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Abstract: In electric vehicles (EVs), battery management systems (BMS) carry out various functions
for effective utilization of stored energy in lithium-ion batteries (LIBs). Among numerous functions
performed by the BMS, estimating the state of health (SOH) is an essential and challenging task
to be accomplished at regular intervals. Accurate estimation of SOH ensures battery reliability by
computing remaining lifetime and forecasting its failure conditions to avoid battery risk. Accurate
estimation of SOH is challenging, due to uncertain operating conditions of EVs and complex
non-linear electrochemical characteristics demonstrated by LIBs. In most of the existing studies,
standard charge/discharge patterns with numerous assumptions are considered to accelerate the
battery ageing process. However, such patterns and assumptions fail to reflect the real world operating
condition of EV batteries, which is not appropriate for BMS of EVs. In contrast, this research work
proposes a unique SOH estimation approach, using an independently recurrent neural network
(IndRNN) in a more realistic manner by adopting the dynamic load profile condition of EVs. This
research work illustrates a deep learning-based data-driven approach to estimate SOH by analyzing
their historical data collected from LIBs. The IndRNN is adapted due to its ability to capture complex
non-linear characteristics of batteries by eliminating the gradient problem and allowing the neural
network to learn long-term dependencies among the capacity degradations. Experimental results
indicate that the IndRNN based model is able to predict a battery’s SOH accurately with root mean
square error (RMSE) reduced to 1.33% and mean absolute error (MAE) reduced to 1.14%. The
maximum error (MAX) produced by IndRNN throughout the testing process is 2.5943% which is well
below the acceptable SOH error range of ±5% for EVs. In addition, to demonstrate effectiveness of
the IndRNN attained results are compared with other well-known recurrent neural network (RNN)
architectures such as long short-term memory (LSTM) and gated recurrent unit (GRU). From the
comparison of results, it is clearly evident that IndRNN outperformed other RNN architectures with
the highest SOH accuracy rate.

Keywords: state of health; electric vehicle; lithium-ion battery; recurrent neural network; IndRNN;
SOH; data-driven approach; deep learning

1. Introduction

The increasing number of internal combustion engine (ICE) vehicles that run on fossil fuels
causes a huge impact on global climate change, energy expenditure, environmental pollution and
health hazards. Due to this alarming situation, many countries have begun to pay more attention to
alternative and renewable energy sources to replace fossil fuels. As per the report from the Transport
and Environment (T&E) organization [1], the transport industry alone caused 27% of the greenhouse
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gas emissions among overall Europe Union emissions. In particular, passenger cars are accountable for
41% of total transport emissions. Electric vehicles (EVs) have been identified as the best alternative by
the automotive industry to address emerging challenges and issues associated with climate change
and increasing energy demands.

Among various kinds of energy sources, lithium-ion batteries (LIBs) are a preferred choice for
the automotive industry due to high energy density, high specific energy, high charging efficiency,
long lifetime, low maintenance and low self-discharge [2,3]. Presently, most EVs on the road use LIBs
including GM Chevy-Volt, BMW Mini E, Tesla Model S, Renault Zoe, Nissan Leaf EV, Chrysler 200
C EV and Mitsubishi iMi EV [4,5]. To increase driving range, optimal power utilization, increase
lifetime, increase battery performance and guarantee safe operation, batteries must be managed more
effectively. In general, EVs employ a dedicated module called the battery management systems (BMS)
to enable safe and efficient operation of the battery. Improper management of the battery may lead
to safety-related issues such as an accelerated battery ageing process and overheating which may
even leads to an explosion [3,6]. Among various BMS operations, accurate estimation of battery’s
state-of-health (SOH) is a crucial operation. This ensures safe and reliable operation of LIBs by
computing remaining lifetime and forecasting its failure condition. The SOH of a battery could be
expressed as the ratio of maximum available capacity in the present condition to the nominal capacity
of the battery in a fresh condition [7]. This can be stated as follows:

SOH =
QPresent

QFresh
·100% (1)

where, QPresent denotes present available capacity of the battery and QFresh indicates the capacity of
the battery in the fresh condition. In general, if battery capacity goes below 80% of its original capacity
then the battery is considered as non-usable for application purposes. This is due to exponential
degradation of the battery capacity exhibited below 80% cut-off.

There are numerous internal and external factors influencing the health of the Li-ion battery and its
performance degradation over a period of time. Some of the internal factors includes battery material,
calendar ageing and increase in internal resistance. The external factors are operating temperature,
uncertain driving condition, overcharging/discharging, high charge/discharge rate and improper
charge/discharge cycling [8,9]. Due to many unknown and unpredictable factors influencing the
health of the battery, estimating battery SOH becomes quite challenging. These factors are accountable
for the unpredictable battery ageing process and many works in the literature have made an effort
to investigate ageing process [10,11]. The main source of ageing mechanisms includes chemical,
mechanical, thermal and highly depends on electrode compositions. Two distinguished types of ageing
occurring in LIBs are calendar ageing and cycle ageing. The calendar ageing accelerates ageing while
in storage condition due to increase in internal resistance and self-discharge rate. This type of ageing
primarily based on external environmental factors including temperature under storage condition. In
contrast to calendar ageing, cycle ageing takes place during charging or discharging conditions. Cycle
ageing is mostly influenced by battery-charging methods, discharge rate and state-of-charge (SOC)
values. In addition, cycle ageing may result cycle-life loss in the LIB due to irreversible damage caused
to electrodes under improper battery operation.

Most of the existing approaches utilize a capacity fading and electrochemical (EC) model to
measure SOH because as battery age capacity decreases, EC parameters are modified. However,
all these approaches estimate SOH under robust assumptions and static cycling condition. These
conditions are not suitable for real world EV batteries because this requires real-time SOH computation
and charging/discharging happens in a dynamic manner [12]. Since battery SOH is a vital parameter
to estimate SOC, which determines driving mileage of an EV, it is very much essential to compute the
SOH in real-time. Due to longer charging time of EV batteries, charging occurs randomly whenever
the battery is not fully charged. In addition, EV batteries discharges dynamically based on driving
behavior, traffic conditions and other external factors. To eliminate such limitations, this research work
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proposes a data-driven technique to predict SOH based on vital data such as voltage (V), current (I)
and temperature (T) collected from LIBs under variable load conditions. An artificial neural network
(ANN) framework is developed to establish the non-linear relationship among battery parameters
(V, I, T) and SOH. Key contributions of the proposed research work listed as follows:

• A new approach is adopted to identify and extract a set of input features associated with the
battery degradation process;

• A data-driven based SOH estimation using an independently recurrent neural network (IndRNN)
is developed with the help of vital battery parameters collected from LIBs;

• The effectiveness of the proposed IndRNN based SOH estimation approach is verified by
comparing it with similar RNN architectures, and the IndRNN resulted in having a much lower
mean square error (RMSE) rate of 1.33%.

Subsequent sections of this paper is organized as follows: Section 2 examines existing SOH
estimation approaches and highlights the advantages of the data-driven approach. Section 3 elaborates
on the experimental dataset used for the proposed research work. Section 4 describes the IndRNN
based SOH estimation framework. Section 5 explains the experimental result of the proposed IndRNN
model. Section 6 concludes the highlights of this research work.

