

)〉
(1)

=

〈(
δϕ
δψ

)†
,
(

L+(α) 0
0 L(α)

) ψ(1)
1
ψ

(1)
2

〉
(1)

+ P(1)
[
δϕ; δψ;ψ(1)

1 ,ψ(1)
2

]
(21)

where the bilinear concomitant P(1)
[
δϕ; δψ;ψ(1)

1 ,ψ(1)
2

]
is defined on the phase-space boundary

x ∈ ∂Ωx. The superscript “zero” denoting nominal values for the quantities
(
ϕ0;ψ0;α0

)
was also

omitted in Equations (20) and (21), in order to simplify the notation. Omitting henceforth the
superscript “zero” denoting nominal values for the quantities

(
ϕ0;ψ0;α0

)
should not cause any

loss of clarity, since all quantities are to be evaluated/computed using the respective nominal
values of the model parameters and using the nominal values of the forward and adjoint functions
evaluated at preceding stages/steps at nominal parameter values.
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(v) Identify the term on the left-side of Equation (21) with the indirect effect term defined in
Equation (15), i.e., require that

〈 ψ(1)
1

ψ
(1)
2


†

,
(

L(α) 0
0 L+(α)

)(
δϕ
δψ

)〉
(1)

=
〈
[∂S(ϕ;ψ;α)/∂ϕ] δϕ, 1

〉
ϕ +

〈
[∂S(ϕ;ψ;α)/∂ψ] δψ, 1

〉
ϕ

=

〈 ψ(1)
1

ψ
(1)
2


†

,

 Q(1)
1 (ϕ;α; δα)

Q(1)
2 (ψ;α; δα)

〉
(1)

and use Equation (21) in conjunction with the boundary conditions given in Equation (17) on the
above relation to construct the following 1st-Level Adjoint Sensitivity System (1st-LASS):(

L+(α) 0
0 L(α)

) ψ(1)
1 (x)

ψ
(1)
2 (x)

 =
 [∂S(ϕ;ψ;α)/∂ϕ]†

[∂S(ϕ;ψ;α)/∂ψ]†

. (22)

(vi) The boundary conditions given in Equation (17) are now implemented in Equation (21),
thereby reducing by half the number of unknown boundary-values in the bilinear concomitant

P(1)
[
δϕ; δψ;ψ(1)

1 ,ψ(1)
2

]
. The boundary conditions for the adjoint functions ψ(1)

1 (x) and ψ(1)
2 (x)

are chosen next so as to eliminate the remaining unknown boundary-values of the functions δϕ
and δψwhile ensuring that Equation (22) is well posed. The boundary conditions thus chosen
for the adjoint functions ψ(1)

1 (x) and ψ(1)
2 (x) can be represented in operator form as follows:

B(1)
A

[
ϕ(x);ψ(x);ψ(1)

1 (x),ψ(1)
2 (x);α

]
= 0, x ∈ ∂Ωx. (23)

(vii) In most cases, the above choice of boundary conditions for the 1st-level adjoint function ψ(1)(x)

will cause the bilinear concomitant P(1)
[
δϕ, δψ,ψ(1)

1 ,ψ(1)
2

]
in Equation (21) to vanish. When

the boundary conditions for the original system are non-homogeneous, however, the bilinear

concomitant P(1)
[
δϕ, δψ,ψ(1)

1 ,ψ(1)
2

]
may not vanish. Even when it does not vanish, however, this

bilinear concomitant will be reduced to a quantity, denoted here as P̂(1)
[
ϕ;ψ;ψ(1)

1 ,ψ(1)
2 ;α; δα

]
,

which will contain only known values of its arguments.
(viii) Use the 1st-LASS defined by Equations (22) and (23) together with Equations (20) and (21) to

obtain the following expression for the indirect-effect term defined in Equation (15), in terms of
the adjoint functions ψ(1)

1 (x) and ψ(1)
2 (x):

{
δR

(
ϕ;ψ;ψ(1)

1 ;ψ(1)
2 ;α; δα

)}
ind

=

〈 ψ(1)
1
ψ

(1)
2


†

,

 Q(1)
1 (ϕ;α; δα)

Q(1)
2 (ψ;α; δα)

〉
(1)

− P̂(1)
[
ϕ;ψ;ψ(1)

1 ,ψ(1)
2 ;α; δα

]
. (24)

As indicated in Equation (22), the function ψ(1)
2 (x) is computed by solving the original forward

equation with the source ∂S(ϕ;ψ;α)/∂ψ while the function ψ(1)
1 (x) is obtained by solving the

original adjoint equation with the source [∂S(ϕ;ψ;α)/∂ϕ]†. Thus, after the 1st-LASS is solved to
determine these two adjoint functions, the “indirect-effect term” is computed efficiently and exactly by
simply performing the integrations (“quadratures”) indicated by the inner-product on the right-side of
Equation (24).
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Replacing Equations (24) and (14) in Equation (13) eliminates the appearance of the functions
δϕ(x), δψ(x) in the resulting expression. Consequently, the total 1st-order response sensitivity can be
expressed in terms of the adjoint functions ψ(1)

1 (x) and ψ(1)
2 (x) as follows:

δR
(
ϕ;ψ;ψ(1);α; δα

)
=

〈
∂S(ϕ;ψ;α)

∂α δα, 1
〉
ϕ
+

〈
ψ

(1)
1 , Q(1)

1 (ϕ;α; δα)
〉
ϕ

+
〈
ψ

(1)
2 , Q(1)

2 (ψ;α; δα)
〉
ϕ
− P̂(1)

[
ϕ;ψ;ψ(1)

1 ;ψ(1)
2 ;α; δα

]
,

Nα∑
i=1

∂R
(
ϕ;ψ; ψ(1)

1 ;ψ(1)
2 ;α

)
∂αi

δαi.
(25)

All of the quantities shown in Equation (25) are to be evaluated at the nominal values(
ϕ0;ψ0; ψ(1),0

1 ;ψ(1),0
2 ;α0

)
. The partial 1st-order response sensitivities, denoted in Equation (25) as

∂R
(
ϕ;ψ;ψ(1)

1 ;ψ(1)
2 ;α

)
/∂αi , i = 1, . . . , Nα, of the response R(ϕ;ψ;α) to a generic parameter αi

are obtained by identifying the quantities that multiply the various parameter variations δαi in
Equation (25).

3.2. The Second-Level Adjoint System (2nd-LASS) for Computing Exactly and Efficiently the Second-Order
Model Response Sensitivities to Parameters

The second order sensitivities of the response R(ϕ;ψ;α) with respect to the parameters
αi, i = 1, . . . , Nα, are obtained by determining the first-order G-differentials of the 1st-order

sensitivities ∂R
(
ϕ;ψ;ψ(1)

1 ;ψ(1)
2 ;α

)
/∂αi . For this purpose, it is convenient to use the

notation R(1)
i

(
ϕ;ψ;ψ(1)

1 ;ψ(1)
2 ;α

)
, ∂R

(
ϕ;ψ;ψ(1)

1 ;ψ(1)
2 ;α

)
/∂αi . The first-order G-differential of

R(1)
i

(
ϕ;ψ;ψ(1)

1 ;ψ(1)
2 ;α

)
is obtained, by definition, as follows:

{
δR(1)

i

(
ϕ;ψ;ψ(1)

1 ;ψ(1)
2 ;α; δϕ; δψ; δψ(1)

1 ; δψ(1)
2 ; δα

)}
(ϕ0;ψ0;ψ(1),0

1 ;ψ(1),0
2 ;α0)

, d
dε

{
R(1)

i

(
ϕ0 + εδϕ;ψ0 + εδψ;ψ(1),0

1 + εδψ
(1)
1 ;ψ(1),0

2 + εδψ
(1)
2 ;α0 + εδα

)}
ε=0

=

∂R(1)
i

(
ϕ;ψ;ψ(1)

1 ;ψ(1)
2 ;α

)
∂α


(ϕ0;ψ0;ψ(1),0;α0)

δα+
{
δR(1)

i

(
ϕ;ψ;ψ(1)

1 ;ψ(1)
2 ;α; δϕ; δψ; δψ(1)

1 ; δψ(1)
2

)}
ind

,

(26)

where the “indirect-effect term”
{
δR(1)

i

(
ϕ;ψ;ψ(1)

1 ;ψ(1)
2 ;α; δϕ; δψ; δψ(1)

1 ; δψ(1)
2

)}
ind

depends solely on

the variations δϕ, δψ, δψ(1)
1 and δψ

(1)
2 in the forward and, respectively, adjoint functions and is

defined as follows:{
δR(1)

i

(
ϕ;ψ;ψ(1)

1 ;ψ(1)
2 ;α; δϕ; δψ; δψ(1)

1 ; δψ(1)
2

)}
ind

,


〈∂R(1)

i

(
ϕ;ψ;ψ(1)

1 ;ψ(1)
2 ;α

)
∂ϕ


†

, δϕ
〉
ϕ

+

〈∂R(1)
i

(
ϕ;ψ;ψ(1)

1 ;ψ(1)
2 ;α

)
∂ψ


†

, δψ
〉
ϕ

+

〈∂R(1)
i

(
ϕ;ψ;ψ(1)

1 ;ψ(1)
2 ;α

)
∂ψ

(1)
1


†

, δψ(1)
1

〉
ϕ

+

〈∂R(1)
i

(
ϕ;ψ;ψ(1)

1 ;ψ(1)
2 ;α

)
∂ψ

(1)
2


†

, δψ(1)
2

〉
ϕ


(ϕ0;ψ0;ψ(1),0

1 ;ψ(1),0
2 ;α0)

.

(27)

The indirect-effect term defined in Equation (27) can be computed only after having obtained both
the solution the functions δϕ, δψ, δψ(1)

1 and δψ(1)
2 . The functions δϕ and δψ are the solutions of the
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1st-LFSS defined by Equations (16). Furthermore, the functions δψ(1)
1 and δψ(1)

2 are the solutions of the
following system of equations obtained by G-differentiating the 1st-LASS:

L+(α)δψ
(1)
1 (x) − ∂2S(ϕ;ψ;α)

∂ϕ∂ϕ δϕ(x) − ∂2S(ϕ;ψ;α)
∂ϕ ∂ψ δψ(x) = Q(2)

1

(
ϕ;ψ;ψ(1)

1 ;α; δα
)

L(α)δψ(1)
2 (x) − ∂2S(ϕ;ψ;α)

∂ψ∂ϕ δϕ(x) − ∂2S(ϕ;ψ;α)
∂ψ∂ψ δψ(x) = Q(2)

2

(
ϕ;ψ;ψ(1)

2 ;α; δα
)  (28)

δB(1)
A

(
ϕ;ψ;ψ(1)

1 ;ψ(1)
2 ;α

)
,

∂B(1)
A

(
ϕ;ψ;ψ(1)

1 ;ψ(1)
2 ;α

)
∂ϕ δϕ+

∂B(1)
A

(
ϕ;ψ;ψ(1)

1 ;ψ(1)
2 ;α

)
∂ψ δψ

+
∂B(1)

A

(
ϕ;ψ;ψ(1)

1 ;ψ(1)
2 ;α

)
∂ψ

(1)
1

δψ
(1)
1 +

∂B(1)
A

(
ϕ;ψ;ψ(1)

1 ;ψ(1)
2 ;α

)
∂ψ

(1)
2

δψ
(1)
2

+
∂B(1)

A

(
ϕ;ψ;ψ(1)

1 ;ψ(1)
2 ;α

)
∂α δα = 0, x ∈ ∂Ωx.

(29)

where:

Q(2)
1

(
ϕ;ψ;ψ(1)

1 ;α; δα
)
,

∂
2S(ϕ;ψ;α)
∂ϕ∂α

−

∂
[
L+(α)ψ

(1)
1 (x)

]
∂α

δα, (30)

Q(2)
2

(
ϕ;ψ;ψ(1)

2 ;α; δα
)
,

∂
2S(ϕ;ψ;α)
∂ψ∂α

−

∂
[
L(α)ψ(1)

2 (x)
]

∂α

δα. (31)

The system comprising Equations (16) and (28), together with the boundary conditions provided
in Equations (17) and (29) constitutes the 2nd-Level Forward Sensitivity System (2nd-LFSS). Since the
source-terms of the 2nd-LFSS depend on the parameters variations δαi, it follows that the determination
of the functions δψ(1)

1 and δψ(1)
2 is at least as expensive computationally as determining the functions

δϕ and δψ by solving the 1st-LFSS. To avoid the need for solving the 2nd-LFSS, the indirect-effect
term defined in Equation (27) will be expressed in terms of a 2nd-Level Adjoint Sensitivity System
(2nd-LASS), which will be constructed by following the general principles introduced by Cacuci [1–3],
comprising the following sequence of steps:

(i) Define a Hilbert space, denoted as H(2), having vector-valued elements of the form the u(2)(x) ,[
u(2)

1 (x), u(2)
2 (x), u(2)

3 (x), u(2)
4 (x)

]†
∈ H(2), with components that are Nu-dimensional vectors of the form

u(2)
i (x) ,

[
u(2)

i,1 (x), . . . , u(2)
i, j (x), . . . , u(2)

i,Nu
(x)

]†
, i = 1, . . . , 4, with square-integrable components u(2)

i, j (x).

