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Abstract: The use of cascade heat pumps for hot water generation has gained much attention in recent
times. The big question that has attracted much research interest is how to enhance the performance
and energy saving potential of these cascade heat pumps. This study therefore proposed a new cycle
to enhance performance of the cascade heat pump by adopting an auxiliary heat exchanger (AHX)
in desuperheater, heater and parallel positions at the low stage (LS) side. The new cascade cycle
with AHX in desuperheater position was found to have better performance than that with AHX at
heater and parallel positions. Compared to the conventional cycle, heating capacity and coefficient of
performance (COP) of the new cascade cycle with AHX in desuperheater position increased up to
7.4% and 14.9% respectively.
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1. Introduction

The application of boilers and electric heaters in space heating and hot water generation for
domestic and industrial use is expensive, energy intensive and mostly poses a major threat to the
climate and environment. The low environmental impacts of heat pumps, coupled with the efficient
and cost-effective manner with which they provide heating and hot water makes them popular for
domestic and industrial applications [1].

Air source heat pumps operate at lower outdoor temperatures in winter and higher outdoor
temperatures in summer seasons. These operating conditions decrease the performance of heat pumps
by increasing their irreversibility during compression and decreasing the refrigerant mass flow rate [2].
Moreover, most domestic and industrial applications require hot water temperatures above 60 ◦C.
Heat pumps used in such applications operate between very low evaporating and higher condensing
temperatures, resulting in higher temperature lifts and pressure ratios beyond the applicable limits of
single stage heat pumps. Such harsh operating conditions make single-stage heat pumps inefficient
and expose compressors to higher discharge temperatures and damage.

Cascade heat pumps operate as two single stage cycles coupled together by a cascade heat
exchanger. This makes them advantageous over single stage heat pumps in terms of energy savings,
stable water heating and higher hot water temperature generation [3,4]. However, at lower heat source
temperatures and higher building loads, the performance of cascade heat pumps deteriorates. Kim and
Kim [5] investigated the effect of higher indoor heat exchanger entering water temperature (EWT) and
lower ambient temperature on the performance of an air-to-water cascade heat pump and found that
hot water temperature, heating capacity and COP decrease with lower ambient temperature and higher
indoor heat exchanger EWT. Jung et al. [4] found that the performance of cascade multi-functional
heat pumps decreased with an increase in EWT to the condenser of the high stage (HS) cycle. These
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results reveal the need for a technology that can enhance the performance of cascade heat pumps at
such operating conditions to meet the required heating load.

Most research on cascade heat pump cycles have focused on generation of lower temperatures
for refrigeration purposes [6–10]. In recent times, hot water generation using cascade heat pumps
has become important for domestic and industrial applications, and has generated much research
interest. Jung et al. [4] used cascade multi-functional heat pump to produce hot water. Kim and
Kim [5] performed an experimental study to investigate water temperature lift and its effect on cascade
heat pump performance. Wu et al. [11] experimented with the transient and dynamic behavior of
cascade heat pump water heater with phase change material. The cascade heat pump water heater
generated an average hot water temperature of 55 ◦C. Park et al. [12] conducted an experimental study
to investigate performance of a cascade heat pump generating hot water up to a temperature of 60 ◦C.
Kim et al. [13] investigated the optimal intermediate temperature of a cascade heat pump used for
hot water generation. Nenkaew and Tangthien [14] conducted an experimental study on the transient
performance of cascade heat pump used for cooling, refrigeration, heating and hot water generation.
Soltani et al. [15] compared the performance of single stage and hydronic cascade heat pumps for
generating hot water. Tarrad [16] examined a methodology to generate hot water in a cascade heat
pump using low temperature heat source. Qu et al. [17] proposed a control algorithm for an air source
cascade heat pump used for hot water generation. Ma et al. [18] analyzed the performance of a high
temperature cascade heat pump that used a new near-zeotropic refrigerant to produce hot water.

The design of energy efficient cascade heat pumps has become essential, resulting in much research
into performance enhancement methodologies through the optimization and control of cascade heat
pumps [19]. This study contributes to the design of performance enhancing and energy saving cascade
heat pumps by proposing a new cascade heat pump cycle that adopts auxiliary heat exchanger for hot
water generation.