2. Related Work

An accurate and effective SOH estimation primarily depends on a systematic approach to
observe and analyze vital parameters of LIBs involved in the battery ageing process. Although many
contributions have been made by researchers around the globe for the advancement of SOH estimation,
compared to other BMS functions research on SOH appears to be inadequate. This is due to hindrances
caused by an extremely time-consuming ageing process of LIBs. Some of the common SOH estimation
approaches include the direct measurement approach, model-based approaches, adaptive filtering
approaches and the data-driven approach as shown in Figure 1 [8].
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Direct measurement is a well-known method to estimate the battery SOH by directly measuring its
key attributes such as internal resistance, impedance, open-circuit voltage (OCV) and charge/discharge
current. Battery capacity loss and internal resistance are inversely proportional to each other as
capacity degrades, internal resistance of the battery increases. This relationship is basis for many
researchers [13–15] to recommend many SOH estimation methods based on the battery degradation
process by measuring a battery’s internal resistance using Ohm’s law. Electrochemical impedance
spectroscopy [EIS] is another method to estimate SOH by measuring battery impedance, since battery
impedance increases as battery ages. By measuring a battery’s impendence value as a function of
frequency, SOH can be estimated [16,17]. In OCV, estimation of SOH is performed both online and
offline and exhaustive lab experiments are necessary to establish a relationship between SOH and
OCV. To estimate battery SOH accurately, capacity degradation and model parameters are evaluated
based on the charging curve of the battery at various battery cycles [18,19]. Coulomb counting (CC) is
another approach to estimate SOH by monitoring the amount of current charged/discharged into/from
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LIB (Ah counting). By tracking the amount of Ah exchanged between battery and load, the remaining
capacity of the battery is computed and used for SOH estimation [20].

In the model-based approach, the battery-ageing process is assessed by developing battery
models. The objective of these approaches is to provide knowledge of various physical and chemical
reactions experienced by a battery when utilized. Two most commonly employed battery models for
SOH estimation are the electrochemical model (EChM) and equivalent circuit model (ECM). Basic
electrical elements such as resistor, capacitor and voltage source are used to construct the ECM model
and many methods have been proposed [21–23] to determine model parameters such as V, I, T and
impedance. Although the ECM method can be implemented easily in BMS, it involves time-consuming
experimental tests to generate diverse datasets. The EChM model aimed to replicate the exact chemical
behavior of a battery such as electrolyte concentration, corrosion, electrolyte volume, density and
porosity of the active materials etc., for better accuracy [24]. However, implementing this model in a
real EV’s BMS is doubtful due to its complexity and high computational cost.

In adaptive filter approaches, the SOH of a battery estimated by continuously monitoring and
analyzing the battery parameters, which are sensitive to the battery ageing process. The Kalman filter,
particle filter and least square are some of the commonly existing adaptive methods to estimate SOH.
The Kalman filter approach is a two-stage process and uses a series of battery parameters measured
over a time for accurate SOH estimation. First, prediction stage filters are designed to estimate current
battery parameters. Then, update stage estimation is updated with current battery parameters for
precise output. A Kalman filter-based battery model is constructed to compute battery parameters and
to estimate SOH [25–27]. Particle filter uses Bayesian learning with important sampling to estimate
SOH with acceptable computational load [28]. This battery model uses a Monte Carlo sampling method
to characterize any probability density function to estimate battery SOC. Then, SOH of the battery is
predicted by employing the estimated SOC as input. Least square is a statistical approach in which
regression analysis is used to determine best-fit line for a given dataset, which indicates a relationship
among known and unknown battery parameters. An analytical battery model is developed using
experimental data collected from LIBs during the ageing process and applied to estimate battery
capacity by employing the least square optimization method [29,30].

Data-Driven Approach for State-of-Health (SOH) Estimation

Although many approaches presented by many researchers for SOH estimation, due to
advancement of computational units such as graphical processing units (GPUs) and advanced
learning algorithms the data-driven approach has become the preferred approach. In the data-driven
approach, a large volume of battery parameters such as V, I and T etc., are collected from LIBs by
continuously recording the health condition of the battery until it fails. In addition, this approach
effectively captures the non-linear relationship among various battery parameters without having any
anxiety about unpredictable EV operating condition and complex electrochemical process of batteries.
In particular, fuzzy logic (FL), support vector machine (SVM), artificial neural network (ANN), and
deep learning methods are some of few data-driven approaches accepted by researchers for battery
SOH estimation.

A fuzzy logic system consists of four elements (1) fuzzifier, transforming measured data into
fuzzy sets with the help of membership function; (2) fuzzy rule base, designed based on system control
operating methods; (3) fuzzy inference engine, converting fuzzy rule base to fuzzy linguistic output;
(4) defuzzifier, which converts fuzzy sets to analog output values. A reliable SOH estimation technique
is proposed using fuzzy logic to determine coefficients employed to measure internal resistance and
battery capacity [31]. Based on the measured battery temperature and current, coefficients associated
with SOH determined by fuzzy logic system. A similar approach is followed to predict SOH using
fuzzy logic with temperature, current, voltage and time as battery coefficients to determine battery
internal resistance and its maximum capacity, which in turn is employed for SOH estimation [32].
Although fuzzy logic is a powerful approach, it requires a huge dataset for testing and needs a powerful
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computational unit, which is not possible for real-world EVs. In addition, due to improper assumptions
considered in fuzzy rules this adds a substantial number of errors to the final SOH result.

Support vector machine is a renowned machine learning method that uses a regression algorithm
to analyze and capture the characteristics of a non-linear system such as LIBs for SOH prediction. A
large volume of data is collected from LIB under various battery ageing conditions and applied to the
SVM algorithm to predict SOH at different environmental and load conditions [33]. The proposed
method is verified under different temperature conditions and the obtained result indicates that an
adequate amount of accuracy is achieved to predict the health of the battery. Partial charge voltage and
the current of the battery can be used to extract three feature vectors, energy signal, charge duration and
Ah-throughput, then SVM with radial basis function is applied on these inputs to estimate SOH [34].
The results indicate that the proposed method is able to estimate the battery SOH online effectively
with less than 2% error. The main limitation of the SVM model is a large amount of data is required for
better accuracy and fine-tuning of the required battery parameters which is a time-consuming process.

An artificial neural network (ANN) is a well-known approach to model a complex and non-linear
system by processing a large amount of data. ANN is an appropriate method to estimate battery SOH
because it is not essential to understand electrochemical reactions occurring inside the battery. For
accurate SOH estimation, a large amount of experimental data is collected from LIB, and repeatedly
processed by a training algorithm until minimum estimation error is achieved. A simple back
propagation neural network model is developed to compute maximum available capacity to indicate
battery SOH by employing a hybrid pulse power characterization (HPPC) test to extract battery
parameters from the first order ECM model [7]. A probabilistic neural network (PNN) adopted to
estimate SOH by performing constant current/voltage recharging and constant current discharging has
been performed on 110 Li-Co batteries. This method considers instantaneous voltage drop, current
charging time, and open circuit voltage as the essential battery parameters to estimate SOH [35]. A
polynomial neural network model is developed using the group method of data handling to establish
the relationship between battery SOH and differential geometric properties of battery terminal voltage
curves [36]. A multi-layer perception-based neural network model was developed to estimate SOH of
a battery by extracting their parameters using ECM. In addition, this method considered battery data
collected from discrete life span to predict SOH accurately [37].