In H(2), define the inner-product, denoted as
〈
u(2)(x), v(2)(x)

〉
(2)

, of two functions u(2)(x) ∈ H(2) and

v(2)(x) ∈ H(2) as follows:

〈
u(2)(x), v(2)(x)

〉
(2)
,

4∑
i=1

〈
u(2)

i (x), v(2)
i (x)

〉
ϕ
=

4∑
i=1

Nu∑
j=1

∫
Ωx

u(2)
i, j (x)v

(2)
i, j (x) dx. (32)
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Using the definition provided in Equation (32), construct the inner product of a vector ψ(2)
i (x) ,[

ψ
(2)
1,i (x),ψ

(2)
2,i (x),ψ

(2)
3,i (x),ψ

(2)
4,i (x)

]†
∈ H(2) with Equations (16) and (28) to obtain the following relation:

〈
ψ

(2)
1,i (x)

ψ
(2)
2,i (x)

ψ
(2)
3,i (x)

ψ
(2)
4,i (x)



†

,



L(α) 0 0 0
0 L+(α) 0 0

−
∂2S(ϕ;ψ;α)

∂ϕ∂ϕ
−
∂2S(ϕ;ψ;α)

∂ψ∂ϕ
L+(α) 0

−
∂2S(ϕ;ψ;α)
∂ϕ ∂ψ

−
∂2S(ϕ;ψ;α)

∂ψ∂ψ
0 L(α)




δϕ(x)
δψ(x)

δψ
(1)
1 (x)

δψ
(1)
2 (x)


〉

(2)

=

=

〈
ψ

(2)
1,i (x)

ψ
(2)
2,i (x)

ψ
(2)
3,i (x)

ψ
(2)
4,i (x)



†

,



Q(1)
1 (ϕ;α; δα)

Q(1)
2 (ψ;α; δα)

Q(2)
1

(
ϕ;ψ;ψ(1)

1 ;α; δα
)

Q(2)
2

(
ϕ;ψ;ψ(1)

2 ;α; δα
)


〉
(2)

.

(33)

(ii) Use the definition of the adjoint operator in the Hilbert space H(2) to recast the left-side of
Equation (33) as follows:

〈
ψ

(2)
1,i (x)

ψ
(2)
2,i (x)

ψ
(2)
3,i (x)

ψ
(2)
4,i (x)



†

,


L(α) 0 0 0

0 L+(α) 0 0

−
∂2S(ϕ;ψ;α)
∂ϕ∂ϕ −

∂2S(ϕ;ψ;α)
∂ψ∂ϕ L+(α) 0

−
∂2S(ϕ;ψ;α)
∂ϕ ∂ψ −

∂2S(ϕ;ψ;α)
∂ψ∂ψ 0 L(α)




δϕ(x)
δψ(x)

δψ
(1)
1 (x)

δψ
(1)
2 (x)


〉
(2)

=

=

〈
δϕ(x)
δψ(x)

δψ
(1)
1 (x)

δψ
(1)
2 (x)


†

,


L+(α) 0 −

∂2S(ϕ;ψ;α)
∂ϕ∂ϕ −

∂2S(ϕ;ψ;α)
∂ϕ ∂ψ

0 L(α) −
∂2S(ϕ;ψ;α)
∂ψ∂ϕ −

∂2S(ϕ;ψ;α)
∂ψ∂ψ

0 0 L(α) 0
0 0 0 L+(α)




ψ

(2)
1,i (x)

ψ
(2)
2,i (x)

ψ
(2)
3,i (x)

ψ
(2)
4,i (x)


〉
(2)

+P(2)
[
δϕ; δψ; δψ(1)

1 , δψ(1)
2 ;ψ(2)

1,i (x),ψ
(2)
2,i (x),ψ

(2)
3,i (x),ψ

(2)
4,i (x)

]
,

(34)

where the bilinear concomitant P(2)
[
δϕ; δψ; δψ(1)

1 , δψ(1)
2 ;ψ(2)

1,i (x),ψ
(2)
2,i (x),ψ

(2)
3,i (x),ψ

(2)
4,i (x)

]
is

defined on the phase-space boundary x ∈ ∂Ωx.
(iii) Identify the first term on the right-side of Equation (34) with the indirect-effect term defined in

Equation (27) by requiring that the following system of equations be satisfied for i = 1, . . .Nα:

L+(α)ψ
(2)
1,i (x) −

∂2S(ϕ;ψ;α)
∂ϕ∂ϕ ψ

(2)
3,i (x) −

∂2S(ϕ;ψ;α)
∂ϕ ∂ψ ψ

(2)
4,i (x) =

[
∂R(1)

i

(
ϕ;ψ;ψ(1)

1 ;ψ(1)
2 ;α

)
/∂ϕ

]†
L(α)ψ(2)

2,i (x) −
∂2S(ϕ;ψ;α)
∂ψ∂ϕ ψ

(2)
3,i (x) −

∂2S(ϕ;ψ;α)
∂ψ∂ψ ψ

(2)
4,i (x) =

[
∂R(1)

i

(
ϕ;ψ;ψ(1)

1 ;ψ(1)
2 ;α

)
/∂ψ

]†
L(α)ψ(2)

3,i (x) =
[
∂R(1)

i

(
ϕ;ψ;ψ(1)

1 ;ψ(1)
2 ;α

)
/∂ψ(1)

1

]†
L+(α)ψ

(2)
4,i (x) =

[
∂R(1)

i

(
ϕ;ψ;ψ(1)

1 ;ψ(1)
2 ;α

)
/∂ψ(1)

2

]†
(35)

(iv) The boundary conditions given in Equations (17) and (29) are now implemented in Equation (34),
thereby reducing by half the number of unknown boundary-values in the bilinear concomitant

P(2)
[
δϕ; δψ; δψ(1)

1 , δψ(1)
2 ;ψ(2)

1,i (x),ψ
(2)
2,i (x),ψ

(2)
3,i (x),ψ

(2)
4,i (x)

]
. The boundary conditions for the

2nd-level adjoint functionsψ(2)
1,i (x),ψ

(2)
2,i (x),ψ

(2)
3,i (x),ψ

(2)
4,i (x) are now chosen so as to eliminate the

remaining unknown boundary-values of the functions δϕ, δψ, δψ(1)
1 and δψ(1)

2 while ensuring
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that Equation (35) is well posed. The boundary conditions thus chosen for the adjoint functions
ψ

(1)
1 (x) and ψ(1)

2 (x) can be represented in operator form as follows:

B(2)
A

[
ϕ(x);ψ(x);ψ(1)

1 (x);ψ(1)
2 (x);ψ(2)

1,i (x);ψ
(2)
2,i (x);ψ

(2)
3,i (x);ψ

(2)
4,i (x);α

]
= 0, x ∈ ∂Ωx. (36)

In most cases, the above choice of boundary conditions for the 1st-level adjoint functionψ(1)(x)will

cause the bilinear concomitant P(2)
[
δϕ; δψ; δψ(1)

1 , δψ(1)
2 ;ψ(2)

1,i (x),ψ
(2)
2,i (x),ψ

(2)
3,i (x),ψ

(2)
4,i (x)

]
in Equation

(34) to vanish. Even when it does not vanish, however, this bilinear concomitant will be reduced to

a quantity, denoted here as P̂(2)
[
ϕ;ψ;ψ(1)

1 ,ψ(1)
2 ;ψ(2)

1,i (x),ψ
(2)
2,i (x),ψ

(2)
3,i (x),ψ

(2)
4,i (x);α; δα

]
, which will

contain only known values of its arguments.
The system of equations comprising Equations (35) and (36) will be called the 2nd-Level Adjoint

Sensitivity System (2nd-LASS) for the 2nd-level adjoint functions ψ(2)
1, j (x),ψ

(2)
2, j (x),ψ

(2)
3, j (x),ψ

(2)
4, j (x), i =

1, . . .Nα. These 2nd-level adjoint functions are obtained by solving the 2nd-LASS successively by
using two “forward” and two “adjoint” computations, for each of the imprecisely known scalar
model parameters.

(v) Use the 2nd-LASS defined by Equations (35) and (36) together with Equations (33)–(35) to
obtain the following expression for the indirect-effect term defined in Equation (27), in terms of the
2nd-level adjoint functions ψ(2)

1, j (x),ψ
(2)
2, j (x),ψ

(2)
3, j (x),ψ

(2)
4, j (x){

δR(1)
i

(
ϕ;ψ;ψ(1)

1 ,ψ(1)
2 ;ψ(2)

1,i (x),ψ
(2)
2,i (x),ψ

(2)
3,i (x),ψ

(2)
4,i (x);α; δα

)}
ind

=

〈
ψ

(2)
1,i (x)

ψ
(2)
2,i (x)

ψ
(2)
3,i (x)

ψ
(2)
4,i (x)



†

,



Q(1)
1 (ϕ;α; δα)

Q(1)
2 (ψ;α; δα)

Q(2)
1

(
ϕ;ψ;ψ(1)

1 ;α; δα
)

Q(2)
2

(
ϕ;ψ;ψ(1)

2 ;α; δα
)


〉
(2)

−P̂(2)
[
ϕ;ψ;ψ(1)

1 ,ψ(1)
2 ;ψ(2)

1,i (x),ψ
(2)
2,i (x),ψ

(2)
3,i (x),ψ

(2)
4,i (x);α; δα

]
.

(37)

As Equation (37) indicates, the indirect-effect term can be computed speedily by quadratures once
the 2nd-level adjoint functions ψ(2)

1, j (x),ψ
(2)
2, j (x),ψ

(2)
3, j (x),ψ

(2)
4, j (x) become available.

(vi) Replace Equation (37) in Equation (26) to obtain the following expression for the total 2nd-order
response sensitivity to model parameters:

δR(1)
i

(
ϕ;ψ;ψ(1)

1 ;ψ(1)
2 ;α; δϕ; δψ; δψ(1)

1 ; δψ(1)
2 ; δα

)
=

,
Nα∑
j=1

R(2)
i j

[
ϕ;ψ;ψ(1)

1 ;ψ(1)
2 ;ψ(2)

1,i (x),ψ
(2)
2,i (x),ψ

(2)
3,i (x),ψ

(2)
4,i (x);α

]
δα j , i = 1, . . . , Nα.

(38)

where R(2)
i j

[
ϕ;ψ;ψ(1)

1 ;ψ(1)
2 ;ψ(2)

1,i (x),ψ
(2)
2,i (x),ψ

(2)
3,i (x),ψ

(2)
4,i (x);α

]
≡ ∂2R/∂αi∂α j ; i, j = 1, . . . , Nα

denotes the 2nd-order partial sensitivity of the response to the model parameters and is defined
as follows:
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R(2)
i j

[
ϕ;ψ;ψ(1)

1 ;ψ(1)
2 ;ψ(2)

1,i (x),ψ
(2)
2,i (x),ψ

(2)
3,i (x),ψ

(2)
4,i (x);α

]
,

∂R(1)
i

(
ϕ;ψ;ψ(1)

1 ;ψ(1)
2 ;α

)
∂α j

+
〈
ψ

(2)
1,i (x), ∂ [Q[α(x)]−L(α)ϕ(x)]/∂α j

〉
ϕ
+

〈
ψ

(2)
2,i (x), ∂

[
Q+[α(x)]−L+(α)ψ(x)

]
/∂α j

〉
ϕ

+

〈
ψ

(2)
3,i (x),

∂2S(ϕ;ψ;α)
∂ϕ∂α j

−

∂
[
L+(α)ψ

(1)
1 (x)

]
∂α j

〉
ϕ

+

〈
ψ

(2)
4,i (x),

∂2S(ϕ;ψ;α)
∂ψ∂α j

−

∂
[
L(α)ψ(1)

2 (x)
]

∂α j

〉
ϕ

−

∂P̂(2)
[
ϕ;ψ;ψ(1)

1 ,ψ(1)
2 ;ψ(2)

1,i (x),ψ
(2)
2,i (x),ψ

(2)
3,i (x),ψ

(2)
4,i (x);α

]
∂α j

, i = 1, . . . , Nα; j = 1, . . . , i.

(39)

Note that the 2nd-LASS is independent of parameter variations δα. Thus, the exact computation

of all of the partial second-order sensitivities, R(2)
i j

[
ϕ;ψ;ψ(1)

1 ;ψ(1)
2 ;ψ(2)

1,i (x),ψ
(2)
2,i (x),ψ

(2)
3,i (x),ψ

(2)
4,i (x);α

]
,

i, j = 1, . . . , Nα, requires at most Nα large-scale (adjoint) computations using the 2nd-LASS, rather
than O

(
N2
α

)
large-scale computations as would be required by forward methods. It is also

important to note that by solving the 2nd-LASS Nα-times, the “off-diagonal” 2nd-order mixed sensitivities

R(2)
i j

[
ϕ;ψ;ψ(1)

1 ;ψ(1)
2 ;ψ(2)

1,i (x),ψ
(2)
2,i (x),ψ

(2)
3,i (x),ψ

(2)
4,i (x);α

]
will be computed twice, in two different ways

(using distinct 2nd-level adjoint functions), thereby providing an independent intrinsic (numerical) verification
that the 1st- and 2nd-order sensitivities are computed accurately. In practice, it is useful to prioritize the
computation of the 2nd-order sensitivities by using the rankings of the relative magnitudes of the
1st-order sensitivities as a “priority indicator”: the larger the magnitude of the relative 1st-order
sensitivity, the higher the priority for computing the corresponding 2nd-order sensitivities. Also,
since vanishing 1st-order sensitivities may indicate critical points of the response in the phase-space
of model parameters, it is also of interest to compute the 2nd-order sensitivities that correspond
to vanishing 1st-order sensitivities. Thus, only the 2nd-order partial sensitivities of the response
R[ϕ(x),ψ(x);α] which are deemed important will need to be computed. Information provided by the
1st-order sensitivities might indicate which 2nd-order sensitivities could be neglected.