2. Experimental Setup and Test Procedure

The experimental setup was designed to investigate performance enhancement and energy saving
potential of a new water-to-water cascade heat pump unit. The new cascade cycle is a conventional
cascade cycle equipped with an auxiliary heat exchanger at the low stage. Figure 1 is a schematic
diagram of the water-to-water cascade heat pump used in this study. Continuous lines represent
refrigerant and secondary fluid lines of the conventional system, while dotted lines represent refrigerant
lines for operating the AHX. The conventional cascade cycle consisted of two separate cycles, called
low stage (LS) and high stage cycles (HS), interconnected by a cascade heat exchanger. Each of the two
cycles consisted of a scroll compressor, an electronic expansion valve (EEV), condenser and evaporator.
The cascade heat exchanger acted as condenser to the LS cycle and evaporator to the HS cycle. The LS
evaporator acted as outdoor heat exchanger (OD HX) while condenser of the HS cycle acted as indoor
heat exchanger (ID HX). The new cascade cycle consisted of the conventional cycle with AHX installed
in the LS side. The AHX was installed to operate in three different positions so as to determine the
position that best enhances performance of the cascade heat pump. Refrigerants R410A and R134a
were used for the LS and HS cycles respectively. Specifications of the components of the water-to-water
cascade heat pump unit are shown in Table 1.

The cascade heat pump also had two closed loop secondary fluid flow paths for the ID HX and
OD HX. Secondary fluid flow loops were simulated using constant temperature baths with brine of
40% ethylene glycol concentration as secondary fluid. Flow rate of the secondary fluid was controlled
using an inverter driven pump and a manual needle valve.
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Figure 1. Schematic diagram of the conventional cascade heat pump.

Table 1. Component specifications of cascade heat pump unit.

Component Manufacturer Type Specification

LS compressor Siam compressor industry Scroll 3.5 kW
HS compressor Siam compressor industry Scroll 3.5 kW

LS expansion device Parker Hannifin EEV Step motor driven
HS expansion device Parker Hannifin EEV Step motor driven

ID HX DOOIL Double tube heat exchanger 3.5 kW
OD HX DOOIL Double tube heat exchanger 3.5 kW

Cascade HX DOOIL Double tube heat exchanger 3.5 kW

During operation of the conventional cascade heat pump, LS refrigerant is compressed into high
temperature and pressure refrigerant which gets condensed by the HS refrigerant in the cascade heat
exchanger. The condensed refrigerant is expanded by the LS EEV into low temperature and pressure
refrigerant which vaporizes in the OD HX by absorbing heat from the outdoor side secondary fluid.
Refrigerant vapor from the OD HX then enters the compressor to be compressed into high pressure
and temperature refrigerant for the cycle to continue. In the HS cycle, refrigerant R134a vaporizes
in the cascade heat exchanger and gets compressed by the high stage compressor. The compressed
refrigerant is condensed by secondary fluid in the ID HX, which then goes through the HS EEV and
back to the cascade heat exchanger for continuation of the cycle.

To enhance performance and energy saving potential of the cascade heat pump, new cycle was
developed by adopting auxiliary heat exchanger (AHX) at the LS side of the conventional cycle to
decrease irreversibility of the ID HX. The AHX was placed at three different positions to operate as
desuperheater, heater or in parallel with the cascade heat exchanger in order to determine the position
that yields the highest system performance.



Energies 2019, 12, 4313 4 of 20

Figure 2 shows schematic diagram of the cascade heat pump with AHX operating as desuperheater.
Continuous lines depict refrigerant and secondary fluid lines in operation, while dotted lines depict
closed refrigerant and secondary fluid lines. In desuperheater position, AHX is located between the
LS compressor and cascade heat exchanger. When in operation, compressed high temperature LS
refrigerant enters the AHX and exchanges heat with secondary fluid from the indoor side constant
temperature water bath in the AHX. Low stage refrigerant from the AHX enters the cascade heat
exchanger, after which it assumes a similar flow path as that of the conventional cascade heat pump.
Secondary fluid from the AHX also enters the ID HX for heat exchange with the HS refrigerant.

Figure 2. Schematic diagram of the cascade heat pump with auxiliary heat exchanger (AHX)
as desuperheater.