Deep learning is an improved version of the multi-layer perceptron with an ability to overcome
limitations of machine learning approaches. Some of the deep learning approaches are, the convolutional
neural network (CNN), deep neural network (DNN), recurrent neural network (RNN) and their variants
long short-term memory network (LSTM) and gated recurrent unit (GRU). Although ANN effectively
captures the key features of a non-linear system, it is not effective for time series-related system.
Especially data acquired during single discharge cycle of battery at a specific instant of time is not
suitable for SOH estimation. However, time-series data acquired during a specific range of time
interval will help to capture ageing effect of battery. Henceforth, an approach employed to estimate
SOH must handle time-series data effectively for better prediction. One such proven deep learning
approach is recurrent neural network (RNN).

Dynamically driven recurrent network employs non-linear autoregressive with exogenous inputs
architecture for SOC and SOH estimation [38]. The proposed method highlights its ability to capture
a battery’s non-linearity characteristics effectively by evaluating experimentally on two battery
chemistries LiFePO4 and LTO under dynamic charge and discharge current profile with different
ambient temperature conditions. However, a fully connected RNN architecture is easily prone to
the long-range dependency problem, which either vanishes or explodes the gradient during the
backpropagation operation. A LSTM-based battery SOH estimation approach utilizes time varying
instantiations to predict the SOH recording current (I) and voltage (V) under real-world driving
pattern [39]. In addition, the obtained results indicate that the proposed approach is robust and flexible
under various EV conditions with overall average error less than 0.0765 Ah (2.46%). It is necessary to
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note that some of the researchers began to apply LSTM for predicting the remaining useful life (RUL)
of a battery [40,41].

From Table 1, the drawbacks of various SOH methods other than data-driven methods are
summarized as: (1) They are difficult to implement in real-time due to high computational intensity
and a time-consuming process’ (2) accuracy depends on extraction of the battery model parameters;
(3) many strict assumptions are observed during experimental dataset preparation; (4) many methods
are applicable to specific battery chemistries. All these hindrances make such SOH estimation methods
unsuitable for EV BMS. In contrast, data-driven approaches avoid the aforementioned limitations
by establishing non-linear relationship between various battery parameters and its ageing process.
However, these SOH methods encounter few drawbacks, which include: (1) require high quality and
large amount of data for battery accuracy; (2) most of the methods adopted fixed charge/discharge
profile which fails to reflect real EV driving pattern; (3) an effective training process is essential for
better performance.

To overcome these limitations, a data-driven accurate SOH estimation battery model is developed
with the help of efficient training process. In addition, the experimental dataset utilized for training
must reflect real-world EV driving pattern for practical implementation. Therefore, the main motive of
this research work is to develop a robust SOH estimation battery model with high accuracy using an
advanced deep learning neural network called an independently recurrent neural network (IndRNN)
to capture the non-linear characteristics of Li-ion batteries.

The potential of the proposed approach is demonstrated with the help of randomized battery usage
data set obtained from National Aeronautics and Space Administration (NASA) Ames Prognostics
Data Repository. In addition, to validate the effectiveness of IndRNN results were compared with
similar type of RNN architecture such as LSTM and GRU.
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Table 1. Comparative analysis of SOH estimation methods.

SOH
Method

Algorithm/Approach
Used Advantages Disadvantages Improvement Required SOH

Error % References

EIS Theory of evidence
(ToE)

• Less
computational complexity

• Achieves good accuracy

• Accuracy decays if battery
model parameters are not
properly extracted

• Restricted to specific
battery chemistries

• Further improvement can be
made to the battery model by
integrating with
other techniques

3.73% [16]

OCV Parameter varying
approach (PVA)

• Easy to implement
• Tested for various vehicle

driving cycles profiles under
different
temperature conditions

• Time-consuming process
• Errors accumulate when

estimation
performance degrades

• Scenario driven-based
algorithms shall be developed

• Estimation accuracy can be
increased further by
extracting resistance, capacity
and OCV as an
individual task

0.5% to 3% [18]

CC Linear function and
operations

• Simple calculation
• Easy to implement

in hardware

• Estimation error increases
after every
charge/discharge cycle

• Battery is tested with fewer
charge/discharge cycles

• Calibration is required to
sustain its accuracy

• Battery must be tested for
more charge/discharge cycles

1.08%
(after 28th cycle when
correction is applied)

[20]

ECM Incremental capacity
analysis based model

• Suitable for different type
of LIBs

• High accuracy

• Battery allowed to cycle
under constant load
discharge condition

• Time-consuming process

• Effectiveness of this method
needs to be validated under
real world EV applications

• Algorithm for accurate model
parameter extraction needs to
be improved

Proprietary dataset: 0.12%
NASA dataset:
–0.57% to 0.19

[21]

EchM

Reduced order single
particle model (SPM),
Brute force nearest
neighbour search
(NNS)

• Captures battery degradation
process effectively by
extracting both
electrochemical and
physical parameters

• Increase in SOH accuracy by
combining with other
SOH methods

• Accurate model
parameterization is essential

• Not suitable for
online estimation

• Need to adopt simplified
approach for
battery characterization

- [24]
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Table 1. Cont.

SOH
Method

Algorithm/Approach
Used Advantages Disadvantages Improvement Required SOH

Error % References

KF Forgetting factor
recursive least square

• Good accuracy
• Online estimation approach

• High computational cost
• Accuracy depends on battery

model parameters

• Complexity of the algorithm
should be reduced with the
help of an efficient algorithm

1.52% [25]

PF Monte Carlo
sampling methods

• Good precision
• Validation carried out on EV

driving profile

• To increase robustness of the
method, large volume of
experimental dataset
is required

• To increase the accuracy, a
better battery model could be
adopted instead of a
simplified model

- [28]

LS
Ordinary least
squares and total least
squares

• Acceptable accuracy
• Performed on experimental

data of different
automotive profiles

• Online estimation method

• SOH estimation performed
with many assumptions

• Proposed methods can be
tested on cell modules or EV
battery packs

<5% [29]

FL Center-of-gravitytechnique

• No complex mathematical
model is needed

• Directly measures SOH
without any intermediate
transformation steps

• High accuracy

• Other essential battery ageing
factors are ignored, and only
temperature and current
alone are taken into account

• Accuracy depends on
effective training process

• By considering additional
battery ageing parameters
accuracy can be improved

<2% [31]

SVM Grid search method,
Radial basis function

• Online method with good
estimation precision

• Good non-linearity mapping

• Computational intensity and
limitation on data storage

• Sensitive to amount and
quality of training data

• For better results additional
factors such as sampling error,
temperature must be
included in the input vector

• Must be validated with the
help of real EV driving profile

<2% [34]
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Table 1. Cont.