3.3. The Third-Level Adjoint System (3rd-LASS) for Computing Exactly and Efficiently the Third-Order Model
Response Sensitivities to Parameters

The third-order sensitivities of the response R(ϕ;ψ;α) with respect to the model
parameters αi, i = 1, . . . , Nα, are obtained by determining the first-order G-differential,

δR(2)
i j

[
ϕ0;ψ0;ψ(1),0

1 ;ψ(1),0
2 ;ψ(2),0

1,i (x),ψ(2),0
2,i (x),ψ(2),0

3,i (x),ψ(2),0
4,i (x);α0

]
, of the 2nd-order sensitivities

R(2)
i j

[
ϕ;ψ;ψ(1)

1 ;ψ(1)
2 ;ψ(2)

1,i (x),ψ
(2)
2,i (x),ψ

(2)
3,i (x),ψ

(2)
4,i (x);α

]
, computed in Section 3.2, which is given by

the following expression:

δR(2)
i j

[
ϕ0(x);ψ0(x);ψ(1),0

1 (x);ψ(1),0
2 (x);ψ(2),0

1,i (x),ψ(2),0
2,i (x),ψ(2),0

3,i (x),ψ(2),0
4,i (x);α0 ;

δϕ(x); δψ(x); δψ(1)
1 (x); δψ(1)

2 (x); δψ(2)
1,i (x), δψ

(1)
2,i , δψ(1),0

3,i , δψ(1),0
4,i ; δα

]
, d

dε

{
R(2)

i j

[
ϕ0(x) + εδϕ(x);ψ0(x) + εδψ(x);ψ(1),0

1 (x) + εδψ
(1)
1 (x);ψ(1),0

2 (x) + εδψ
(1)
2 (x);

ψ
(2)
1,i (x) + εδψ

(2)
1,i (x),ψ

(1),0
2,i (x) + εδψ

(1)
2,i ,ψ(2)

3,i (x) + εδψ
(1),0
3,i ,ψ(2)

4,i (x) + εδψ
(1),0
4,i ;α0 + εδα

]}
ε=0

=

∂R(2)
i j (ϕ;ψ;...;α)

∂α


(ϕ0;ψ0;...;α0)

δα

+
{
δR(2)

i j

(
ϕ;ψ;ψ(1)

1 ;ψ(1)
2 ;ψ(2)

1,i , . . . ,ψ(2)
4,i ;α; δϕ; δψ; δψ(1)

1 ; δψ(1)
2 ; δψ(2)

1,i , . . . , δψ(2)
4,i

)}
ind

, i = 1, . . . , Nα; j = 1, . . . , i.

(40)

The quantity
{
δR(2)

i j

(
ϕ;ψ;ψ(1)

1 ;ψ(1)
2 ;ψ(2)

1,i , . . . ,ψ(2)
4,i ;α; δϕ; δψ; δψ(1)

1 ; δψ(1)
2 ; δψ(2)

1,i , . . . , δψ(2)
4,i

)}
ind

denotes the “indirect-effect term”, which depends solely on the variations
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(
δϕ; δψ; δψ(1)

1 ; δψ(1)
2 ; δψ(2)

1,i , . . . , δψ(2)
4,i

)
in the forward and adjoint functions, respectively, and

is defined as follows:{
δR(2)

i j

(
ϕ;ψ;ψ(1)

1 ;ψ(1)
2 ;ψ(2)

1,i , . . . ,ψ(2)
4,i ;α; δϕ; δψ; δψ(1)

1 ; δψ(1)
2 ; δψ(2)

1,i , . . . , δψ(2)
4,i

)}
ind

,


〈∂R(2)

i, j (ϕ...α)

∂ϕ

†, δϕ〉
ϕ

+

〈∂R(2)
i, j (ϕ;ψ...α)

∂ψ

†, δψ〉
ϕ

+

〈∂R(2)
i, j

(
...;ψ(1)

1 ...α
)

∂ψ
(1)
1


†

, δψ(1)
1

〉
ϕ

+

〈∂R(2)
i, j

(
...;ψ(1)

2 ...
)

∂ψ
(1)
2


†

, δψ(1)
2

〉
ϕ

+

〈∂R(2)
i, j

(
...;ψ(2)

1,i ...
)

∂ψ
(2)
1,i


†

, δψ(2)
1,i

〉
ϕ

+

〈∂R(2)
i, j

(
...;ψ(2)

2,i ...
)

∂ψ
(2)
1,i


†

, δψ(2)
1,i

〉
ϕ

+

〈∂R(2)
i, j

(
...;ψ(2)

3,i ...
)

∂ψ
(2)
3,i


†

, δψ(2)
3,i

〉
ϕ

+

〈∂R(2)
i, j

(
...;ψ(2)

4,i ...
)

∂ψ
(2)
4,i


†

, δψ(2)
4,i

〉
ϕ


(ϕ0;...;α0)

, i = 1, . . . , Nα; j = 1, . . . , i.

(41)

The indirect-effect term defined in Equation (41) can be computed only after having computed the
functions δψ(2)

1,i , δψ(2)
2,i , δψ(2)

3,i , δψ(2)
4,i , in addition to the functions δϕ, δψ, δψ(1)

1 and δψ(1)
2 . Altogether,

the functions δϕ, δψ, δψ(1)
1 , δψ(1)

2 δψ
(2)
1,i , δψ(2)

2,i , δψ(2)
3,i , δψ(2)

4,i , are the solutions of Equation (28),
augmented by the solutions of the system of equations obtained by G-differentiating the 2nd-LASS,
which can be written in matrix form as follows:



L(α) 0 0 0 0 0 0 0
0 L+(α) 0 0 0 0 0 0

F(2)
31 F(2)

32 L+(α) 0 0 0 0 0

F(2)
41 F(2)

42 0 L(α) 0 0 0 0

F(3)
51 F(3)

52 F(3)
53 F(3)

54 L+(α) 0 F(3)
57 F(3)

58

F(3)
61 F(3)

62 F(3)
63 F(3)

64 0 L(α) F(3)
67 F(3)

68

F(3)
71 F(3)

72 F(3)
73 F(3)

74 0 0 L(α) 0

F(3)
81 F(3)

82 F(3)
83 F(3)

84 0 0 0 L+(α)





δϕ(x)
δψ(x)

δψ
(1)
1 (x)

δψ
(1)
2 (x)

δψ
(2)
1,i (x)

δψ
(2)
2,i (x)

δψ
(2)
3,i (x)

δψ
(2)
4,i (x)



=



Q(1)
1 (ϕ;α; δα)

Q(1)
2 (ψ;α; δα)

Q(2)
1 (ϕ; . . . ; δα)

Q(2)
2 (ϕ; . . . ; δα)

Q(3)
1,i (ϕ; . . . ; δα)

Q(3)
2,i (ϕ; . . . ; δα)

Q(3)
3,i (ϕ; . . . ; δα)

Q(3)
4,i (ϕ; . . . ; δα)



, (42)

where:

F(2)
31 , −

∂2S(ϕ;ψ;α)
∂ϕ∂ϕ

, F(2)
32 , −

∂2S(ϕ;ψ;α)
∂ψ∂ϕ

; F(2)
41 , −

∂2S(ϕ;ψ;α)
∂ϕ ∂ψ

; F(2)
42 , −

∂2S(ϕ;ψ;α)
∂ψ∂ψ

; (43)

F(3)
51 , −

∂3S(ϕ;ψ;α)
∂ϕ∂ϕ∂ϕ

ψ
(2)
3,i (x) −

∂3S(ϕ;ψ;α)
∂ϕ∂ϕ ∂ψ

ψ
(2)
4,i (x) −

∂
∂ϕ

[
∂R(1)

i

(
ϕ;ψ;ψ(1)

1 ;ψ(1)
2 ;α

)
/∂ϕ

]†
; (44)

F(3)
52 , −

∂3S(ϕ;ψ;α)
∂ψ∂ϕ∂ϕ

ψ
(2)
3,i (x) −

∂3S(ϕ;ψ;α)
∂ϕ∂ψ ∂ψ

ψ
(2)
4,i (x) −

∂
[
∂R(1)

i

(
ϕ;ψ;ψ(1)

1 ;ψ(1)
2 ;α

)
/∂ϕ

]†
∂ψ

; (45)

F(3)
53 , −

∂

∂ψ
(1)
1

[
∂R(1)

i

(
ϕ;ψ;ψ(1)

1 ;ψ(1)
2 ;α

)
/∂ϕ

]†
; F(3)

54 , −
∂

∂ψ
(1)
2

[
∂R(1)

i

(
ϕ;ψ;ψ(1)

1 ;ψ(1)
2 ;α

)
/∂ϕ

]†
; (46)

F(3)
55 , L+(α); F(3)

56 ≡ 0; F(3)
57 , −

∂2S(ϕ;ψ;α)
∂ϕ∂ϕ

; F(3)
58 , −

∂2S(ϕ;ψ;α)
∂ϕ ∂ψ

; (47)

F(3)
61 , −

∂3S(ϕ;ψ;α)
∂ψ∂ϕ∂ϕ

ψ
(2)
3,i (x) −

∂3S(ϕ;ψ;α)
∂ϕ∂ψ∂ψ

ψ
(2)
4,i (x) −

∂
∂ϕ

[
∂R(1)

i

(
ϕ;ψ;ψ(1)

1 ;ψ(1)
2 ;α

)
/∂ψ

]†
; (48)

F(3)
62 , −

∂3S(ϕ;ψ;α)
∂ψ∂ψ∂ϕ

ψ
(2)
3,i (x) −

∂3S(ϕ;ψ;α)
∂ψ∂ψ∂ψ

ψ
(2)
4,i (x) −

∂
∂ψ

[
∂R(1)

i

(
ϕ;ψ;ψ(1)

1 ;ψ(1)
2 ;α

)
/∂ψ

]†
; (49)

F(3)
63 , −

∂

∂ψ
(1)
1

[
∂R(1)

i

(
ϕ;ψ;ψ(1)

1 ;ψ(1)
2 ;α

)
/∂ψ

]†
; F(3)

64 , −
∂

∂ψ
(1)
2

[
∂R(1)

i

(
ϕ;ψ;ψ(1)

1 ;ψ(1)
2 ;α

)
/∂ψ

]†
; (50)
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F(3)
65 ≡ 0; F(3)

66 , L(α); F(3)
67 , −

∂2S(ϕ;ψ;α)
∂ψ∂ϕ

; F(3)
68 , −

∂2S(ϕ;ψ;α)
∂ψ∂ψ

; (51)

F(3)
71 , −

∂
∂ϕ

[
∂R(1)

i

(
ϕ;ψ;ψ(1)

1 ;ψ(1)
2 ;α

)
/∂ψ(1)

1

]†
; F(3)

72 , −
∂
∂ψ

[
∂R(1)

i

(
ϕ;ψ;ψ(1)

1 ;ψ(1)
2 ;α

)
/∂ψ(1)

1

]†
; (52)

F(3)
73 , −

∂

∂ψ
(1)
1

[
∂R(1)

i

(
ϕ;ψ;ψ(1)

1 ;ψ(1)
2 ;α

)
/∂ψ(1)

1

]†
; F(3)

73 , −
∂

∂ψ
(1)
2

[
∂R(1)

i

(
ϕ;ψ;ψ(1)

1 ;ψ(1)
2 ;α

)
/∂ψ(1)

1

]†
; (53)

F(3)
75 ≡ 0; F(3)

76 ≡ 0; F(3)
77 , L(α); F(3)

78 ≡ 0; (54)

F(3)
81 , −

∂
∂ϕ

[
∂R(1)

i

(
ϕ;ψ;ψ(1)

1 ;ψ(1)
2 ;α

)
/∂ψ(1)

2

]†
; F(3)

82 , −
∂
∂ψ

[
∂R(1)

i

(
ϕ;ψ;ψ(1)

1 ;ψ(1)
2 ;α

)
/∂ψ(1)

2

]†
; (55)

F(3)
83 , −

∂

∂ψ
(1)
1

[
∂R(1)

i

(
ϕ;ψ;ψ(1)

1 ;ψ(1)
2 ;α

)
/∂ψ(1)

2

]†
; F(3)

84 , −
∂

∂ψ
(1)
2

[
∂R(1)

i

(
ϕ;ψ;ψ(1)

1 ;ψ(1)
2 ;α

)
/∂ψ(1)

2

]†
; (56)

F(3)
85 ≡ 0; F(3)

66 ≡ 0; F(3)
87 ≡ 0; F(3)

88 , L+(α); (57)

Q(3)
1,i

(
ϕ;ψ;ψ(1)

1 ;ψ(1)
2 ;ψ(2)

1,i ; . . . ;ψ(2)
4,i ;α; δα

)
, ∂

∂α

{[
∂R(1)

i

(
ϕ;ψ;ψ(1)

1 ;ψ(1)
2 ;α

)
/∂ϕ

] †
−L+(α)ψ

(2)
1,i (x) −

∂2S(ϕ;ψ;α)
∂ϕ∂ϕ ψ

(2)
3,i (x) −

∂2S(ϕ;ψ;α)
∂ϕ ∂ψ ψ

(2)
4,i (x)

}
δα,

(58)

Q(3)
2,i

(
ϕ;ψ;ψ(1)

1 ;ψ(1)
2 ;ψ(2)

1,i ; . . . ;ψ(2)
4,i ;α; δα

)
, ∂

∂α

{[
∂R(1)

i

(
ϕ;ψ;ψ(1)

1 ;ψ(1)
2 ;α

)
/∂ψ

] †
−L(α)ψ(2)

2,i (x) −
∂2S(ϕ;ψ;α)
∂ψ∂ϕ ψ

(2)
3,i (x) −

∂2S(ϕ;ψ;α)
∂ψ∂ψ ψ

(2)
4,i (x)

}
δα,

(59)

Q(3)
3,i

(
ϕ;ψ;ψ(1)

1 ;ψ(1)
2 ;ψ(2)

1,i ; . . . ;ψ(2)
4,i ;α; δα

)
, ∂

∂α

{[
∂R(1)

i

(
ϕ;ψ;ψ(1)

1 ;ψ(1)
2 ;α

)
/∂ψ(1)

1

]†
− L(α)ψ(2)

3,i (x)
}
δα,

(60)

Q(3)
4,i

(
ϕ;ψ;ψ(1)

1 ;ψ(1)
2 ;ψ(2)

1,i ; . . . ;ψ(2)
4,i ;α; δα

)
, ∂

∂α

{[
∂R(1)

i

(
ϕ;ψ;ψ(1)

1 ;ψ(1)
2 ;α

)
/∂ψ(1)

2

]†
− L+(α)ψ

(2)
4,i (x)

}
δα .