In the heater position, AHX is placed between the cascade heat exchanger and LS EEV as shown
in Figure 3. Heat exchange in the AHX is therefore between subcooled LS refrigerant from the cascade
heat exchanger and secondary fluid from indoor side constant temperature water bath. Figure 4 shows
cascade heat pump with AHX in parallel with the cascade heat exchanger. In this position, refrigerant
from the LS compressor divides into two flow paths; one flow path goes through the cascade heat
exchanger for heat transfer to the HS cycle, while the other flow path goes through the AHX for heat
exchange with secondary fluid from the indoor side constant temperature water bath. The two flow
paths combine into one, after each flow has been expanded by their respective EEVs, before proceeding
to the OD HX and compressor for the cycle to continue.
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Figure 3. Schematic diagram of the cascade heat pump with AHX as heater.

Experiment was conducted in two phases: firstly, to determine the AHX position that best
enhances performance of the cascade heat pump and secondly, to compare performance of the new
cycle with the best AHX position with that of the conventional cascade heat pump cycle. Reference
indoor entering water temperature (ID EWT) and outdoor entering water temperature (OD EWT)
conditions were selected as 55 ◦C and 5 ◦C respectively, according to ISO 13256-2 [20]. Experiments
were conducted by varying OD EWT at −5 ◦C, 0 ◦C, 5 ◦C and 10 ◦C since the OD EWT cannot be
controlled in real systems. Ball valves were used to control operation and refrigerant flow paths of the
experimental setups of the conventional cascade cycle and the different AHX configurations of the
new cascade cycles. Each experiment was controlled by adjusting LS EEV and HS EEV openings to
maintain constant superheat of 7 ◦C in the LS and HS cycles. Table 2 summarizes test conditions for
the conventional cascade cycle and that of the new cascade cycles adopting AHX.

Table 2. Test conditions.

Parameter Conventional Cycle AHX as Desuperheater AHX in Heater and Parallel Positions

ID WATER BATH LWT (◦C) 55 55 55
OD EWT (◦C) −5, 0, 5, 10 −5, 0, 5, 10 −5, 0

OD HX SFFR (LPM) 8 8 8
ID HX SFFR (LPM) 8 8 8

LS/HS EEV Adjusted Adjusted Adjusted
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Figure 4. Schematic diagram of the cascade heat pump with AHX in parallel with cascade heat exchanger.

The experimental rig was equipped with sensors to measure performance of the cascade heat
pump according to the various operating conditions. Pressure transducers, thermocouples, mass
flow meters and power meters were installed to measure refrigerant pressure, temperature, mass
flow rate and electric power consumption respectively, of the LS and HS cycles. RTD sensors and
volumetric flow meters were also installed in the secondary fluid flow paths to respectively measure
temperature and flow rate of the secondary fluid. Table 3 shows the accuracy of the sensors used in the
experimental setup.

Table 3. Sensor accuracies.

Sensor Accuracy

Thermocouples ±0.2 ◦C
Pressure transducer ±0.06%

Mass flow meter ±0.1%
Power meter ±0.1%

Volumetric flow meters ±0.5%
RTD sensors ±0.15 ◦C

Computer, equipped with Yokogawa MX 100 data acquisition system, was used to collect and
save the test data at steady state conditions at 30 min saving time and 3 s scanning time. Capacity of
the cascade heat pump was calculated using properties of the secondary fluid, volumetric flow rate and
temperature difference of the ethylene glycol across the ID HX as shown in Equation (1). COP was also
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calculated using heating capacity, compressor power consumption and pump power consumption of
the LS and HS cycles as shown in Equation (2). Pump power consumption was considered in the COP
calculation because the use of AHX causes additional pressure loss in HS water loop, which affects
overall energy consumption of the cascade heat pump. Uncertainty analysis of heat pump parameters
was done using the Pythagorean summation of discrete uncertainties according to ASHRAE Guideline
2 [21]. COP and heating capacity had uncertainties within 3.0% and 2.8% respectively.

Q =
.