SOH
Method

Algorithm/Approach
Used Advantages Disadvantages Improvement Required SOH

Error % References

ANN Multilayer perceptron
(MLP)

• Online estimation method
• Capable to estimate SOH

using discrete life span data
of the battery instead of
whole life span

• Effectively capture the
non-linear characteristics of
the battery

• Need large amount of data to
train the network

• The precision depends on the
accuracy of the model applied
for experimental dataset

• Better approach must be
proposed to effectively
represent battery
degradation process

<1.5% [37]

RNN

Non-linear
autoregressive with
exogenous inputs
(NARX),global
feedback theorem
(GFT)

• Battery model or knowledge
of battery’s internal
parameters is not needed

• Battery temperature effect
is considered

• Battery ageing is forced by
exposing under
high temperature

• Constant charging/discharge
profile applied for generating
experimental dataset

• Dynamic/variable load profile
must be used to apply this
approach to real-world EVs

0.1 to 0.45%
(For LiFePO4) [38]

LSTM-RNN

Snapshot-based
approach,
Noise-robust
approach

• Practical EV environments
which support real-world
driving patterns

• Temperature impact on
battery ageing is considered

• Requires specific I/V patterns
to infer battery degradation
process which is different for
different battery chemistry

• Leads to gradient decay over
layers due to the use of
sigmoid or tangent as an
activation function

• Further improvement can be
made on the RNN
architecture’s activation
function for better
learning process

<2.46% [39]
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3. NASA’s Randomized Battery Usage Dataset

The practical operating condition of a real-world EV battery involves partial and dynamic
driving behavior, improper battery cycling and unsystematic current charge and discharge conditions.
Unfortunately, most of the existing studies employ battery datasets with tightly constrained
assumptions, such as battery allowed to discharge under constant current, battery cycling allowed
with fixed voltage range and fixed temperature condition. However, these assumptions failed to
encapsulate the practical operating condition of EV batteries. To eradicate such limitations, this
research work is focused on operating a battery under a dynamic load profile consisting of different
battery cycles with randomly selected charge and discharge current. The proposed IndRNN approach
estimate battery SOH in real-world EV operating conditions by employing randomized battery usage
experiment dataset collected from data repository of NASA’s Ames Research Center [42]. This dataset
comprises of test results of battery ageing experiment conducted at room temperature condition on
four commercially available LIBs identified as RW9, RW10, RW11 and RW12. The specifications of
the experimental battery chemistry is shown in Table 2. All batteries are engaged under two battery
profiles namely, (1) Random walk (RW) profile and (2) Reference charge and discharge profile.

Table 2. Battery specifications of NASA’s randomized battery usage data set.

Battery Key Characteristics Specifications

Manufacturer LG Chem
Battery chemistry 18,650 Lithium cobalt oxide vs. graphite
Nominal capacity 2100 mAh

Lower cut-off voltage 3.2 V
Upper threshold voltage 4.2 V

3.1. Random Walk (RW) Profile Generation

This RW profile comprises of randomized sequence of current ranging between −4.5 A and 4.5 A.
A randomly selected charging or discharging current from the set (−4.5 A, −3.75 A, −3 A, −2.25 A,
−1.5 A, −0.75 A, 0.75 A, 1.5 A, 2.25 A, 3 A, 3.75 A, 4.5 A) is applied to a battery for every five-minute
which is specified as a step in the dataset. Negative currents are associated with charging and positive
currents indicate discharging operation. For every five-minute duration a new current is chosen
randomly and applied to the battery. To ensure battery safety operation, battery voltage is charged to
its maximum threshold voltage 4.2 V and discharged to its minimum threshold voltage 3.2 V. Whenever
a battery runs beyond its voltage range (3.2 V to 4.2 V) during its step operation, then the current step
operation stops and new step operation is initiated by choosing a new value from the current set. After
every step, a small amount of delay of approximately 1 s is permitted to choose a new current value
which is described as rest (random walk) in the dataset and repeated for every step. Therefore, a single
RW cycle consist of 1500 RW steps and 1500 rests (random walk); each RW profile consists of numerous
RW cycles. After every RW profile, battery undergo reference charge and discharge profile to assess
the battery’s capacity and calculate its SOH value. Even though the exact driving pattern of the EV is
not imitated by the RW profile, it makes best attempt to capture the dynamic operating condition of
the EV with the help of a random current set.

3.2. Reference Charge and Discharge Profile

Before every RW cycle starts to provide a reference benchmark for battery SOH, a series of
reference charging and discharging profiles were carried out. Firstly, the battery is charged to its
maximum voltage by applying constant current of 2 A, then a constant voltage of 4.2 V is maintained
until its current drops to 0.01 A. Subsequently, 2 A current load is applied to the battery until its
voltage drops to 3.2 V. This charging and discharging operation are defined as reference charging and
discharging cycle. After every RW cycle, the present battery capacity (Qpresent) of the battery can be
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calculated by accumulating total discharge current (Id) of the battery cell during reference discharge
cycle as given as,

Qpresent (t) =
∫ t

0
Id(t) dt (2)

After every RW cycle, the reference charge and discharge cycle are carried out twice. For better
analysis, the very first reference charging and discharging cycles are considered for calculating battery
capacity after every RW cycle, and remaining reference cycles are ignored due to very small amount of
capacity reduction exhibited by the battery cell. For every RW, reference charging and discharging
profile, the battery’s V, I and T are monitored for every second along with its time (referenced to the
beginning of the experiment) and relative time (referenced to the beginning of the step). Figures 2
and 3 represents V, I and T for first 50 and last 50 RW steps of RW9 profile respectively.

Energies 2019, 12, x FOR PEER REVIEW 11 of 29 

be calculated by accumulating total discharge current (Id) of the battery cell during reference 
discharge cycle as given as, 

ܳ௦௧ (ݐ) =  න ݐ݀ (ݐ)ௗܫ
௧


 (2) 

After every RW cycle, the reference charge and discharge cycle are carried out twice. For better 
analysis, the very first reference charging and discharging cycles are considered for calculating 
battery capacity after every RW cycle, and remaining reference cycles are ignored due to very small 
amount of capacity reduction exhibited by the battery cell. For every RW, reference charging and 
discharging profile, the battery’s V, I and T are monitored for every second along with its time 
(referenced to the beginning of the experiment) and relative time (referenced to the beginning of the 
step). Figures 2 and 3 represents V, I and T for first 50 and last 50 RW steps of RW9 profile 
respectively.  

 
Figure 2. V, I and T of first 50 RW steps observed on battery cell RW9. 

 
Figure 3. V, I and T of last 50 RW steps observed on battery cell RW9. 

4. Framework for SOH Estimation 

4.1. Input Feature Extraction 

There are many factors that influence battery ageing, which includes load enforced, operating 
temperature, humidity and their electrochemical effects. It is difficult to consider all these factors in 

Figure 2. V, I and T of first 50 RW steps observed on battery cell RW9.

Energies 2019, 12, x FOR PEER REVIEW 11 of 29 

be calculated by accumulating total discharge current (Id) of the battery cell during reference 
discharge cycle as given as, 

ܳ௦௧ (ݐ) =  න ݐ݀ (ݐ)ௗܫ
௧


 (2) 

After every RW cycle, the reference charge and discharge cycle are carried out twice. For better 
analysis, the very first reference charging and discharging cycles are considered for calculating 
battery capacity after every RW cycle, and remaining reference cycles are ignored due to very small 
amount of capacity reduction exhibited by the battery cell. For every RW, reference charging and 
discharging profile, the battery’s V, I and T are monitored for every second along with its time 
(referenced to the beginning of the experiment) and relative time (referenced to the beginning of the 
step). Figures 2 and 3 represents V, I and T for first 50 and last 50 RW steps of RW9 profile 
respectively.  

 
Figure 2. V, I and T of first 50 RW steps observed on battery cell RW9. 

 
Figure 3. V, I and T of last 50 RW steps observed on battery cell RW9. 

4. Framework for SOH Estimation 

4.1. Input Feature Extraction 

There are many factors that influence battery ageing, which includes load enforced, operating 
temperature, humidity and their electrochemical effects. It is difficult to consider all these factors in 

Figure 3. V, I and T of last 50 RW steps observed on battery cell RW9.