(61)

The boundary conditions for the functions δϕ, δψ, δψ(1)
1 , δψ(1)

2 δψ
(2)
1,i , δψ(2)

2,i , δψ(2)
3,i , δψ(2)

4,i ,
are those provided in Equations (17) and (29), augmented by the boundary conditions obtained by
G-differentiating Equation (36), i.e.:

δB(2)
A (ϕ . . .α) ,

∂B(2)
A (ϕ...)

∂ϕ δϕ+
∂B(2)

A (...ψ...)

∂ψ δψ+
∂B(2)

A

(
...ψ

(1)
1 ...

)
∂ψ

(1)
1

δψ
(1)
1

+
∂B(2)

A

(
...ψ

(1)
2 ...

)
∂ψ

(1)
2

δψ
(1)
2 +

∂B(2)
A

(
...ψ

(2)
1,i ...

)
∂ψ

(2)
1,i

δψ
(2)
1,i +

∂B(2)
A

(
...ψ

(2)
2,i ...

)
∂ψ

(2)
2,i

δψ
(2)
2,i

+
∂B(2)

A

(
...ψ

(2)
3,i ...

)
∂ψ

(2)
3,i

δψ
(2)
3,i +

∂B(2)
A

(
...ψ

(2)
4,i ...

)
∂ψ

(2)
4,i

δψ
(2)
4,i +

∂B(1)
A (...α)

∂α δα = 0, x ∈ ∂Ωx.

(62)

The system comprising the 2nd-LFSS together with Equation (42) and the boundary conditions
provided in Equation (62) is called the 3rd-Level Forward Sensitivity System (3rd-LFSS). Since the
source-terms of the 3rd-LFSS depend on the parameters variations δαi, it follows that solving this
system of equations is prohibitively expensive computationally. To avoid the need for solving the
3rd-LFSS, the indirect-effect term defined in Equation (41) will be expressed in terms of a 3rd-Level
Adjoint Sensitivity System (3rd-LASS), which will be constructed by implementing the following
sequence of steps:
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(i) Define a Hilbert space, denoted as H(3), having vector-valued elements of the form the

u(3)(x) ,
[
u(3)

1 (x), . . . , u(3)
8 (x)

]†
∈ H(3), with components that are Nα-dimensional vectors of the form

u(3)
i (x) ,

[
u(3)

i,1 (x), . . . , u(3)
i, j (x), . . . , u(3)

i,Nu
(x)

]†
, i = 1, . . . , 8, with square-integrable components u(3)

i, j (x).

In H(3), define the inner-product, denoted as
〈
u(3)(x), v(3)(x)

〉
(3)

, of two functions u(3)(x) ∈ H(3) and

v(3)(x) ∈ H(3) as follows:

〈
u(3)(x), v(3)(x)

〉
(3)
,

8∑
i=1

〈
u(3)

i (x), v(3)
i (x)

〉
ϕ
=

8∑
i=1

Nu∑
j=1

∫
Ωx

u(3)
i, j (x)v

(3)
i, j (x) dx. (63)

Using the definition provided in Equation (63), construct the inner product of a vector ψ(3)
i j (x) ,[

ψ
(3)
1,i j(x), . . . ,ψ

(3)
8,i j(x)

]†
∈ H(3) with Equations (16) and (28) to obtain the following relation:

〈



ψ
(3)
1,i j

ψ
(3)
2,i j

ψ
(3)
3,i j

ψ
(3)
4,i j

ψ
(3)
5,i j

ψ
(3)
6,i j

ψ
(3)
7,i j

ψ
(3)
8,i j



†

,



L(α) 0 0 0 0 0 0 0
0 L+(α) 0 0 0 0 0 0

F(2)
31 F(2)

32 L+(α) 0 0 0 0 0

F(2)
41 F(2)

42 0 L(α) 0 0 0 0

F(3)
51 F(3)

52 F(3)
53 F(3)

54 L+(α) 0 F(3)
57 F(3)

58

F(3)
61 F(3)

62 F(3)
63 F(3)

64 0 L(α) F(3)
67 F(3)

68

F(3)
71 F(3)

72 F(3)
73 F(3)

74 0 0 L(α) 0

F(3)
81 F(3)

82 F(3)
83 F(3)

84 0 0 0 L+(α)





δϕ
δψ

δψ
(1)
1

δψ
(1)
2

δψ
(2)
1,i

δψ
(2)
2,i

δψ
(2)
3,i

δψ
(2)
4,i



〉

(3)

=

=

〈



ψ
(3)
1,i j(x)

ψ
(3)
2,i j(x)

ψ
(3)
3,i j(x)

ψ
(3)
4,i j(x)

ψ
(3)
5,i j(x)

ψ
(3)
6,i j(x)

ψ
(3)
7,i j(x)

ψ
(3)
8,i j(x)



†

,



Q(1)
1 (ϕ;α; δα)

Q(1)
2 (ψ;α; δα)

Q(2)
1 (ϕ; . . . ; δα)

Q(2)
2 (ϕ; . . . ; δα)

Q(3)
1,i (ϕ; . . . ; δα)

Q(3)
2,i (ϕ; . . . ; δα)

Q(3)
3,i (ϕ; . . . ; δα)

Q(3)
4,i (ϕ; . . . ; δα)



〉

(3)

.

(64)
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(ii) Use the definition of the adjoint operator in the Hilbert space H(3) to recast the left-side of
Equation (64) as follows:

〈



ψ
(3)
1,i j

ψ
(3)
2,i j

ψ
(3)
3,i j

ψ
(3)
4,i j

ψ
(3)
5,i j

ψ
(3)
6,i j

ψ
(3)
7,i j

ψ
(3)
8,i j



†

,



L(α) 0 0 0 0 0 0 0
0 L+(α) 0 0 0 0 0 0

F(2)
31 F(2)

32 L+(α) 0 0 0 0 0

F(2)
41 F(2)

42 0 L(α) 0 0 0 0

F(3)
51 F(3)

52 F(3)
53 F(3)

54 L+(α) 0 F(3)
57 F(3)

58

F(3)
61 F(3)

62 F(3)
63 F(3)

64 0 L(α) F(3)
67 F(3)

68

F(3)
71 F(3)

72 F(3)
73 F(3)

74 0 0 L(α) 0

F(3)
81 F(3)

82 F(3)
83 F(3)

84 0 0 0 L+(α)





δϕ
δψ

δψ
(1)
1

δψ
(1)
2

δψ
(2)
1,i

δψ
(2)
2,i

δψ
(2)
3,i

δψ
(2)
4,i



〉

(3)

=

〈


δϕ
δψ

δψ
(1)
1

δψ
(1)
2

δψ
(2)
1,i

δψ
(2)
2,i

δψ
(2)
3,i

δψ
(2)
4,i



†

,



L+(α) 0 F(2)
31 F(2)

41 F(3)
51 F(3)

61 F(3)
71 F(3)

81
0 L(α) F(2)

32 F(2)
42 F(3)

52 F(3)
62 F(3)

72 F(3)
82

0 0 L(α) 0 F(3)
53 F(3)

63 F(3)
73 F(3)

83
0 0 0 L+(α) F(3)

54 F(3)
64 F(3)

74 F(3)
84

0 0 0 0 L(α) 0 0 0
0 0 0 0 0 L+(α) 0 0

0 0 0 0 F(3)
57 F(3)

67 L+(α) 0

0 0 0 0 F(3)
58 F(3)

68 0 L(α)





ψ
(3)
1,i j

ψ
(3)
2,i j

ψ
(3)
3,i j

ψ
(3)
4,i j

ψ
(3)
5,i j

ψ
(3)
6,i j

ψ
(3)
7,i j

ψ
(3)
8,i j



〉

(3)

+P(3)
[
δϕ; δψ; δψ(1)

1 , δψ(1)
2 ; δψ(2)

1,i , . . . , δψ(2)
4,i ;ψ(3)

1,i j, . . . ,ψ
(3)
8,i j

]
,

(65)

where the bilinear concomitant P(3)
[
δϕ; δψ; δψ(1)

1 , δψ(1)
2 ; δψ(2)

1,i , . . . , δψ(2)
4,i ;ψ(3)

1,i j, . . . ,ψ
(3)
8,i j

]
is

defined on the phase-space boundary x ∈ ∂Ωx.
(iii) Identify the first term on the right-side of Equation (65) with the indirect-effect term defined in

Equation (41) by requiring that:



L+(α) 0 F(2)
31 F(2)

41 F(3)
51 F(3)

61 F(3)
71 F(3)

81
0 L(α) F(2)

32 F(2)
42 F(3)

52 F(3)
62 F(3)

72 F(3)
82

0 0 L(α) 0 F(3)
53 F(3)

63 F(3)
73 F(3)

83
0 0 0 L+(α) F(3)

54 F(3)
64 F(3)

74 F(3)
84

0 0 0 0 L(α) 0 0 0
0 0 0 0 0 L+(α) 0 0

0 0 0 0 F(3)
57 F(3)

67 L+(α) 0

0 0 0 0 F(3)
58 F(3)

68 0 L(α)





ψ
(3)
1,i j

ψ
(3)
2,i j

ψ
(3)
3,i j

ψ
(3)
4,i j

ψ
(3)
5,i j

ψ
(3)
6,i j

ψ
(3)
7,i j

ψ
(3)
8,i j



=



[
∂R(2)

i j /∂ϕ
]†

[
∂R(2)

i j /∂ψ
]†

[
∂R(2)

i j /∂ψ(1)
1

]†
[
∂R(2)

i j /∂ψ(1)
2

]†
[
∂R(2)

i j /∂ψ(2)
1,i

]†
[
∂R(2)

i j /∂ψ(2)
2,i

]†
[
∂R(2)

i j /∂ψ(2)
3,i

]†
[
∂R(2)

i j /∂ψ(2)
4,i

]†



,

f or i = 1, . . .Nα; j = 1, . . . , i.

(66)

(iv) The boundary conditions given for the 2nd-LFSS and those given in Equation (62) are now
implemented in Equation (65), thereby reducing by half the number of unknown boundary-values

in the bilinear concomitant P(3)
[
δϕ; δψ; δψ(1)

1 , δψ(1)
2 ; δψ(2)

1,i , . . . , δψ(2)
4,i ;ψ(3)

1,i j, . . . ,ψ
(3)
8,i j

]
. The

boundary conditions for the 3rd-level adjoint functions ψ
(3)
1,i j, . . . ,ψ

(3)
8,i j are chosen

next so as to eliminate the remaining unknown boundary-values of the functions
δϕ; δψ; δψ(1)

1 , δψ(1)
2 ; δψ(2)

1,i , . . . , δψ(2)
4,i while ensuring that Equation (66) is well posed. The
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boundary conditions thus chosen for the adjoint functions ψ(3)
1,i j, . . . ,ψ

(3)
8,i j can be represented in

operator form as follows:

B(3)
A

[
ϕ(x);ψ(x);ψ(1)

1 (x);ψ(1)
2 (x);ψ(2)

1,i (x), . . . ,ψ
(2)
4,i (x);ψ

(3)
1,i j, . . . ,ψ

(3)
8,i j;α

]
= 0, x ∈ ∂Ωx. (67)

In most cases, the above choice of boundary conditions for the 3rd-level adjoint functionsψ(3)
1,i j, . . . ,ψ

(3)
8,i j

will cause the bilinear concomitant P(3)
[
δϕ; δψ; δψ(1)

1 , δψ(1)
2 ; δψ(2)

1,i , . . . , δψ(2)
4,i ;ψ(3)

1,i j, . . . ,ψ
(3)
8,i j

]
in Equation

(65) to vanish. Even when it does not vanish, however, this bilinear concomitant will be reduced to a

quantity, denoted here as P̂(3)
[
ϕ;ψ;ψ(1)

1 ,ψ(1)
2 ;ψ(2)

1,i , . . . ,ψ(2)
4,i ;ψ(3)

1,i j, . . . ,ψ
(3)
8,i j;α; δα

]
, which will contain

only known values of its arguments. The system of equations comprising Equations (66) and (67) will be
called the 3rd-Level Adjoint Sensitivity System (3rd-LASS) for the 3rd-level adjoint functions ψ(3)

1,i j, . . . ,ψ
(3)
8,i j,

i = 1, . . .Nα; j = 1, . . . , i.
(v) Use the 3rd-LASS together with Equations (65) and (64) to obtain the following expression for

the indirect-effect term defined in Equation (41), in terms of the 3rd-level adjoint functionsψ(3)
1,i j, . . . ,ψ

(3)
8,i j:{

δR(2)
i j

(
ϕ;ψ;ψ(1)

1 ;ψ(1)
2 ;ψ(2)

1,i , . . . ,ψ(2)
4,i ;ψ(3)

1,i j, . . . ,ψ
(3)
8,i j;α; δα

)}
ind

=
〈
ψ

(3)
1,i j(x), Q(1)

1 (ϕ;α; δα)
〉
ϕ
+

〈
ψ

(3)
2,i j(x), Q(1)

2 (ψ;α; δα)
〉
ϕ
+

〈
ψ

(3)
3,i j(x), Q(2)

1 (ϕ; . . . ; δα)
〉
ϕ

+
〈
ψ

(3)
4,i j(x), Q(2)

2 (ϕ; . . . ; δα)
〉
ϕ
+

〈
ψ

(3)
5,i j(x), Q(3)

1,i (ϕ; . . . ; δα)
〉
ϕ
+

〈
ψ

(3)
6,i j(x), Q(3)

2,i (ϕ; . . . ; δα)
〉
ϕ

+
〈
ψ

(3)
7,i j(x), Q(3)

3,i (ϕ; . . . ; δα)
〉
ϕ
+

〈
ψ

(3)
8,i j(x), Q(3)

4,i (ϕ; . . . ; δα)
〉
ϕ

−P̂(3)
[
ϕ;ψ;ψ(1)

1 ,ψ(1)
2 ;ψ(2)

1,i , . . . ,ψ(2)
4,i ;ψ(3)

1,i j, . . . ,ψ
(3)
8,i j;α; δα

]
, i = 1, . . . , Nα; j = 1, . . . , i.