V × ρ×Cp × |LWT − EWT| (1)

COP =
Q

WLS,comp + WHS,comp + WLS,pump + WHS,pump
(2)

3. Results and Discussions

3.1. Performance Characteristics of New Cascade Heat Pump Cycles

Figure 5 shows heating capacity of the cascade heat pump cycle with AHX in desuperheater, heater
and parallel positions at the LS. Capacity of the cycle with AHX in desuperheater position was higher
than that with AHX in heater and parallel positions at all OD EWT. When AHX was adopted in the LS,
heat transfer to secondary fluid of the HS cycle occurred in two stages. Firstly, there was heat transfer
to secondary fluid of the HS cycle in the AHX, followed by heat transfer to HS secondary fluid from
the AHX in the ID HX. Heat transfer to the HS secondary fluid in the AHX was such that, compressed
superheated LS refrigerant exchanged heat with HS secondary fluid in the AHX, resulting in significant
heat transfer to the HS secondary fluid when AHX was in desuperheater position. In heater position,
subcooled LS refrigerant exchanged heat with HS secondary fluid in the AHX, resulting in heat transfer
to the LS refrigerant because AHX EWT was much higher than temperature of LS refrigerant entering
the AHX. With AHX in parallel position, high temperature refrigerant from the LS compressor divided
into two flow paths. The first part went into the AHX for heat exchange with the HS secondary fluid,
while the other part went into the cascade heat exchanger for heat exchange with the HS refrigerant.
Low stage refrigerant mass flow rate in the AHX was therefore lower than that of the cycle with AHX
in desuperheater and heater positions, as shown in Figure 6. This resulted in lower heat transfer to
secondary fluid of the HS cycle in the AHX compared to that of the cascade heat pump cycle with
AHX in desuperheater position, even though LS refrigerant temperature entering the AHX was almost
similar in both cycles. Consequently, AHX leaving water temperature (LWT) was highest in the cycle
with AHX in the desuperheater position, followed by that of the AHX in parallel position in all OD
EWT conditions, as shown in Figure 7. At 0 ◦C OD EWT, AHX LWT was 56.2 ◦C, 55.7 ◦C and 53.9 ◦C for
the cascade heat pump cycles with AHX in desuperheater, parallel and heater positions respectively.

From the AHX, secondary fluid of the HS cycle proceeded to the ID HX for heat exchange with the
HS refrigerant. Thus, LWT of the AHX became the ID EWT. Due to heat transfer between LS refrigerant
and HS secondary fluid in the AHX, LS condensing temperature of the cascade heat pump cycles with
AHX in desuperheater and parallel positions were lower than that of the cycle with AHX in heater
position shown in Figure 8.
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Figure 5. Heating capacity of cascade heat pump cycles with AHX according to variation in outdoor
entering water temperature (OD EWT).

Figure 6. Low stage refrigerant mass flow rate in AHX according to variation in OD EWT.

Figure 7. AHX leaving water temperature of cascade heat pump cycles with AHX according to variation
in OD EWT.
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Figure 8. Low stage (LS) condensing temperature of cascade heat pump cycles with AHX according to
variation in OD EWT.

Evaporating temperature of the HS cycle was also highest in the cycle with AHX as heater due to
its highest LS condensing temperature trend, while HS evaporating temperature of the cycle with AHX
in desuperheater position was higher than that of the cycle with AHX in parallel position as shown in
Figure 9. This was due to higher heat transfer from the LS to HS in the cascade cycle with AHX in
desuperheater position, as compared to that of the cascade cycle with AHX in parallel position, as
a result of higher LS refrigerant mass flow rate in the cascade cycle with AHX in the desuperheater
position. In the HS cycle, condensing temperature was almost similar in the cascade cycles with AHX
in desuperheater and heater positions, while that of the cycle with AHX in parallel position was slightly
lower, as shown in Figure 10. Furthermore, HS refrigerant mass flow rate was highest in the cycle
with AHX as heater followed by that with AHX in desuperheater position as shown in Figure 11. This
was due to the trend of their HS pressure difference as shown in Figure 12. Therefore, heat transfer to
secondary fluid in the ID HX was highest in the cascade cycle with AHX as heater followed by that
with AHX in desuperheater position. However, because ID EWT was highest in the cascade cycle with
AHX in desuperheater position, LWT of the ID HX was slightly higher in the cascade heat pump with
AHX as desuperheater compared to the cascade cycles in heater and parallel positions as shown in
Figure 13. This resulted in higher heating capacity in the cycle with AHX as desuperheater compared
to the cascade heat pump cycles with AHX in heater and parallel positions. Thus, heat transfer to HS
secondary fluid in the AHX had greater effect on the heating capacity than that in the ID HX. Heating
capacity of the cascade cycle with AHX in desuperheater position was higher than that of the cascade
cycle with AHX in heater position by 25.1% and 26.0% at OD EWT of −5 ◦C and 0 ◦C respectively.
Additionally, heating capacity of the cascade cycle with AHX in desuperheater position was higher
than that of the cascade cycle with AHX in parallel position by 40.9% and 38.0% at OD EWT of −5 ◦C
and 0 ◦C respectively.