4. Framework for SOH Estimation

4.1. Input Feature Extraction

There are many factors that influence battery ageing, which includes load enforced, operating
temperature, humidity and their electrochemical effects. It is difficult to consider all these factors in
any model estimation approach to predict SOH. Instead, this research work presents a SOH estimation
method based on three battery parameters V, I and T acquired through BMS of EV in relation with
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battery capacity degradation. These battery parameters can effectively capture and reproduce the
effect of the aforementioned battery ageing factors. The intention behind choosing V, I and T for SOH
estimation is, they all depend on each other. From Figure 2 it is very clear that V, I and T are not
independent of each other. In particular, observe V, I and T at time instant near to 2.5 h as current
increases (discharge), battery voltages starts to decrease and temperature begin to rise gradually.
In contrast, at time instant near 2 h when current decrease(charge), voltage starts to increase and
temperature starts to decrease gradually towards room temperature. To demonstrate the effect of V, I
and T on the battery ageing process last 50 random walk discharge profile of same battery cell RW9 as
shown in Figure 3. It is evident that, time period for last 50 RW steps are lesser than first 50 RW steps
which indicates that the battery reaches minimum and maximum threshold voltage frequently.

Consider for the first and last 50 RW steps that the battery cell operated under fresh and aged
condition with random current load applied for every, which means approximately entire time taken
for 50 steps must be 4.167 h. The time taken by the first and last 50 RW steps are approximately 3.47 h
and 1 h respectively. The mismatch between actual duration (4.167 h) and practical duration (3.47 h)
of first 50 RW cycle is due to some of the random current load applied when the battery is near to
its minimum(3.2V) and maximum(4.2V) threshold voltages. Under such condition (4.2< V < 3.2),
current step is stopped, new load current is chosen and applied to the battery cell to start the next step.
However, for the last 50 RW cycle this time duration is much less (1 h) because the battery reaches
its minimum and maximum threshold voltages very frequently this is due to increase in internal
resistances which inherently reduces battery storage capacity. Similarly, total time unit taken for every
RW cycle decreases since the battery is operated from fresh condition to aged condition. Figure 4
shows the first RW cycle of battery cell RW9 which consumes approximately 93.18 h whereas the last
RW shown in Figure 5 consumes only 31.07 h, which is much less compared to the first RW cycle time
duration. It clearly evident that in addition to V, I and T of the battery, the time duration of RW cycle
and reference discharge cycle also influence the capacity degradation at different stages for fresh and
aged batteries.
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Figure 6 represents the reference discharge profile of the battery cell RW9. It is clear that voltage
decay rate increases as the battery ages which leads to a decrease in battery capacity because of a rise
in internal resistance.
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Figure 7 represents the capacity degradation of battery cell RW9 over its lifetime. In Figure 7,
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For each RW cycle, factors which accelerate battery ageing are identified from NASA’s randomized
battery dataset. Each RW cycle consists of 3000 steps which include 1500 RW steps and 1500 RW
rest periods, and the capacity of the battery is measured for every RW cycle. As battery capacity is
used for SOH estimation, the relation between set of input parameters and battery capacity must be
drawn for every RW cycle to construct the SOH estimation model. Identify the set of input features
associated with time series data for each RW cycle and form an input vector x of size j. For example,
for every RW cycle in each battery profile of measured battery parameters Vi, Ii and Ti are mapped
to a single j-dimensional input vector x. The size of input vector xj is same for all RW cycles. As
discussed, although many factors influence the battery ageing process with respect to each RW cycle,
the following 18 factors significantly contribute to accurate SOH estimation.

The first three factors of the input vector are mean of V, I and T for a particular RW cycle which
are directly measured from battery and denoted as Vavg(rwk), Iavg(rwk) and Tavg(rwk) respectively.
Furthermore, these can be represented as follows,

x j,1 = Vavg(rwk) =
1
n

n∑
i=1

V(rwk)i (3)

x j,2 = Iavg(rwk) =
1
n

n∑
i=1

I(rwk)i (4)

x j,3 = Tavg(rwk) =
1
n

n∑
i=1

T(rwk)i (5)

where, n represents number of steps in each RW cycle which is 3000, k represents number of RW
cycles in each battery dataset, V(rwk)i, I(rwk)i and T(rwk)i represents voltage, current and temperature
acquired during each step of RW cycle rwk respectively. The fourth factor for the input vector is the
present battery capacity measured prior to the beginning of the RW cycle rwk is given by,

x j,4 = Q(rwk) (6)

The fifth factor is the total time elapsed for each RW cycle is ∆t(rwk) given by,

x j,5 = ∆t(rwk) = t(rwk)n − t(rwk)1 (7)

where, t(rwk)1 and t(rwk)n represents time measured at the beginning and end of the RW cycle rwk.
The next factor of the input vector is the time elapsed during each reference discharge cycle rdm which
can be represented by,

x j,6 = ∆t(rdm) = t(rdm)3.2V − t(rdm)4.2V (8)

where, t(rdm)4.2V and t(rdm)3.2V represent time measured at the beginning (when V is at 4.2 V) and
end (when V is at 3.2 V) of the reference discharge cycle rdm respectively and m represents the number
of reference discharge cycle. And remaining input factors are total time period of each current load
applied under each RW cycle rwk. There are 12 different random current loads −4.5 A to 4.5 A applied
for every RW cycle, and their time duration are denoted as t−4.5k, t−3.75k, t−3k, t−2.25k, t−1.5k, t−0.75k, t0.75k,

t1.5k, t2.25k, t3k, t3.75k, and t4.5k. Total time duration of each current load under every RW cycle rwk are
denoted as T1(rwk) to T12(rwk). The equation for T1(rwk) is given below, similarly the total time duration
of remaining current load conditions (−3.75 A to 4.5 A) can be represented as input vector xj,8 to xj,18.

x j,7 = T1(rwk) =
n∑

i=1

t−4.5i (9)
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where, t−4.5i denotes total time duration of load current −4.5 A applied in the RW cycle rwk. All these
18 factors are the input vector and assigned as input layer for the proposed network learning model.

4.2. Independently Recurrent Neural Network (IndRNN) Based SOH Estimation

Unlike a conventional neural network, RNN is a class of deep neural network, which has unique
features referred to as internal cell state or memory to study input features and time dependencies from
sequential input data to predict the future output. Therefore, the output from each neuron not only
depends on current input but also the history of previous hidden state outputs. Figure 8 illustrates the
operation of unfolded RNN structure with the feedback loop on a simple RNN. Depending upon the
number of time steps, RNN can efficiently retain information about the past. RNN has been extensively
useful in natural language processing, speech recognition and machine translation by providing words
or characters as input parameters. In addition, RNN can be more suitable for time-series forecasting
applications like SOC and SOH estimation, which predict their present output based on a history
of previous output and present input over a time. But, RNN and its variants LSTM and GRU are
easily prone to long-range dependency problem, which either vanishes or explode the gradient during
backpropagation operation. Nevertheless, these variants lead to gradient decay over layers due to the
use of sigmoid or tangent as an activation function.
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To overcome such issues a new RNN architecture known as IndRNN is proposed [43]. The
proposed IndRNN is an enhanced version of simple RNN where neurons in the same layer are
independent of each other and they are connected across layers. Figure 9 represents the structure of
conventional simple RNN and IndRNN that unfolded in time [43]. Each solid dot represents a neuron
in a layer and each line represents a connection. Therefore, in a particular hidden layer of IndRNN as
shown in Figure 9b each neuron only receives its own past as context information instead of having
full connectivity among all other neuron layers like simple RNN as shown in Figure 9b and thus these
neurons are independent of each other’s history. This signifies that each neuron in IndRNN deals with
one type of spatial-temporal pattern independently whereas neurons in the simple RNN are connected
over time by the recurrent weight connection. Furthermore, IndRNN delivers its robustness by using a
non-saturated activation function like rectified linear unit (ReLU). The simulation result in [43] exhibits
the ability of IndRNN under a long sequence of time steps, IndRNN provides better performance
compared with LSTM.
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Figure 9. Illustration of a simple RNN and the proposed independently recurrent neural network
(IndRNN) unfolded in time.