(68)

As Equation (68) indicates, the indirect-effect term can be computed speedily by quadratures once
the 3rd-level adjoint functions ψ(3)

1,i j, . . . ,ψ
(3)
8,i j become available.

(vi) Replace Equation (68) in Equation (40) to obtain the following expression for the total 2nd-order
response sensitivity to model parameters:

δR(2)
i j

[
ϕ;ψ;ψ(1)

1 ;ψ(1)
2 ;ψ(2)

1,i , . . . ,ψ(2)
4,i ;ψ(3)

1,i j, . . . ,ψ
(3)
8,i j;α; δα

]
,

Nα∑
k=1

R(3)
i jk

[
ϕ;ψ;ψ(1)

1 ;ψ(1)
2 ;ψ(2)

1,i , . . . ,ψ(2)
4,i ;ψ(3)

1,i j, . . . ,ψ
(3)
8,i j;α

]
δαk, i = 1, . . . , Nα; j = 1, . . . , i,

(69)
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where the quantity R(3)
i jk

[
ϕ;ψ;ψ(1)

1 ;ψ(1)
2 ;ψ(2)

1,i , . . . ,ψ(2)
4,i ;ψ(3)

1,i j, . . . ,ψ
(3)
8,i j;α

]
denotes the 3rd-order

partial sensitivity of the response to the model parameters and is defined as follows:

R(3)
i jk

[
ϕ;ψ;ψ(1)

1 ;ψ(1)
2 ;ψ(2)

1,i , . . . ,ψ(2)
4,i ;ψ(3)

1,i j, . . . ,ψ
(3)
8,i j;α

]
,

∂R(2)
i j (ϕ;ψ;...;α)

∂αk〈
ψ

(3)
1,i j(x), ∂ [Q[α(x)]−L(α)ϕ(x)]/∂αk

〉
ϕ
+

〈
ψ

(3)
2,i j(x), ∂

[
Q+[α(x)]−L+(α)ψ(x)

]
/∂αk

〉
ϕ

+

〈
ψ

(3)
3,i j(x),

∂2S(ϕ;ψ;α)
∂ϕ∂αk

−

∂
[
L+(α)ψ

(1)
1 (x)

]
∂αk

〉
ϕ

+

〈
ψ

(3)
4,i j(x),

∂2S(ϕ;ψ;α)
∂ψ∂αk

−

∂
[
L(α)ψ(1)

2 (x)
]

∂αk

〉
ϕ

+
〈
ψ

(3)
5,i j(x),

∂
∂αk

{[
∂R(1)

i

(
ϕ;ψ;ψ(1)

1 ;ψ(1)
2 ;α

)
/∂ϕ

]†
− L+(α)ψ

(2)
1,i (x)

−
∂2S(ϕ;ψ;α)
∂ϕ∂ϕ ψ

(2)
3,i (x) −

∂2S(ϕ;ψ;α)
∂ϕ ∂ψ ψ

(2)
4,i (x)

}〉
ϕ

+

〈
ψ

(3)
6,i j(x),

∂
∂αk

{[
∂R(1)

i

(
ϕ;ψ;ψ(1)

1 ;ψ(1)
2 ;α

)
/∂ψ

]†
− L(α)ψ(2)

2,i (x)

−
∂2S(ϕ;ψ;α)
∂ψ∂ϕ ψ

(2)
3,i (x) −

∂2S(ϕ;ψ;α)
∂ψ∂ψ ψ

(2)
4,i (x)

}〉
ϕ

+

〈
ψ

(3)
7,i j(x),

∂
∂αk

{[
∂R(1)

i

(
ϕ;ψ;ψ(1)

1 ;ψ(1)
2 ;α

)
/∂ψ(1)

1

]†
− L(α)ψ(2)

3,i (x)
}〉

ϕ

+

〈
ψ

(3)
8,i j(x),

∂
∂αk

{[
∂R(1)

i

(
ϕ;ψ;ψ(1)

1 ;ψ(1)
2 ;α

)
/∂ψ(1)

2

]†
− L+(α)ψ

(2)
4,i (x)

}〉
ϕ

−

∂P̂(3)
[
ϕ;ψ;ψ(1)

1 ,ψ(1)
2 ;ψ(2)

1,i ,...,ψ(2)
4,i ;ψ(3)

1,i j,...,ψ
(3)
8,i j;α

]
∂αk

, i = 1, . . . , Nα; j = 1, . . . , i; k = 1, . . . , j.

(70)

(vii) Note that the 2nd-LASS is independent of parameter variations δα. Thus, the exact computation of

all of the partial third-order sensitivities, R(3)
i jk

[
ϕ;ψ;ψ(1)

1 ;ψ(1)
2 ;ψ(2)

1,i , . . . ,ψ(2)
4,i ;ψ(3)

1,i j, . . . ,ψ
(3)
8,i j;α

]
, i =

1, . . . , Nα; j = 1, . . . , i; k = 1, . . . , j, requires at most Nα(Nα + 1)/2 large-scale (adjoint) computations
using the 3rd-LASS, rather than Nα(Nα + 1)(Nα + 2)/6 large-scale computations as would be
required by forward methods. In order to implement the practical computation of the 3rd-level
adjoint functions,ψ(3)

1,i j, . . . ,ψ
(3)
8,i j it is important to note that, in component form, Equation (66) has

the following structure, for each i = 1, . . .Nα; j = 1, . . . , i:

L(α)ψ(3)
5,i j =

[
∂R(2)

i j /∂ψ(2)
1,i

]†
, (71)

L+(α)ψ
(3)
6,i j =

[
∂R(2)

i j /∂ψ(2)
2,i

]†
, (72)

L+(α)ψ
(3)
7,i j =

[
∂R(2)

i j /∂ψ(2)
3,i

]†
− F(3)

57 ψ
(3)
5,i j − F(3)

67 ψ
(3)
6,i j , (73)

L(α)ψ(3)
8,i j =

[
∂R(2)

i j /∂ψ(2)
4,i

]†
− F(3)

58 ψ
(3)
5,i j − F(3)

68 ψ
(3)
6,i j , (74)

L+(α)ψ
(3)
4,i j =

[
∂R(2)

i j /∂ψ(1)
2

]†
− F(3)

54 ψ
(3)
5,i j − F(3)

64 ψ
(3)
6,i j − F(3)

74 ψ
(3)
7,i j − F(3)

84 ψ
(3)
8,i j , (75)

L(α)ψ(3)
3,i j =

[
∂R(2)

i j /∂ψ(1)
1

]†
− F(3)

53 ψ
(3)
5,i j − F(3)

63 ψ
(3)
6,i j − F(3)

73 ψ
(3)
7,i j − F(3)

83 ψ
(3)
8,i j , (76)

L(α)ψ(3)
2,i j =

[
∂R(2)

i j /∂ψ
]†
− F(2)

32 ψ
(3)
3,i j − F(2)

42 ψ
(3)
4,i j − F(3)

52 ψ
(3)
5,i j − F(3)

62 ψ
(3)
6,i j − F(3)

72 ψ
(3)
7,i j − F(3)

82 ψ
(3)
8,i j , (77)

L+(α)ψ
(3)
1,i j =

[
∂R(2)

i j /∂ϕ
]†
−F(2)

31 ψ
(3)
3,i j −F(2)

41 ψ
(3)
4,i j −F(3)

51 ψ
(3)
5,i j −F(3)

61 ψ
(3)
6,i j −F(3)

71 ψ
(3)
7,i j −F(3)

81 ψ
(3)
8,i j . (78)
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Thus, the 3rd-LASS it is to be solved successively, by first using Equations (71) and (72) to compute
the 3rd-level adjoint functions ψ(3)

5,i j and ψ(3)
6,i j. Note that solving using Equations (71) and (72) would

be performed by using the same forward and adjoint solvers (i.e., computer codes) as used for solving
the original forward and adjoint systems, namely Equations (1) and (6) subject to the corresponding
boundary conditions, except that the right-sides of the respective solvers would have as “sources”
the terms ∂R(2)

i j /∂ψ(2)
1,i and ∂R(2)

i j /∂ψ(2)
2,i , respectively. After having obtained the 3rd-level adjoint

functions ψ(3)
5,i j and ψ(3)

6,i j, the next round of computations would be to solve Equations (73) and (74)

in order to determine the 3rd-level adjoint functions ψ(3)
7,i j and ψ(3)

8,i j, respectively. As before, solving
using Equations (73) and (74) would be performed by using the same forward and adjoint solvers (i.e.,
computer codes) as used for solving the original forward and adjoint systems, namely Equations (1)
and (6) subject to the corresponding boundary conditions, except that the right-sides of the respective
solvers would have different “sources.” The next round of computations would require the use of
the forward and adjoint solvers to solve Equations (75) and (76) in order to determine the 3rd-level
adjoint functions ψ(3)

4,i j and ψ(3)
3,i j, respectively. The final set of computations would require the use of

the forward and adjoint solvers to solve Equations (77) and (78) in order to determine the 3rd-level
adjoint functions ψ(3)

2,i j and ψ(3)
1,i j, respectively. Thus, solving the 3rd-ASAM in order to determine the

3rd-level adjoint functions does not require any significant “code development,” since the original
forward and adjoint solvers (codes) do not need to be modified; only the right-sides (i.e., “sources”) for
these solvers/codes would need to be programmed accordingly.

Using the 3rd-LASS enables the specific computation of the 3rd-order sensitivities in the priority
order set by the user, so that only the important 3rd-order partial sensitivities R[ϕ(x),ψ(x);α] would
be computed. Information provided by the first- and second-order sensitivities might indicate which
3rd-order sensitivities could be neglected.

4. Third-Order Expressions for the Cumulants of the Response Distribution in Parameter Space

The 3rd-ASAM presented in Section 3, above, provides the most efficient way for computing
exactly the first-, second- and third-order sensitivities of a response that couples the forward and
adjoint systems that describe physical problems which are linear in the state-functions. The availability
of these sensitivities enables the use of a third-order multivariate Taylor series-expansion (of the
response around the known nominal parameter values) for quantifying the cumulants of the response
distribution in the phase-space of model parameters. For a model’s computed-response, denoted as
rc

i1
(α), where the superscript “c” denotes “computed” and the subscript i1 = 1, . . . , Nr denotes one

of a total of Nr responses that would be of interest, the third-order Taylor-series of rc
a(α) around the

model’s parameters’ mean (expected) values α0 ,
(
α0

1, . . . ,α0
Nα

)
is:

rc
i1
(α) = rc

i1

(
α0

)
+

Nα∑
i=1

{
∂rc

i1
(α)

∂αi

}
α0

(
αi −α

0
i

)
+ 1

2

Nα∑
i, j=1

{
∂2rc

i1
(α)

∂αi∂α j

}
α0

(
αi −α

0
i

)(
α j −α

0
j

)
+ 1

6

Nα∑
i, j,k=1

{
∂3rc

i1
(α)

∂αi∂α j∂αk

}
α0

(
αi −α

0
i

)(
α j −α

0
j

)(
αk −α

0
k

)
+ . . .; a = 1, . . . , Nr.

(79)

where rc
i1

(
α0

)
denotes the nominal value of the response computed at the nominal (mean) parameter

values α0 ,
(
α0

1, . . . ,α0
Nα

)
.