Energies 2019, 12, 4313 10 of 20

Figure 9. High stage (HS) evaporating temperature of cascade heat pump cycles with AHX according
to variation in OD EWT.

Figure 10. HS condensing temperature of cascade heat pump cycles with AHX according to variation
in OD EWT.

Figure 11. HS refrigerant mass flow rate of cascade heat pump cycles with AHX according to variation
in OD EWT.
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Figure 12. HS pressure difference of cascade heat pump cycles with AHX according to variation in
OD EWT.

Figure 13. Indoor heat exchanger LWT of cascade heat pump cycles with AHX according to variation
in OD EWT.

Figure 14 shows COP of the cascade heat pump cycles adopting AHX. COP was highest in the
cascade cycle with AHX in desuperheater position followed by that with AHX in heater position. The
cascade cycle with AHX in parallel position had the lowest COP at all OD EWT conditions. In the
cascade cycles with AHX in desuperheater and parallel positions, heat transfer occurred between
compressed high temperature LS refrigerant and HS secondary fluid in the AHX. However, heat transfer
to secondary fluid in the AHX was higher in the cascade cycle with AHX in desuperheater position
because LS refrigerant mass flow rate in the AHX was higher in system with AHX in desuperheater
position than that of the cascade cycle with AHX in parallel position. Thus, the LS EEV opening was
decreased in the system with AHX in parallel position in order to maintain the same superheat at the
LS cycle in both systems. This caused lower LS pressure difference in the cascade cycle with AHX
in desuperheater position, as compared to that of the cascade cycle with AHX in parallel position as
shown in Figure 15. Moreover, LS pressure difference of the cascade cycle with AHX in heater position
was highest due to heat gain by LS refrigerant in the AHX. This resulted in the cascade cycle with AHX
in heater position having the highest LS power consumption, followed by that of the cycle with AHX
in parallel position. Power consumption of the LS cycle was lowest in the cascade cycle with AHX in
desuperheater position.
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Figure 14. COP of cascade heat pump cycles with AHX according to variation in OD EWT.

Figure 15. Pressure difference of LS cycle of cascade heat pump cycles with AHX according to variation
in OD EWT.

In the HS cycle, power consumption of the cascade cycle with AHX in heater position was lower
than that of the cascade cycle with AHX in desuperheater and parallel positions. This is because
HS evaporating pressure was higher in the cascade cycle with AHX in heater position, resulting in
lower pressure difference in the HS cycle. Additionally, HS power consumption of the cycle with
AHX in desuperheater position was slightly lower than that of the cycle with AHX in parallel position
because pressure difference of the HS cycle was lower in the cycle with AHX in desuperheater position.
Consequently, total power consumption of the cascade cycle with AHX as heater was highest, due to
its high LS power consumption, followed by that of the cascade cycle with AHX in parallel position
as shown in Figure 16. Total power consumption of the cascade cycle with AHX as desuperheater
was lowest because of its low LS power consumption. Thus, power consumption of the LS cycle had
dominant effect on total power consumption of the cascade cycles with AHX.

The high heating capacity of the cascade cycle with AHX in desuperheater position, coupled with
its low total power consumption resulted in it having the highest COP among the three cascade heat
pump cycles with AHX. At 0 ◦C OD EWT, COP of the cascade cycle with AHX in desuperheater was
higher than that of the cascade cycles with AHX in heater and parallel positions by 39.0% and 42.5%
respectively. Also, at −5 ◦C OD EWT, COP of the cascade cycle with AHX in desuperheater position
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was higher than that of the cascade cycles with AHX in heater and parallel positions by 39.2% and
44.3% respectively. Therefore, OD EWT had no significant effect on the difference in COP between the
cascade heat pump cycles with AHX.

Figure 16. Total power consumption of cascade heat pump cycles with AHX according to variation in
OD EWT.