In this research work, the IndRNN architecture proposed in [43] is adopted for SOH estimation to
dissolve the gradient decay problem, meanwhile enabling the network to learn long-term dependencies
effectively. In addition, because of simple structure it supports an easy and robust training process
with different techniques such as batch normalization, ReLU activation function and dropout. Basic
architecture of IndRNN is presented in Figure 10 where, “IndRec+ReLU” block represent input and
recurrent process carried out at each time step with ReLU activation function and “BN” denote the
batch normalization performed before and after the activation function [43]. A deep-layered IndRNN
architecture can be formed by the stacking number of the basic IndRNN architecture.
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Figure 10. Basic architecture of IndRNN.

The Hadamard product is used to process the recurrent inputs in the proposed IndRNN
architecture’s hidden layer. Except for this modification, the remaining operation of IndRNN is
same as the traditional RNN. For each time step t , a hidden layer ht retains and updated based on
input layer xt−1 and previous hidden state ht−1.

The hidden state ht can be updated by an equation as follows,

ht = σh(Whxxt + Whh � ht−1 + bh) (10)

where, Whx is a vector that represents input weight, Whh is a vector that represents recurrent weight, σh
is a ReLU activation function, � denotes Hadamard product, and bh is the bias vector of the hidden layer.
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The ReLU activation function σh is used for the neuron present in the IndRNN hidden layer and it
can be expressed as:

σh = f (x) =
{

x, x ≥ 0
0, x < 0

(11)

For the nth neuron on a hidden layer, the hidden state hn, t can be attained using the equation
as follows,

hn, t = σh
(
Wn, hxxt + Wn, hh � hn,t−1 + bn,h

)
(12)

where, Wn, hx and Wn, hh are the nth row of the input and recurrent weight respectively.
The output of standard RNN structure is updated using equation yt as follows,

yt = σy(Wyhht + by
)

(13)

where σy is the activation function of the output layer, Wyh is the weight matrix between hidden and
output layer, and by is the bias vector of the output layer.

At the end of each forward propagation, the loss function (L) of the IndRNN is calculated
as follows,

L =
1
N

N∑
t=1

∣∣∣yt − y′t
∣∣∣ (14)

where, yt and y′t are the actual value and the estimated value at time step t respectively, and N is the
length of the sequence. Since, there is no interactions among neurons on the hidden layer, the gradient
of IndRNN is computed independently using the back propagation through time approach. For the
nth neuron hn, t = σh

(
Wn, hxxt + Wn, hh � hn,t−1

)
where, the bias is neglected, to minimize at time step T

is Jn. Then the gradient back propagated to the time step t is given in the following equation,
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By computing Equations (10)–(15), the hidden states are updated; calculating loss function and
propagating error loss backward using back propagation through time constitute a complete IndRNN
training process.

The proposed IndRNN architecture for SOH estimation is illustrated in Figure 11 which consists
of input, hidden and output layers. The number of neurons at each layer is configured as 18, 100 and
1 respectively. For the input layer, set of 18 battery features which are extracted from RW cycle and
reference discharge cycles represented as Vavg(rwk), Iavg(rwk), Tavg(rwk), Q(rwk), ∆t(rwk), ∆t(rdm), T1(rwk)
to T12(rwk). Next, IndRNN recurrent hidden layer node ht(1), ht(2), . . . .ht(z) is followed to learn the
dependence on the former input where, z denotes the number of neurons on the hidden layer and
must be set to 100 prior to training. At the output layer, the output of battery SOH is calculated from
the battery capacity using Equation (1) at time step t. In addition, hyperparameters of the IndRNN
network initialized for the training process is presented in Table 3. After configuring the network with
specified hyperparameters and loss function, the network is trained using Adam optimizer. During the
training process, Adam optimizer is capable of reducing the error rate variation between actual and
predicted value for every iteration. The process flow diagram of the SOH estimation method based on
the IndRNN is shown in Figure 12.
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4.3. Performance Evaluation Criteria

To evaluate the performance of the proposed SOH estimation using IndRNN, three performance
metric criteria are chosen which include root mean square error (RMSE), mean absolute error (MAE)
and maximum error (MAX). Evaluation of RMSE is to check the robustness of the SOH estimation;
MAE signifies the accuracy of the SOH estimation and the MAX represents SOH value under the
worst-case response of the network.

RMSE =

√∑k
t=1

(
yt − y′t

)2

n
(16)

MAE =
1
k

k∑
t=1

∣∣∣yt − y′t
∣∣∣ (17)

MAX = max
∣∣∣yt − y′t

∣∣∣ (18)

where, yt and y′t are the actual and the estimated SOH values at time step t respectively and k indicates
length of RW cycles.

4.4. Experimental Settings

The proposed neural network model is implemented using MATLAB. The proposed SOH
estimation approach consists of two phases, training and testing. Among four sets of battery datasets,
RW9, RW10 and RW11 are chosen for training while RW12 chosen for testing. All 18 input features
extracted from three battery sets are provided as an input to the IndRNN network to establish the
relationship with battery capacity. The input vector fed into the IndRNN network is represented as xj.
The IndRNN network produces the output as estimated SOH after every reference discharge cycle
which is represented as yt = [SOHk]. For every time step t, the state of ht in the IndRNN hidden layer is
updated by the present input xj and the previous time step of hidden state ht-1 as per Equation (10).
For validation of the estimated SOH, the actual SOH value is calculated using Equation (1). Figure 13
shows the actual SOH values measured from battery cell under three different battery datasets, RW9,
RW10, RW11 and RW12. After the training phase, the developed battery model is allowed to predict
the SOH of the battery cell RW12 by providing set of input features extracted from -its dataset. Then,
performance of the IndRNN is evaluated using Equations (16)–(18).
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5. SOH Estimation Results and Discussion

5.1. Effect of Time Step Size on IndRNN for SOH Estimation

For any neural network, the performance of the training model is mostly determined by their
hyperparameters such as number of hidden layers, number of neurons in each hidden layer, activation
function, optimizer, learning rate and number of training epochs. These hyperparameters must be
defined prior to initiating the training process. However, for IndRNN the performance of the model
under the training process is strongly depends on size of the time step. The finite value of time step in
IndRNN describes the depth in time of the historical inputs that are taken into account for updating
hidden layer neurons to produce the current output. The performance of the IndRNN is better for
longer duration. However, for longer duration the network encounters high computational cost and
training time.