In practice, the values of the parameters αn are determined experimentally. Therefore, these
parameters can be considered to be variates that behave stochastically, obeying a multivariate probability
distribution function, denoted as pα(α), which is seldom known in practice, particularly for large-scale
systems involving many parameters. Considering that the multivariate distribution pα(α) is formally
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defined on a domain Dα, the various moments (e.g., mean values, covariance and variances, etc.) of
pα(α) can be defined in a standard manner by using the following notation:

〈
u(α)

〉
α ,

∫
Dα

u(α)pα(α)dα (80)

where u(α) is a continuous function of the parameters α. Using the notation defined in Equation (80),
the expected (or mean) value of a model parameter αi, denoted as α0

i , is defined as follows:

α0
i , 〈αi〉α ,

∫
Dα

αipα(α)dα, i = 1, . . . , Nα (81)

The covariance, cov
(
αi,α j

)
, of two parameters, αi and α j, is defined as follows:

µ
i j
2 (α) , cov

(
αi,α j

)
,

〈(
αi −α

0
i

)(
α j −α

0
j

)〉
α

, i, j = 1, . . . , Nα (82)

The variance, var(αi), of a parameter αi, is defined as follows:

var(αi) ,
〈(
αi −α

0
i

)2
〉
α

, i = 1, . . . , Nα (83)

The standard deviation, σi, of αi, is defined as follows: σi ,
√

var(αi);
The correlation, ρi j, between two parameters αi and α j, is defined as follows:

ρi j , cov
(
αi,α j

)
/
(
σiσ j

)
; i, j = 1, . . . , Nα (84)

The 3rd-order moment, µi jk
3 , of the multivariate parameter distribution function p(α), and the

3rd-order parameter correlation, ti jk, respectively, are defined as follows:

µ
i jk
3 (α) ,

∫
Dα

(
αi − α

0
i

)(
α j − α

0
j

)(
αk − α

0
k

)
p(α)dα , ti jkσiσ jσk, i, j, k = 1, . . . , Nα; (85)

The 4th-order moment, µi jkl
4 , of the multivariate parameter distribution function p(α), and the

4th-order parameter correlation, qi jkl, respectively, are defined as follows:

µ
i jkl
4 (α) ,

∫
Dα

(
αi − α

0
i

)(
α j − α

0
j

)(
αk − α

0
k

)(
αl − α

0
l

)
p(α)dα , qi jklσiσ jσkσl; i, j, k, l = 1, . . . , Nα. (86)

Using Equations (79) together with Equations (81) through (85) yields the following expression
for the expected (mean) value, denoted as E

[
rc

i1
(α)

]
, of a response rc

i1
(α):

E
[
rc

i1
(α)

]
= rc

i1

(
α0

)
+ 1

2

Nα∑
i, j=1

{
∂2rc

i1
(α)

∂αi∂α j

}
α0
ρi jσiσ j +

1
6

Nα∑
i, j,k=1

{
∂3rc

i1
(α)

∂αi∂α j∂αk

}
α0

ti jkσiσ jσk; i1 = 1, . . . , Nr. (87)
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Using Equations (79) together with Equations (81) through (86) yields the following expression
for the covariance, denoted as cov

(
rc

i1
, rc

i2

)
, of two responses, rc

i1
(α) and rc

i2
(α) f or i1, i2 = 1, . . . , Nr:

cov
(
rc

i1
, rc

i2

)
=

Nα∑
i=1

Nα∑
j=1

(
∂rc

i1
∂αi

∂rc
i2

∂α j

)
ρi jσiσ j +

1
2

Nα∑
i=1

Nα∑
j=1

Nα∑
µ=1

(
∂2rc

i1
∂αi∂α j

∂rc
i2

∂αµ
+

∂rc
i1

∂αi

∂2rc
i2

∂α j∂αµ

)
ti jµσiσ jσµ

+ 1
4

Nα∑
i=1

Nα∑
j=1

Nα∑
µ=1

Nα∑
ν=1

(
∂2rc

i1
∂αi∂α j

)(
∂2rc

i2
∂αµ∂αν

)(
qi jµν − ρi jρµν

)
σiσ jσµσν

+ 1
6

Nα∑
i=1

Nα∑
j=1

Nα∑
µ=1

Nα∑
ν=1

(
∂rc

i1
∂αi

∂3rc
i2

∂α j∂αµ∂αν
+

∂rc
i2

∂αi

∂3rc
i1

∂α j∂αµ∂αν

)
qi jµνσiσ jσµσν .

(88)

In particular, the variance of a response rc
i1
(α) is obtained as by setting i1 = i2 in Equation (88).

The covariance of a response, rc
i1
(α) and a parameter α`, i1 = 1, . . . , Nr and ` = 1, . . . , Nα, which is

denoted as cov
(
rc

i1
, α`

)
and is given by the following expression:

cov
(
rc

i1
, α`

)
=

Nα∑
i=1

{
∂rc

i1
(α)

∂αi

}
α0

cov(αi,α`) + 1
2

Nα∑
i, j=1

{
∂2rc

i1
(α)

∂αi∂α j

}
α0

ti j`σiσ jσ`

+ 1
6

Nα∑
i, j,k=1

{
∂3rc

i1
(α)

∂αi∂α j∂αk

}
α0

qi jµνσiσ jσkσ`; i1 = 1, . . . , Nr; ` = 1, . . . , Nα.
(89)

The third-order cumulant for three responses, rc
i1
(α), rc

i2
(α) and rc

i3
(α), which is denoted below as

µ3
(
rc

i1
, rc

i2
, rc

i3

)
, f or i1, i2, i3 = 1, . . . , Nr, is obtained similarly by using Equations (79) together with

Equations (81) through (86), and has the following expression:

µ3
(
rc

i1
, rc

i2
, rc

i3

)
,

〈[
rc

i1
− E

(
rc

i1

)][
rc

i2
− E

(
rc

i2

)][
rc

i3
− E

(
rc

i3

)]〉
α

=
Nα∑
i=1

Nα∑
j=1

Nα∑
µ=1

∂rc
i1

∂αi

∂rc
i2

∂α j

∂rc
i3

∂αµ
ti jµσiσ jσµ +

1
2

Nα∑
i=1

Nα∑
j=1

Nα∑
µ=1

Nα∑
ν=1

∂rc
i1 k

∂αi

∂rc
i2

∂α j

∂2rc
i3

∂αµ∂αν

(
qi jµν − ρi jρµν

)
σiσ jσµσν

+ 1
2

Nα∑
i=1

Nα∑
j=1

Nα∑
µ=1

Nα∑
ν=1

∂rc
i1

∂αi

∂2rc
i2

∂α j∂αµ

∂rc
i3

∂αν

(
qi jµν − ρiνρ jµ

)
σiσ jσµσν

+ 1
2

Nα∑
i=1

Nα∑
j=1

Nα∑
µ=1

Nα∑
ν=1

∂2rc
i1

∂αi∂α j

∂rc
i2

∂αµ

∂rc
i3

∂αν

(
qi jµν − ρi jρµν

)
σiσ jσµσν .

(90)

In particular, the skewness of a single response is customarily denoted as γ1(R), and is defined as

follows: γ1(R) =
µ3(R)

[var(R)]
3
2

, where µ3(R) denotes the third central moment of the response distribution.

For normally-distributed uncorrelated parameters and a single response, the expression in Equation (90)

simplifies to yield µ3(R) = 3
Nα∑
i=1

(
∂R
∂αi

)2
∂2R
∂α2

i
σ4

i . As is well-known, the skewness provides a quantitative

measure of the asymmetries in the respective distribution.
The first-order sensitivities contribute the leading terms to the second-, third-, and fourth-order

moments of the response distribution, thus providing the leading contributions to the responses
variance/covariances, skewness, and kurtosis. Obtaining the exact and complete set of first-order
sensitivities of responses to model parameters is of paramount importance for any analysis of a
computational model.

The second-order sensitivities contribute the leading correction terms to the response’s expected
value (causing it to differ from the response’s computed value). The second-order sensitivities also
contribute to the response variances and covariances. If the parameters follow a normal (Gaussian)
multivariate distribution, the second-order sensitivities contribute the leading terms to the response’s
third-order moment. Thus, neglecting the second-order response sensitivities to normally distributed
parameters would nullify the third-order response correlations and hence would nullify the skewness
of a response.
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The fourth-order cumulant, denoted as µ4
(
rc

i1
, rc

i2
, rc

i3
, rc

i4

)
f or i1, i2, i3, i4 = 1, . . . , Nr, among four

responses rc
i1
(α), rc

i2
(α), rc

i3
(α) and rc

i4
(α), is also obtained by using Equations (79). Up to fourth-order

correlations in the model parameters, µ4
(
rc

i1
, rc

i2
, rc

i3
, rc

i4

)
has the following expression:

µ4
(
rc

i1
, rc

i2
, rc

i3
, rc

i4

)
,

〈[
rc

i1
− E

(
rc

i1

)][
rc

i2
− E

(
rc

i2

)][
rc

i3
− E

(
rc

i3

)][
rc

i4
− E

(
rc

i4

)]〉
α

=
Nα∑
i=1

Nα∑
j=1

Nα∑
µ=1

Nα∑
ν=1

∂rc
i1 k

∂αi

∂rc
i2

∂α j

∂rc
i3

∂αµ

∂rc
i4

∂αν
qi jµνσiσ jσµσν .

(91)

5. 2nd/3rd-Order Best-Estimated Results with Reduced Uncertainties Predictive Modeling
(2nd/3rd-BERRU-PM) in the Joint Phase-Space of Responses and Parameters

Cacuci [7] has summarized the scope of “BERRU-PM” as follows: “BERRU-PM commences
by identifying and characterizing the uncertainties involved in every step in the sequence of the
numerical simulation processes that ultimately lead to a prediction. This includes characterizing:
(a) errors and uncertainties in the data used in the simulation (e.g., input data, model parameters,
initial conditions, boundary conditions, sources and forcing functions), (b) numerical discretization
errors, and (c) uncertainties in (e.g., lack of knowledge of) the processes being modeled. Under ideal
circumstances, the result of is a probabilistic description of possible future outcomes based on all
recognized errors and uncertainties.”

Consider a vector-valued variate x , (x1, . . . , xN)
†, the components of which obey an unknown

multivariate distribution p(x). Of course, the probability distribution function p(x) would need to be
properly normalized, i.e., it must also satisfy the constraint:∫

p(x)dx = 1. (92)

Consider further that the moments of several known functions Fk(x) over the unknown distribution
p(x), denoted as 〈Fk〉, and defined as:

〈Fk〉 =

∫
p(x)Fk(x) dx , k = 1, 2, . . . , K (93)

are also known. The problem of reconstructing a function from a finite number of its moments has
been investigated for many decades in the mathematical and physical sciences. For the purposes of
predictive modeling, the main goal is to determine a probability density function p(x) which is consistent with
the knowledge expressed by Equation (93) and introduces no unwarranted information. Such a probability
density function, p(x) , can be constructed using the method of maximum entropy (“MaxEnt”), which
generates the most conservative estimate of a probability distribution with the given information
and the most non-committal one with regard to missing information [11]. According to the MaxEnt
principle, the unknown probability density function p(x) must satisfy the constraints expressed by
Equation (93) while having its Boltzmann–Shannon–Gibbs (BSG) entropy (also referred to as the
“information entropy”) as large as possible. For a continuous distribution having a probability density
function p(x), the expression for its information/BSG-entropy is:

H(p) = −
∫

dx p(x)ln
p(x)
m(x)

(94)

where m(x) is a prior density function that ensures form invariance under change of variable. Intuitively,
in a bounded domain, the most conservative distribution, i.e., the distribution of maximum entropy,
is the one that assigns equal probability to all the accessible states. Hence, the method of maximum
entropy can be thought of as choosing the most “uniform” distribution p(x) that satisfies the given
moment constraints expressed by Equation (93) and introduces no unwarranted information. Any
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probability density function p(x) satisfying the constraints which has smaller entropy will contain
more information (less uncertainty), and thus would predict something stronger than warranted by our
knowledge and/or assumptions. The probability density function with maximum entropy, satisfying
the constraints imposed, is the one which should be least surprising in terms of the predictions it makes.

Selecting the unique p(x) which would maximize the information entropy defined by Equation
(94) while simultaneously satisfying the known constraints given in Equations (93) and (92) is a
variational problem that can be solved by the well-known method of using Lagrange multipliers,
λk, k = 1, 2, . . . , K, to construct the following Lagrangian functional:

L[p(x)] , −
∫

dx p(x)ln
p(x)
m(x)

−

K∑
k=1

[
λk

∫
p(x)Fk(x) dx− 〈Fk〉

]
− λ0

[∫
p(x)dx − 1

]
. (95)

The critical point of L[p(x)] is obtained by solving the equation that results from setting the first
Gateaux-differential of L[p(x)] to zero, namely:

δL[p; δp] ,
{

d
dεL[p(x) + ε δp(x)]

}
ε=0

= 0

= −
∫

ln p(x)
m(x) δp(x)dx−

∫
δp(x) dx−

K∑
k=1

λk
∫
δp(x)Fk(x) dx− λ0

∫
δp(x)dx.

(96)

It follows from Equation (96) that:

p(x) = m(x)exp

−λ0 − 1−
K∑

k=1

λkFk(x)

. (97)

Replacing the results obtained in Equation (97) into Equation (92) and eliminating the Lagrange
multiplier λ0 from the resulting expression leads to the following expression for the probability density
function p(x):

p(x) =
1
Z

m(x)exp

− K∑
k=1

λkFk(x)

 (98)

where the normalization constant Z in Equation (98) is defined as follows:

Z ,
∫

dx m(x)exp

− K∑
k=1

λkFk(x)

 (99)

In statistical mechanics, the normalization constant Z is called the partition function (or sum over
states), and carries all of the information available about the possible states of the system.

The expected integral data is obtained by differentiating Z with respect to the Lagrange multiplier
λk, to obtain the following relationships:

〈Fk〉 = −
∂
∂λk

lnZ, k = 1, 2, . . . , K (100)

When the integral data 〈Fk〉 are not yet known, the uniform distribution m(x) = 1 is the most
appropriate to consider. In this case, the maximum entropy (MaxEnt) algorithm yields the uniform
distribution as would be required by the principle of insufficient reason. Thus, the MaxEnt principle
generalizes the principle of insufficient reason. The MaxEnt can be applied to both discrete and to
continuous distributions. The MaxEnt method has been shown [12] to be equivalent to constrained
variational inference, thus establishing the link between MaxEnt and Bayesian approximations.
The MaxEnt method has been used in many fields; enumerating these fields is beyond the scope of this
work, which is limited to nuclear engineering applications. The pioneering application of the MaxEnt
method to time-independent nuclear reactor physics problems was initiated in the 1970s [13–17].
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The first application of the MaxEnt method to a time-dependent nuclear energy system was by
Barhen et al. [18]. This work was subsequently extended by Cacuci and Ionescu-Bujor [19], which
presented analytical formulas for predicted mean values and covariance matrices, for both predicted
model parameters and responses, which have generalized the previous results presented in data
assimilation procedures for geophysical sciences and linear Bayesian models. Other applications to
nuclear energy systems are presented in [20–27].