3.2. Performance Comparison between Conventional Cascade Heat Pump Cycle and New Cascade Heat Pump
Cycle with AHX in Desuperheater Position

Figure 17 shows capacity of the conventional cascade heat pump and that of the cascade heat
pump adopting AHX in desuperheater position. The capacity of the cascade heat pump adopting
AHX in desuperheater position was higher than that of the conventional cascade heat pump at all OD
EWT conditions. Capacity of cascade heat pumps for hot water generation greatly depends on heat
transferred to secondary fluid of the HS cycle. In the cascade heat pump with AHX in desuperheater
position, heat transfer to HS secondary fluid occurred in the AHX, between LS refrigerant and HS
secondary fluid, and in the ID HX, between HS refrigerant and HS secondary fluid. However, in the
conventional cycle, heat transfer to secondary fluid of the HS cycle occurred only in the ID HX. The
indoor EWT of cascade heat pump with AHX in desuperheater position was higher than that of the
conventional cascade heat pump as shown in Figure 18, due to heat transfer from the LS refrigerant to
HS secondary fluid in the AHX. Heat transfer in the ID HX of the cycle with AHX in desuperheater
position, therefore occurred between HS refrigerant and HS secondary fluid with EWT higher than
that of the conventional cycle. For the conventional cycle, LS condensing temperature was higher
than that of the cycle with AHX in desuperheater position, as shown in Figure 19. This resulted
in higher heat transfer to the HS cycle in the cascade heat exchanger, and higher HS evaporating
temperature compared to the cycle with AHX as desuperheater as shown in Figure 20. High stage
refrigerant mass flow rate in the conventional cycle was therefore higher than that of the cycle with
AHX in desuperheater position as shown in Figure 21, which consequently resulted in higher heat
transfer between HS refrigerant and secondary fluid in the ID HX. Even though heat transfer to HS
secondary fluid in the ID HX was lower for the cycle with AHX as desuperheater, total heat transfer to
the HS secondary fluid was higher than that in the conventional cascade heat pump at all OD EWT
conditions. Therefore, LWT of the ID HX was higher in the cycle with AHX as desuperheater as shown
in Figure 22, resulting in higher heating capacity for the cycle with AHX in desuperheater position at
all OD EWT conditions.
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Figure 17. Heating capacity of conventional cascade heat pump and cycle with AHX according to
variation in OD EWT.

Figure 18. Indoor entering water temperature (ID EWT) of conventional cascade heat pump and cycle
with AHX according to variation in OD EWT.

Figure 19. LS saturation temperature of conventional cascade heat pump and cycle with AHX according
to variation in OD EWT.
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Figure 20. HS saturation temperature of conventional cascade heat pump and cycle with AHX according
to variation in OD EWT.

Figure 21. Refrigerant mass flow rate of conventional cascade heat pump and cycle with AHX according
to variation in OD EWT.

Figure 22. Leaving water temperature of ID HX of conventional cascade heat pump and cycle with
AHX according to variation in OD EWT.
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Furthermore, difference in heating capacity between the cycle with AHX as desuperheater and
that of the conventional cycle increased as OD EWT increased, due to the increase in heat transfer to
secondary fluid of the HS cycle in the AHX. Heating capacity of the cycle with AHX as desuperheater
was higher than that of the conventional cycle by 3.7%, 6.1%, 6.6% and 7.4% at OD EWT of −5 ◦C, 0 ◦C,
5 ◦C and 10 ◦C respectively.

Figure 23 shows COP of the conventional cascade heat pump and that of the cycle with AHX
as desuperheater according to OD EWT variation. COP of the cascade heat pump cycles increased
according to increase in OD EWT due mainly to increase in heating capacity. Even though total power
consumption of the cascade heat pump cycles increased as OD EWT increased, as shown in Figure 24,
the slope of increase of the heating capacity was higher than that of the total power consumption,
resulting in the increasing COP trend as OD EWT increased.

Figure 23. COP of conventional cascade heat pump and cycle with AHX according to variation in
OD EWT.