The main objective of this experiment is to apply and analyze the performance of the IndRNN
network for SOH estimation under different time-step sizes. The performance evaluation criteria
such as RMSE, MAE and MAX considered for identification of an appropriate time step size. All
hyperparameters associated with the proposed IndRNN network are listed in Table 3 and all parameters
are fixed except the size of the time steps which are modified as 5, 10, 15 and 20. For every time step
sizes, SOH estimation was carried out and compared with true SOH values. The purpose of choosing
RW12 for the testing phase is that it demonstrates wilder SOH variation compared to other battery
datasets, which represents the dynamic usage of EV. After training the model, an input vector is created
with the help of 18 input features that represent the battery degradation process extracted from each
RW cycle and reference discharge cycle of the RW12 dataset. Then applied as input to the trained
IndRNN model for predicting the battery SOH value. There are 40 reference discharge cycles presented
in the RW12 dataset and for each cycle SOH value will be predicted by IndRNN model and finally
compared with true SOH value to indicate the estimation error deviation.

Figure 14 presents the results of the IndRNN network model for SOH estimation under each time
step size along with true SOH value obtained from battery dataset. As discussed earlier, true SOH
value is calculated using Equations (1) and (2). The results from Figure 14 show that the IndRNN
model make its best effort to track and predict near true SOH values for all time step sizes. This is
primarily due to the advantage of IndRNN to dissolve gradient problem and enable the network to
learn long-term dependencies. The subplot of Figure 14 shows the distribution of the estimated SOH
error produced between true SOH values and predicted SOH values using IndRNN at different time
step sizes. In addition, it can be concluded that a time step size of 5 shows the least performance
among all time step sizes and generate a MAX SOH error of 6.8403.

Figure 15 represents the individual time step response vs. true SOH value of the RW12 battery
dataset. Although the best performance of the IndRNN is achieved at step size 20, a further increase in
time step size leads to slow learning rate. This is due to less RMSE error reduction when compared
with time step 15. As shown in Figure 15, all responses of different time steps are just below the true
SOH response curve. This is mainly because of the battery datasets used for training the IndRNN
network model. As shown in Figure 15, the SOH curve of battery RW12 completely deviates from
other battery sets RW9, RW10 and RW11 SOH curves. This can be further confirmed by Figure 14
error subplot, which shows SOH error is mainly distributed towards positive values and much less
distribution on negative values.
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Table 4 highlights the quantitative results of IndRNN based SOH estimation with RMSE, MAE
and MAX values under different time-step sizes for the entire lifetime of the battery as prescribed in
the battery dataset. From the results obtained, it is evident that performance of the IndRNN model is
better as indicated by lower RMSE, MAE and MAX values as time-step size increases except for MAX
of time step size 20. Since, the network is exposed to a larger time step it can easily learn long-term
dependencies of the historical battery’s SOH data than smaller step size. However, irregularities are
encountered in IndRNN estimation performance as time-step size increases. In particular, at time step
sizes 5, 10 and 15 all performance metric errors decrease in a good percentage during consecutive time
steps. However, at time step 20, reduction in the error percentage is not satisfactory when compared
with other time step’s error rate reduction. This can be confirmed by computing the percentage of
RMSE and MAE error reduction rate for each time step as shown in Table 4. While moving from time
step size 5 to 20, the IndRNN model offers RMSE and MAE error reduction percentage as 13.277 and 8,
28 and 30, 7.36 and 11.78, respectively, under consecutive time step size. Likewise, MAX error of SOH
estimated under different time cycle presented with its lowest error percentage of 3.5786 at time step
20. To make the trade-off between time step size and performance of the network, an optimal value of
time step size 15 is chosen for effective training of IndRNN networks and the same was used to carry
out remaining experiments in this research work.
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Table 4. SOH estimation results of IndRNN under different time step sizes.

Time Step Size RMSE (%) MAE (%) MAX (%)

5 3.0149 2.4624 6.8403
10 2.6146 2.2649 4.94
15 1.8742 1.5639 3.5786
20 1.7362 1.3796 3.7795

5.2. Effect of Time-Step Size on IndRNN for SOH Estimation of up to 80% of SOH

As defined by battery manufacturers, if any battery capacity drops below 80% (SOH) from its
rated capacity then a battery reaches its end of life (EOL) and it is not useful for any applications.
This is because the performance of a battery starts to decrease significantly at faster rate below 80%.
Therefore, it is essential to perform an experiment to analyze the effect of time steps on IndRNN for
SOH estimation upto 80% of SOH. The capacity of a battery considered for this research work is 2.1 Ah
and its end of life i.e., 80% of its rated capacity is 1.68 Ah. In the given randomized battery usage
dataset, each battery is allowed to operate even below 80% of its rated capacity (1.68 Ah) to understand
the behavior of the batteries in detail. In the previous experiment, different time steps for IndRNN
are chosen and applied to entire battery lifetime (ranges between 30% to 50% SOH) which involves
40 reference discharge cycles to measure battery capacity. In contrast, this experiment analyzes the
results of IndRNN for different time-step sizes up to SOH of 80% which involves with 18 reference
discharge cycle to measure battery capacity (approximately 75 days).

This experiment tries to illustrate the practical use in which a battery model is developed by
utilizing battery datasets with its entire lifetime (ranges between 30% to 50%) then the model is allowed
to predict the battery SOH level upto 80%. The rationale behind considering the entire life time of a
battery for training is to effectively capture the dynamic behavior of a battery which will improve the
SOH estimation accuracy. Table 5 highlights the SOH estimation results of the IndRNN under different
sizes of time steps up to 80% of a battery SOH. Similar to previous experiments, the IndRNN SOH
estimation delivers better performance on a time-step size of 15 compared to other time step sizes. One
again, it is proven that time step size of 15 is an appropriate choice for the proposed SOH estimation
approach. At time step size 15, the IndRNN produces very low RMSE of 1.3369%, MAE of 1.1403% and
MAX error of 2.5943% compared with other existing approaches which utilize same battery dataset.
With MAX error of 2.5953% at time step 15, at any point of time during SOH estimation the deviation
from true SOH never exceeds 2.593% which shows the efficiency of the IndRNN. While comparing
results with previous experiments, the performance of this experiment is enhanced with much less
RMSE, MAE and MAX error for every time step. The main reason is that battery starts to demonstrates
high dynamic behavior only after 80% of SOH.

Table 5. SOH estimation results of IndRNN under different sizes of time steps up to 80% of SOH.

Time Step Size RMSE (%) MAE (%) MAX (%)

5 2.6639 2.2545 5.1516
10 2.2775 1.8581 4.3752
15 1.3369 1.1403 2.5943
20 2.0607 1.7632 3.4287

The SOH estimation results of IndRNN with estimated error percentage for different time-step
sizes upto 80% of SOH is shown in Figure 16. This result shows that when battery approaches 80%
of SOH, the battery exhibits irregularities which are effectively captured by IndRNN at time step 15.
Figure 17 shows SOH estimation results of IndRNN for individual time step size vs. true SOH upto
80% of SOH. It is clearly evident that, performance at step size 15 is better than 20 because time step
15 can effectively capture dynamic nature of battery from the beginning whereas large variation is



Energies 2019, 12, 4338 23 of 29

displayed at time step 20. For any EV application, allowable error range of SOH is ±5%, whereas for
IndRNN based SOH estimation at time step size 15 the maximum error obtained is well below the
prescribed as 2.5943% which is ideal for real world EV SOH estimations.
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5.3. SOH Estimation Results Comparison between IndRNN, Gated Recurrent Unit (GRU) and Long
Short-Term Memory (LSTM)

To showcase the effectiveness of the proposed IndRNN based SOH estimation, results obtained
at time step size 15 are considered and compared with similar enhanced RNN architectures such as
GRU and LSTM. For unbiased comparison, the same network architecture and hyperparameters listed
in Table 3 utilized to train IndRNN were employed for training the GRU and LSTM network with
time-step size 15. Similar to the first experiment, this also performs the analysis of SOH estimation
considering the entire lifetime of a battery as per the given dataset. Table 6 indicates the result of
performance evaluation criteria RMSE, MAE and MAX for different RNN architectures such as IndRNN,
GRU and LSTM. Once again the IndRNN network showcased its capability by outperforming both
GRU and LSTM under all aspect of performance evaluation metrics with RMSE of 1.8742%, MAE of
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1.5639% and MAX of 3.5786% respectively. From the results attained, it can be concluded that IndRNN
architecture is able to capture long-term dependencies effectively with time series data. Whereas, GRU
and LSTM have long-term dependencies only to a certain extent and unable to resolve for large time
step due to the vanishing gradient and exploding gradient problem.