To the author’s knowledge, none of the analytical results published thus far include
comprehensively all of the second- and third-order response sensitivities to all of the model’s parameters.
The end-results to be presented in this section will extend the results published thus far in the open
literature by presenting analytical formulas for both predicted model responses and parameters by
including all of the second-and third-order sensitivities of computed model responses to the model’s parameters.

5.1. 2nd/3rd-BERRU-PM: A Priori Information

This Subsection will present the mathematical form of the information that will be ultimately
used for predicting the optimal, best-estimate mean values for both the model responses and model
parameters, with reduced predicted uncertainties, in the combined parameter-response phase space.

5.1.1. Expected Values and Covariances of Measured Responses

Consider that Nr quantities of interest, henceforth called “system responses” and denoted as
rm

i , i = 1, . . . , Nr, have been experimentally measured, yielding their expected values, as well as
their corresponding covariances (i.e., standard deviations and correlations). For the mathematical
derivations to follow, it is convenient to consider the responses rm

i to constitute the components of the
Nr-dimensional column vector rm defined as follows:

rm ,
(
rm

1 , . . . , rm
Nr

)†
(101)

Since the experimentally measured responses cannot be measured exactly, they are usually
considered to be variates that follow an unknown multivariate distribution function of the observations,
denoted as pr(r), which is formally defined on a domain Dr. Methods for finding estimates of a
measured quantity and indicators of the quality of the estimates depend on the assumed form of the
unknown distribution function pr(r) of the observations. The moments of the distribution of measured
responses can be conveniently denoted by introducing the following notation for the expectation
(or mean value) of a function w(rm):

E[w(rm)] ,

∫
Dr

w(rm)pr(r)dr (102)

When the distribution is discrete, the integral in Equation (102) denotes a sum over the respective
discrete probabilities. Using the notation introduced in Equation (102), the expectation (or mean value)
of the experimentally measured responses rm

i is formally defined as follows:

E
(
rm

i

)
,

∫
Dr

rm
i pr(r)dr , i = 1, . . . , Nr, (103)

The expected values of the measured responses will be considered to constitute the components
of the vector rm defined as:

E(rm) ,
[
E
(
rm

1

)
, . . . , E

(
rm

Nr

)]†
(104)
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The covariance matrix of measured responses will be denoted as Cm, and is defined as:

Cm ,
〈
[rm
− E(rm)][rm

− E(rm)]†
〉

r
=

[
cov

(
rm

i , rm
j

)]
Nr×Nr

,[
cov

(
rm

i , rm
j

)]
Nr×Nr

,
〈[

rm
i − E

(
rm

i

)][
rm

j − E
(
rm

j

)]〉
r
; i, j = 1, . . . , Nr .

(105)

5.1.2. Expectations and Covariances of Computed Responses Including Second- and Third-Order
Sensitivities to Model Parameters

For subsequent computations, it is convenient to consider that the expected values α0
i of the

components αi of the Nα-dimensional vector of model parameters α , (α1, . . . ,αNα
)† are components

of the following vector of mean (expected) values:

α0 ,
(
α0

1, . . . ,α0
Nα

)†
(106)

The variances and covariances defined in Equations (82) and (83) are considered to constitute
the elements of a symmetric, positive-definite parameter covariance matrix of dimension Nα ×Nα,
denoted as Cα and defined as follows:

Cα ,
〈(
α−α0

)(
α−α0

)†〉
α

. (107)

Consider that the values of the Nr experimentally measured responses rm
i can be computed using

a multi-physics model that comprises Nα model parameters αn, n = 1, . . . , Nα which are related to the
model’s independent and dependent variables through the model’s underlying equations, correlations,
tables, etc. Of course, the computed response values will not coincide with the measured ones, because,
just like the experimentally measured responses, the model’s parameters and numerical solution of the
underlying equations, and consequently the computed response values, are also subject to uncertainties.
The computed responses rc

k(α), k = 1, . . . , Nr, are considered to be elements of an Nr-dimensional
vector rc(α), defined as follows:

rc(α) ,
[
rc

1(α), . . . , rc
Nr
(α)

]†
(108)

The expectation values E
[
rc

k(α)
]

given by Equation (87) are considered to be the components of
the following vector of “expected values of the computed response”:

E[rc(α)] ,
[
E
(
rc

1

)
, . . . , E

(
rc

Nr

)]†
(109)

The response covariances defined in Equation (88) are considered to be the components of a
(Nr ×Nr)-dimensional matrix denoted as Cr and defined as follows:

Cr ,
〈
[rc
− E(rc)][rc

− E(rc)]†
〉
α

. (110)

The covariances between the computed responses and the model –parameters defined in Equation
(89) are considered to be the components of an (Nr ×Nα)-dimensional matrix denoted as Crα and
defined as follows:

Crα ,
〈
[rc
− E(rc)]

(
α−α0

)†〉
α
= C†αr (111)

The joint covariance matrix, denoted as CM, of the model parameters and model-computed
responses is defined as follows:

CM ,

(
Cα Cαr

Crα Cr

)
, (112)
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5.2. 2nd/3rd-BERRU-PM: Analytical Expressions for Best-Estimate Results with Reduced Uncertainties for
Responses and Parameters in the Joint Phase-Space of Responses and Parameters

Consider the joint probability function p(α, r) of the multi-variates α and rm, which is defined on
the domain D , Dα ×Dr and is properly normalized such that:∫

D

p(α, r) dα dr = 1 (113)

The exact form of p(α, r) is unknown, of course. Since the (multi)variates α and rm are statistically
independent of each other, it follows that p(α, r) = pr(r)pα(α). Therefore, the expected value of a
function w(rm) satisfies the following relations:〈

w(rm)
〉
,

∫
D

w(rm)p(α, r) dα dr

=
∫
D

w(rm)pr(r)pα(α) dα dr =

 ∫
Dα

pα(α)dα


∫
Dr

w(rm)pr(r)dr

 = 〈
w(rm)

〉
r

(114)

while the expected value of a function u(α) satisfies the following relations:〈
u(α)

〉
,

∫
D

u(α)p(α, r) dα dr

=
∫
D

u(α)pr(r)pα(α) dα dr =

∫
Dr

pr(r)dr


 ∫
Dα

u(α)pα(α)dα

 = 〈
u(α)

〉
α

(115)

Therefore, the a priori information about the model parameters, computed and measured responses
can be conveniently summarized by considering that the physical system under consideration is
described mathematically by a multivariate vector:

x , [α, rc(α), rm]† (116)

obeying an unknown joint multivariate distribution function:

p(α, r) = pr(r)pα(α) (117)

but having a known vector of expected values denoted as:

x0 ,
[
α0, E(rc), E(rm)

]†
(118)

and a covariance matrix denoted as:

C ,


Cα Cαr 0
Crα Cr 0

0 0 Cm

 (119)

Applying the MaxEnt principle as described in the Appendix A to the information provided in
Equations (116) through (119) indicates that the MaxEnt form, denoted as p2

(
x|x0, C

)
, of the unknown

distribution p(α, r) will have the following multivariate Gaussian form:

p2
(
x|x0, C

)
dx =

exp
[
−

1
2

(
x− x0

)†
C−1

(
x− x0

)]
dx,√

det(2πC)
, −∞ < x j < ∞. (120)
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The MaxEnt-Gaussian form shown in Equation (120) can also be written in the equivalent form:

p2
(
x|x0, C

)
=

exp[Q(α,rc,rm)]

√
det(2πCm)

√√√√
det

2π
 Cα Cαr

Crα Cr



,

Q(α, rc, rm) , − 1
2

(
α−α0

rc
− E(rc)

)†(
Cα Cαr

Crα Cr

)−1(
α−α0

rc
− E(rc)

)
−

1
2 [r

m
− E(rm)]C−1

m [rm
− E(rm)]†.

(121)

The expression provided in Equation (121) highlights the “Bayesian” construction underlying the
expression of the a posteriori joint maximum-entropy provability distribution function p2

(
x|x0, C

)
of

the physical system’s responses and parameters. In order for the measured and computed responses
to represent the same physical quantity, it is necessary that:

rm = rc(α) = r, (122)

where the vector r represents both the computed and measured responses. Determining the moments
of p2

(
x|x0, C

)
for subsequent predictions will require evaluations of integrals of the following form:

E[g(α, r)] =

∫
D

g(α, r)exp[h(α, r)] dα dr∫
D

exp[h(α, r)] dα dr
(123)

Expressions such as shown in Equation (123) can be evaluated to a high degree of accuracy
(a priory controlled) by using the saddle-point method (also called Laplace approximation, or steepest
descent method), which relies on evaluating the respective integrals at the so-called “saddle point(s).”
For the integral in the denominator of Equation (123), the saddle point, denoted as xD , (αD, rD),
is the point at which the gradient of the function h(x) vanishes, i.e., ∇xh(xD) = 0, so that h(x) can be
expanded in the following Taylor series:

h(x) = h(xD) + SOT(x), (124)

where the quantity ”SOT(x)” denotes terms of second- and higher-order in x. When the function g(x)
varies slowly, it is simply evaluated at the respective saddle point, and the resulting expression of
E[g(α, r)] in Equation (123) becomes:

E[g(α, r)] =

g(αD, rD)exp[h(αD, rD)]
∫
D

exp[SOT(α, r)] dα dr

exp[h(αD, rD)]
∫
D

exp[SOT(α, r)] dα dr
� g(αD, rD), (125)

where the saddle-point (αD, rD) is defined as the point in phase-space where the gradients of h(α, r)
vanish, i.e., {

∇αh(α, r)
}
(αD,rD)

= 0,
{
∇rh(α, r)

}
(αD,rD)

= 0 (126)

When the function h(x) has a Taylor-series containing powers higher than second-order in x,
the gradient ∇xh(x) of the function h(x) may vanish at multiple saddle points, in which case the
contributions from all of these saddle points would need to be accounted for when evaluating the
integrals in Equation (123).
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5.2.1. Predicted Best-Estimate Expected Values for the Responses and Parameters in the Joint
Phase-Space of Responses and Parameters

The MaxEnt Gaussian p2
(
x|x0, C

)
has a quadratic form and hence possesses a single saddle point,

which is determined by requiring the first-variation δQ(αD , rD; δα, δr) of the exponential term in
Equation (121) to vanish at the saddle point xD , (αD, rD), namely:

δQ(αD , rD; δα, δr) ,
{

d
dε

Q(αD + εδα, rD + εδr)
}
ε=0

=
∂Q
∂α
δα+

∂Q
∂r
δr = 0 . (127)

Imposing the requirement indicated in Equation (127) while taking Equation (122) into account
yields the following system of equations:

∂
∂α

−1
2

(
α−α0

r− E(rc)

)†(
Cα Cαr

Crα Cr

)−1(
α−α0

r− E(rc)

)
−

1
2
[r− E(rm)]†C−1

m [r− E(rm)]

 = 0, (128)

∂
∂r

−1
2

(
α−α0

r− E(rc)

)†(
Cα Cαr

Crα Cr

)−1(
α−α0

r− E(rc)

)
−

1
2
[r− E(rm)]†C−1

m [r− E(rm)]

 = 0. (129)

Recalling that:
∂
(
x†Ax

)
∂x

= x†
(
A + A†

)
(130)

and applying the result shown in Equation (130) to evaluate the expressions provided in Equations
(128) and (129), respectively, yields the following system of equations at the saddle point, denoted as
(αD, rD):(

Cα Cαr

Crα Cr

)−1(
αD −α

0

rD − E(rc)

)
+

(
0 0
0 C−1

m

)(
αD −α

0

rD − E(rc)

)
+

(
0

C−1
m [E(rc) − E(rm)]

)
=

(
0
0

)
. (131)

Solving Equation (131) yields the following intermediate expressions:(
αD −α

0 + CαrC−1
m [rD − E(rm)]

rD − E(rc) + CrC−1
m [rD − E(rm)]

)
=

(
0
0

)
. (132)

For computational purposes, the results obtained in Equation (132) are recast into the following
forms:

rD = E(rm) + Cm(Cm + Cr)
−1[E(rc) − E(rm)], (133)

αD = α0
−Cαr(Cm + Cr)

−1[E(rc) − E(rm)]. (134)

In view of Equation (125), it follows that “best-estimate predicted” results for the posterior
expectation values for the responses and parameters, which will be denoted as

(
rbe,αbe

)
, will have the

same expressions as shown in Equations (133) and (134), namely:

rbe ,

∫
D

rp2
(
x|x0, C

)
dα dr = rD = rm + Cm(Cm + Cr)

−1[E(rc) − E(rm)], (135)

αbe ,

∫
D

αp2
(
x|x0, C

)
dα dr = αD = α0

−Cαr(Cm + Cr)
−1[E(rc) − E(rm)]. (136)

Since the components of the vector E(rc), and the components of the matrices Cr and Cαr contain
2nd-order and 3rd-order sensitivities, the formulas presented in Equations (135) and (136) generalize
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all of the previous formulas of this type found in data assimilation/assimilation procedures published
to date (which contain at most first-order sensitivities).