Figure 24. Total power consumption of conventional cascade heat pump and cycle with AHX according
to variation in OD EWT.
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Furthermore, COP of the cascade heat pump with AHX as desuperheater was higher than that of
the conventional cycle at all OD EWT conditions. Low stage power consumption of the cascade heat
pump with AHX as desuperheater was significantly lower than that of the conventional cycle at all OD
EWT conditions as shown in Figure 25. This was due to lower LS pressure difference of the cycle with
AHX in desuperheater position as shown in Figure 26, caused by lower LS condensing pressure as a
result of heat transfer to the HS secondary fluid in the AHX. Nonetheless, HS power consumption of
the cascade cycle with AHX in desuperheater position was slightly higher than that of the conventional
cycle at all OD EWT conditions. Therefore, total power consumption of the conventional cycle was
higher than that of the cycle with AHX as desuperheater. Combined effect of higher heating capacity
and lower total power consumption in the cycle with AHX as desuperheater resulted in it having
higher COP as compared to that of the conventional cascade heat pump at all OD EWT conditions. COP
of the cascade heat pump with AHX as desuperheater was higher than that of the conventional cascade
heat pump by 12.2%, 14.9%, 13.2% and 12.4% at OD EWT of −5 ◦C, 0 ◦C, 5 ◦C and 10 ◦C respectively.

Figure 25. Power consumption of conventional cascade heat pump and cycle with AHX according to
variation in OD EWT.

Figure 26. Pressure difference of conventional cascade heat pump and cycle with AHX according to
variation in OD EWT.

Figure 27 shows P-h (Pressure-enthalpy) diagram of the conventional cascade heat pump cycle
and the new cascade cycle with AHX as desuperheater at standard EWT conditions. Compared to
the conventional cycle, the new cascade cycle had lower LS condensing pressure and lower enthalpy
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difference across the LS compressor. This resulted in lower LS power consumption of the new cascade
cycle. Furthermore, enthalpy difference across the ID HX of the new cycle was slightly higher than that
of the conventional cycle, representing slightly higher heat transfer in the ID HX of the new cascade
cycle; while enthalpy difference across HS compressor of the new cascade cycle was higher than that of
the conventional cycle, showing higher HS power consumption of the new cascade cycle. However,
enthalpy difference across the LS and HS compressors shows lower total power consumption of the
new cascade cycle than that of the conventional cycle.

Figure 27. P-h (Pressure-enthalpy) diagram of conventional cascade heat pump cycle and new
cascade cycle.

4. Conclusions

This study analyzed the performance characteristics of cascade heat pump for hot water generation
according to variation in outdoor entering water temperature (OD EWT). Capacity and COP of the
cascade heat pump increased with increase in OD EWT due to the increase in heat transfer to the HS
cycle as a result of increase in intermediate temperature in the cascade heat exchanger.

A new cycle was proposed to enhance performance of the cascade heat pump for hot water
generation by adopting auxiliary heat exchanger (AHX) to the LS side of the cascade heat pump in
desuperheater, heater and parallel positions. Cascade cycle with AHX in desuperheater position had
highest performance because it had the highest heat transfer to secondary fluid of the HS cycle in the
AHX, and lowest pressure difference of the LS cycle. Therefore, performance of the new cascade cycle
with AHX in desuperheater position was compared with that of the conventional cycle.

Compared to the conventional cycle, the new cascade cycle with AHX in desuperheater position
had higher heating capacity and COP due to great heat transfer from the LS cycle to secondary fluid of
the HS cycle in the AHX, and significant decrease in power consumption of the LS cycle. The new
cascade cycle with AHX in desuperheater position enhanced heating capacity and COP in the ranges
of 3.7–7.4% and 12.2–14.9% respectively, when OD EWT increased from −5 ◦C to 10 ◦C.
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Nomenclature

AHX Auxiliary heat exchanger
COP Coefficient of performance
Cp Specific heat (kJ/kg·C)
DSH Desuperheater
EEV Electronic expansion valve
EWT Entering water temperature (◦C)

HS High stage
HX Heat exchanger
ID Indoor
LS Low stage
LWT Leaving water temperature (◦C)
.

V Volumetric flow rate (m3/s)
OD Outdoor
Q Heating capacity (kW)
RTD Resistance temperature detector
SFFR Secondary fluid flow rate (LPM)
T Temperature(◦C)

U Uncertainty
W Power consumption (kW)
x Nominal value of variable

Subscript
comp Compressor
cond Condenser
evap
pump

Evaporator
Pump

Greek
ρ Density (kg/m3)
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