Table 6. SOH estimation results of IndRNN, gated recurrent unit (GRU) and long short-term
memory (LSTM).

RNN Type RMSE (%) MAE (%) MAX (%)

IndRNN 1.8742 1.5639 3.5786
GRU 2.6678 2.2979 4.8978

LSTM 3.1376 2.6754 5.8633

Figure 18 shows SOH estimation results using IndRNN, GRU and LSTM with estimated error
percentage. While comparing IndRNN, GRU and LSTM SOH estimation curves, many variations are
displayed by LSTM than others. In addition, it generates MAX error of 5.8633% which is not acceptable
for an EV’s SOH. Meanwhile, GRU performs better than LSTM in all aspects of evaluation metrics
with RMSE of 2.6678%, MAE of 2.2979% and MAX error of 4.8978%.
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Figure 19 represents SOH estimation results of true SOH against GRU and LSTM SOH estimation.
It can be concluded that, although LSTM delivers least performance compared to GRU, LSTM delivers
better perform as time increases. This can be confirmed from the 100th day to the 147th day where
LSTM shows less variation with respect to true SOH compared to GRU. This is due to the characteristic
of LSTM which take longer time to learn a non-linear battery pattern.

5.4. SOH Estimation Results Comparison Between IndRNN, GRU and LSTM up to 80% of SOH

To validate the competency of the proposed IndRNN based SOH estimation approach compared
with the GRU and LSTM models under a real-world EV scenario, SOH estimation needs to be carried
out only up to 80%. To realize this real-world scenario an experiment is carried out as described
in Section 5.2 for both GRU and LSTM with the same hyperparameters mentioned in Table 3 with
time-step size 15. Table 7 presents the SOH estimation results of the proposed IndRNN, GRU and
LSTM network models upto 80% of a battery SOH. Once again IndRNN confirms its learning ability
towards capturing the battery dynamics compared with others by producing less error percentage. In
addition to that, all mentioned model outperforms their own performance demonstrated in previous
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experiment described in Section 5.3. The main reason for such a performance improvement is due to
the fact that battery starts to exhibits its non-uniform behavior just after 80% of SOH.Energies 2019, 12, x FOR PEER REVIEW 25 of 29 
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Table 7. SOH estimation results of IndRNN, GRU and LSTM up to 80% of SOH.

RNN Type RMSE (%) MAE (%) MAX (%)

IndRNN 1.3369 1.1403 2.5943
GRU 2.5376 2.3890 3.8415

LSTM 3.1579 2.7251 4.6522

Figure 20 represents the SOH estimation response of different RNN architectures IndRNN, GRU,
LSTM compared with true SOH values. The estimated error subplot indicates error deviation for
GRU and LSTM are high during initial days, especially upto 20 days, whereas IndRNN showcases its
learning ability by generating less error from the beginning stage. However, all networks struggled to
behave efficiently while battery SOH is nearing to 80% as shown from the 60th day to 75th day of the
estimated SOH error subplot.
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Figure 21 shows SOH estimation results of GRU and LSTM compared with true SOH values upto
80% of SOH condition. Comparing the ability of capturing the battery dynamics, the LSTM network
struggle to predict the correct SOH all the time, whereas GRU was able to predict near true SOH value
all the time with constant error rate.

Energies 2019, 12, x FOR PEER REVIEW 26 of 29 

 
Figure 20. SOH estimation results using IndRNN, GRU and LSTM with estimated error percentage 
upto 80% of SOH. 

Figure 21. shows SOH estimation results of GRU and LSTM compared with true SOH values 
upto 80% of SOH condition. Comparing the ability of capturing the battery dynamics, the LSTM 
network struggle to predict the correct SOH all the time, whereas GRU was able to predict near true 
SOH value all the time with constant error rate.  

 
Figure 21. SOH estimation results of true SOH vs. GRU and LSTM up to 80% of SOH. 

6. Conclusions 

This research work proposed an IndRNN based SOH estimation model to estimate the SOH of 
LIBs used in EV applications. To emulate the dynamic driving behavior of a real-world EVs with non-
uniform variable load requirement, NASA’s randomized battery usage datasets were chosen. This 
dataset represents the dynamic load condition of an EV with the help of the Random walk (RW) cycle, 
in which the battery is allowed to operate under variable load condition for every 5 min. Then, a 
series of reference benchmarking tests were carried out to evaluate the battery capacity. From the RW 
cycle and reference discharge cycle, a set of 18 input features (including V, I and T) which affects 
battery capacity are identified and extracted to develop the IndRNN model. To verify the capability 
of the proposed IndRNN based SOH estimation approach, four different experimental analyses were 

Figure 21. SOH estimation results of true SOH vs. GRU and LSTM up to 80% of SOH.

6. Conclusions

This research work proposed an IndRNN based SOH estimation model to estimate the SOH of
LIBs used in EV applications. To emulate the dynamic driving behavior of a real-world EVs with
non-uniform variable load requirement, NASA’s randomized battery usage datasets were chosen. This
dataset represents the dynamic load condition of an EV with the help of the Random walk (RW) cycle,
in which the battery is allowed to operate under variable load condition for every 5 min. Then, a series
of reference benchmarking tests were carried out to evaluate the battery capacity. From the RW cycle
and reference discharge cycle, a set of 18 input features (including V, I and T) which affects battery
capacity are identified and extracted to develop the IndRNN model. To verify the capability of the
proposed IndRNN based SOH estimation approach, four different experimental analyses were carried
out. Results obtained from each test reveals IndRNN with a time-step size of 15 is optimal time step size
for accurate SOH estimation with 80% of SOH is considered as end of battery life (EOL). In addition,
IndRNN outperforms other similar RNN models such as GRU and LSTM with much less RMSE
and MAE error values of 1.33% and 1.14%, respectively. The maximum error produced by IndRNN
throughout testing process is only 2.5943% which is well below the acceptable SOH error range of ±5%
for EVs. Due to the lower error rate provided by this approach, this is more appropriate for BMS of EV
applications. The major strength of this method includes real-time estimation, suitable for different
LIBs, and robust and accurate SOH estimation. Meanwhile the limitation of the approach is that, a
detailed analysis is required on experimental dataset to understand and identify input parameters for
different battery chemistries. The proposed model is developed with the help of a dataset produced
from three battery cells, but to increase the SOH accuracy further additional datasets with real-world
EV driving patterns, operating under different temperatures and high-current discharge conditions
is required.
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