5.2.2. Predicted Best-Estimate Covariances for the Responses and Parameters in the Joint Phase-Space
of Responses and Parameters

The second-order moments of the posterior distribution p(α, r) = pr(r)pα(α) comprise the
covariances between the best estimated response, which are denoted as Cbe

r , the covariances between
the best-estimate parameters, which are denoted as Cbe

α, and the covariances between the best-estimate
parameters and responses., which are denoted as Cbe

αr. The expression of the “best-estimate” posterior
parameter covariance matrix Cbe

r for the best-estimate responses rbe is derived by using the results
given in Equations (133) and (135) to obtain:

Cbe
r ,

∫
D

(
r− rbe

)(
r− rbe

)†
p(α, r) dα dr = Cm −Cm(Cm + Cr)

−1Cm

= Cm
[
I− (Cm + Cr)

−1Cm
]
.

(137)

As indicated in Equation (137), the initial covariance matrix Cm is multiplied by the matrix[
I− (Cm + Cr)

−1Cm
]
, which means that the variances contained on the diagonal of the best-estimate

matrix Cbe
r will be smaller than the experimentally measured variances contained in Cm. Hence, the

addition of new experimental information has reduced the predicted best-estimate response variances
in Cbe

r by comparison to the measured variances contained a priori in Cm. Since the components of
the matrix Cr contain 2nd-order and 3rd-order sensitivities, the formula presented in Equation (137)
generalizes all of the previous formulas of this type found in data assimilation/assimilation procedures
published to date (which contain at most first-order sensitivities).

The expression of the “best-estimate” posterior parameter covariance matrix Cbe
α for the

best-estimate parameters αbe is derived by using the result given in Equation (136) to obtain:

Cbe
α ,

∫
D

(
α−αbe

)(
α−αbe

)†
p(α, r) dα dr = Cα −Cαr(Cm + Cr)

−1Crα. (138)

Both matrices Cα and Cαr(Cm + Cr)
−1Crα are symmetric and positive definite. Therefore, the

subtraction indicated in Equation (138) implies that the components of the main diagonal of Cbe
α

must have smaller values than the corresponding elements of the main diagonal of Cα. In this sense,
the introduction of new computational and experimental information has reduced the best-estimate
parameter variances on the diagonal of Cbe

α . Since the components of the matrices Cα, Cαr, and Cr

contain 2nd-order and 3rd-order sensitivities, the formula presented in Equation (138) generalizes all
of the previous formulas of this type found in data assimilation/assimilation procedures published to
date (which contain at most first-order sensitivities).

The expression of the “best-estimate” posterior parameter covariance matrix Cbe
α for the

best-estimate parameters αbe and best-estimate responses rbe is derived by using the results given in
Equations (135) and (136) to obtain:

Cbe
αr ,

∫
D

(
α−αbe

)(
r− rbe

)†
p(α, r) dα dr = Cαr(Cm + Cr)

−1Cm . (139)

As before, since the components of the matrices Cαr, and Cr contain 2nd-order and 3rd-order
sensitivities, the formula presented in Equation (139) generalizes all of the previous formulas of this
type found in data assimilation/assimilation procedures published to date (which contain at most
first-order sensitivities).
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The expression of the best-estimate covariance matrix Cbe
rα is derived by performing a sequence of

operations similar to that shown in Equation (139) to obtain:

Cbe
rα ,

∫
D

(
r− rbe

)(
α−αbe

)†
p(α, r) dα dr = Cm(Cm + Cr)

−1Crα =
(
Cbe
αr

)†
. (140)

It is important to note from the results shown in Equations (135) through (140) that the computation
of the best estimate parameter and response values, together with their corresponding best-estimate
covariance matrices, only requires the computation of (Cm + Cr)

−1, which entails the inversion of a
matrix of size Nr ×Nr. This is computationally very advantageous, since Nr � Nα (i.e., the number
of responses is much less than the number of model parameters) in the overwhelming majority of
practical situations.

5.2.3. Data Consistency Indicator

As will be shown in the following, the minimum value, Qmin, of the functional Q
(
αbe, rbe

)
in the

exponential in Equation (121), provides a “consistency indicator” which quantifies the mutual and
joint consistency of the information available for model calibration. The minimum value, Qmin, of the
functional Q

(
αbe, rbe

)
in the exponential in Equation (121) has the following expression:

Qmin , Q
(
αbe, rbe

)
= − 1

2

(
αbe
−α0

rbe
− E(rc)

)†(
Cα Cαr

Crα Cr

)−1(
αbe
−α0

rbe
− E(rc)

)
−

1
2

[
rbe
− E(rm)

]
C−1

m

[
rbe
− E(rm)

]†
.

(141)

For subsequent matrix algebra, it is convenient to use the following matrix:(
B11 B12

B21 B22

)
,

(
Cα Cαr

Crα Cr

)−1

. (142)

Using Equations (142) and (132) in Equation (141) yields the following result:

Qmin = − 1
2 [E(r

c) − E(rm)]†(Cm + Cr)
−1

×[Crα(B11Cαr + B12Cr) + Cr(B21Cαr + B22Cr) + Cm](Cm + Cr)
−1[E(rc) − E(rm)]

= − 1
2 d†(Cm + Cr)

−1d.
(143)

where
d , [E(rc) − E(rm)] (144)

As the expression obtained in Equation (143) indicates, the quantity Qmin represents the square of
the length of the vector d , [E(rc) − E(rm)], measuring (in the corresponding metric) the deviations
between the experimental and nominally computed responses. The quantity Qmin can be evaluated
directly from the given data (i.e., given parameters and responses, together with their original
uncertainties) after having inverted the covariance matrix (Cm + Cr). It is also important to note that
Qmin is independent of calibrating (or adjusting) the original data. As the dimension of [E(rc) − E(rm)]

indicates, the number of degrees of freedom characteristic of the calibration under consideration is
equal to the number Nr of experimental responses. In the extreme case of absence of experimental
responses, no actual calibration takes place. An actual calibration (adjustment) occurs only when
including at least one experimental response.

It is noteworthy that the expressions presented in Equations (135) through (139) and (143)
look superficially similar to the expressions presented in [7,19]. This superficial similarity stems
from the fact that the 2nd/3rd-BERRU-PM formalism only includes means and covariances of the model
parameters and computed and measured responses. However, contrary to previously published works, the
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2nd/3rd-BERRU-PM formalism presented in in Equations (135) through (139) and (143) comprise all of the
2nd-order and 3rd-order sensitivities of the computed responses with respect to the model parameters. None of
these 2nd- and 3rd-order sensitivities appear in the works previous to this work. Consequently, the
2nd/3rd-BERRU-PM formalism comprises, as particular cases, the previously published formulas used
in Kalman filters, Bayesian linear statistics [10], data adjustment [13–17], data assimilation [8,9] and
predictive modeling [7,18–27].

6. Conclusions

This work has presented the Third-Order Adjoint Sensitivity Analysis Methodology (3rd-ASAM),
which enables the efficient computation of the exact expressions of the 3rd-order functional derivatives
(“sensitivities”) of a general system response that depends on both the forward and adjoint state
functions, with respect to all of the parameters underlying the respective forward and adjoint systems.
Such responses are often encountered when representing mathematically detector responses and
reaction rates in reactor physics problems. The 3rd-ASAM extends the 2nd-ASAM in the quest
to overcome the “curse of dimensionality” in sensitivity analysis, uncertainty quantification and
predictive modeling.

Very importantly, the computation of the 2nd-level adjoint functions ψ(2)
1, j (x),ψ

(2)
2, j (x),ψ

(2)
3, j (x),

ψ
(2)
4, j (x), and of the 3rd-level adjoint functions, ψ(3)

1,i j, . . . ,ψ
(3)
8,i j, is performed by using the same forward

and adjoint solvers (i.e., computer codes) as used for solving the original forward and adjoint systems,
namely Equations (1) and (6) subject to the corresponding boundary conditions. Thus, solving the
2nd-LASS and 3rd-ASAM would not require any significant “code development,” since the original
forward and adjoint solvers (codes) would not need to be modified; only the right-sides (i.e., “sources”)
for these solvers/codes would need to be programmed accordingly. Of course, if the response depends
only on the original forward or original adjoint function, than only half of the equations underlying
the 2nd-ASAM and, correspondingly, the 3rd-ASAM will need to be solved.

This work also presents new formulas that incorporate the contributions of the 3rd-order
sensitivities into the expressions of the first four cumulants of the response distribution in the
phase-space of model parameters. Using these newly developed formulas, this work also presents a new
mathematical formalism, called the 2nd/3rd-BERRU-PM (“Second/Third-Order Best-Estimated Results
with Reduced Uncertainties Predictive Modeling”), which combines experimental and computational
information in the joint phase-space of responses and model parameters, including not only the 1st-order
response sensitivities, but also the complete hessian matrix of 2nd-order second-sensitivities and also
the 3rd-order sensitivities, all computed using the 3rd-ASAM. The 2nd/3rd-BERRU-PM formalism uses
the maximum entropy principle to eliminate the need for introducing and “minimizing” a user-chosen
“cost functional quantifying the discrepancies between measurements and computations,” thus yielding
results that are free of subjective user-interferences and generalizing and significantly extending the
4D-VAR data assimilation procedures. Incorporating correlations, including those between the
imprecisely known model parameters and computed model responses, the 2nd/3rd-BERRU-PM also
provides a quantitative metric, constructed from sensitivity and covariance matrices, for determining
the degree of agreement among the various computational and experimental data while eliminating
discrepant information. The mathematical framework of the 2nd/3rd-BERRU-PM formalism requires
the inversion of a single matrix of size Nr ×Nr, where Nr denotes the number of considered responses.
In the overwhelming majority of practical situations, the number of responses is much less than
the number of model parameters. Thus, the 2nd-BERRU-PM methodology overcomes the curse of
dimensionality which affects the inversion of hessian matrices in the parameter space.
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Appendix A

For convenient referencing, this Appendix summarizes the derivation of the MaxEnt approximation
of distribution, p(x), when only the first- and second-order moments of this distribution are known.
These moments are generally defined as follows:

(i) The vector x0 ,
(
x0

1, . . . , x0
N

)†
of mean values (first-order moments), denoted as x0

i , of xi, and
defined as x0

1 ,
∫

xip(x)dx;

(ii) The second-order moment or covariance, µi j
2 (x) , cov

(
xi, x j

)
, of two parameters, xi and x j, defined

as µi j
2 , cov

(
xi, x j

)
,

∫ (
xi − x0

i

)(
x j − x0

j

)
p(x)dx, i, j = 1, . . . , N. The covariances µi j

2 (x) constitute

the elements of a symmetric, positive-definite parameter covariance matrix of dimension N ×N,

denoted as C ,


µ11

2 . µ1N
2

. µ
i j
2 .

µN1
2 . µNN

2


Taking m(x) = 1 and particularizing the generic constraints represented by Equation (98)

yields the following particular probability density function, denoted as p2(x), where the subscript

“2” indicates “up to second-order moments:” p2(x) = 1
Z2

exp

− N∑
i=1

aixi −
1
2

N∑
i=1

N∑
j=1

bi j
(
xi − x0

i

)(
x j − x0

j

),
where the normalization constant Z2 is defined as Z2 ,

∫
dx exp

− N∑
i=1

aixi −
1
2

N∑
i=1

N∑
j=1

bi j
(
xi − x0

i

)(
x j − x0

j

).
The normalization constant Z2 can be evaluated in closed form as follows: introduce the N-dimensional

vectors z , (z1, . . . , zN)
† , x− x0 ,

(
x1 − x0

1, . . . , xN − x0
N

)†
, a , (a1, . . . , aN)

† and the N ×N-dimensional

symmetric matrix B ,
(
bi j

)
to transform the expression in the argument of the exponential as follows:

−

N∑
i=1

aixi −
1
2

N∑
i=1

N∑
j=1

bi j
(
xi − x0

i

)(
x j − x0

j

)
= a†x0

− a†z− 1
2 z†Bz

= − 1
2

(
z + B−1a

)†
B
(
z + B−1a

)
+ a†x0 + 1

2 a†B−1a .

Since
∫

dxexp
[
−

1
2

(
z + B−1a

)†
B
(
z + B−1a

)]
=

√
(2π)N

det(B) , it follows that Z2 =√
(2π)N

det(B) exp
(
−a†x0

−
1
2 a†B−1a

)
. The Lagrange multipliers ai and bi j are now obtained as follows:

−
∂
∂ai

ln Z2 = x0
i +

(
B−1a

)
i
= x0

i ; ⇒ ai = 0, i = 1, 2, . . . , N.

−
∂
∂bi j

ln Z2 = 1
2 [det(B)]−1 ∂[det(B)]

∂bi j
=

co f actor(bi j)
det(B)

=
[
B−1

]
i j
= µ

i j
2 , i, j = 1, 2, . . . , N; ⇒ B−1 = C.

Inserting the above results into the expression of p2(x) yields:

p2(x|〈x〉, C) dx =
exp

[
−

1
2

(
x− x0

)†
C−1

(
x− x0

)]
dx,√

(2π)Ndet(C)

, −∞ < x j < ∞.

The above derivation demonstrates that, when only means and covariances are known,
the maximum entropy algorithm yields the Gaussian probability distribution p2(x|〈x〉, C) as the
most objective probability distribution, where: x is the data vector with coordinates x j, C is the

covariance matrix with elements µi j
2 (x) , cov

(
xi, x j

)
, and dx ,

∏
j dx j is the volume element in the data
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space. It often occurs in practice that the variances µii
2(x) are known but the covariances µi j

2 (x), i , j,
are not known. In this case, the covariance matrix C would a priori be diagonal. Consequently, only
the Lagrange parameters bii would be non-zero, so that the matrix B ,

(
bi j

)
would also be a priori

diagonal. In other words, in the absence of information about correlations, the maximum entropy
algorithm indicates that unknown covariances/correlations can be taken to be zero.
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