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Abstract: With electricity representing around 20% of the global energy demand, and increasing
support for renewable sources of electricity, there is also an escalating need to improve solar
forecasts to support power management. While considerable research has been directed to statistical
methods to improve solar power forecasting, few have employed finite mixture distributions. A
statistically-objective classification of the overall sky condition may lead to improved forecasts.
Combining information from the synoptic driving conditions for daily variability with local processes
controlling subdaily fluctuations could assist with forecast validation and enhancement where
few observations are available. Gaussian mixture models provide a statistical learning approach
to automatically identify prevalent sky conditions (clear, semi-cloudy, and cloudy) and explore
associated weather patterns. Here a first stage in the development of such a model is presented:
examining whether there is sufficient information in the large-scale environment to identify days with
clear, semi-cloudy, or cloudy conditions. A three-component Gaussian distribution is developed that
reproduces the observed multimodal peaks in sky clearness indices, and their temporal distribution.
Posterior probabilities from the fitted mixture distributions are used to identify periods of clear,
partially-cloudy, and cloudy skies. Composites of low-level (850 hPa) humidity and winds for each
of the mixture components reveal three patterns associated with the typical synoptic conditions
governing the sky clarity, and hence, potential solar power.
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1. Introduction

Improving forecasts of power from solar panels, whether short-range forecasts out to a few hours,
or longer, such as subseasonal forecasts, has been the subject of much research in recent years (as
reviewed by [1–4]). The target uses of the forecasts include planning future installations, optimizing
plant operations and efficiency, or balancing load demand and delivery [5]. As outlined by [6],
the choice of forecasting technique varies with the decision and time-scale of interest (hourly, daily, and
multiday). Solar power can be estimated as a function of solar irradiance, the solar photovoltaic cell
properties, and temperature (e.g., [7,8]), allowing power forecasts to leverage weather forecasting of sky
conditions. While statistical techniques are often favored for very short-term modeling, satellite-based
forecasts of cloud advection perform well in the multihour range [9,10], and longer-term forecasts are
generally found to be most reliable from numerical weather prediction models (e.g., WRF Solar [11]).

A thorough review of the common forecast approaches at different time aggregations is provided
by [4], finding that almost 75% of methods are statistics based. Of these, deterministic irradiance
forecasts often combine clustering analyses to classify the sky state [12–15], followed by a machine-based
learning algorithm to develop forecasts [16–19]. However, clustering analyses are subjective and
can result in model overfitting [20]. Approaches that combine clustering with machine learning can
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challenge the principle of parsimonious modelling by requiring additional estimation to achieve
accurate forecasts [21].

The statistical technique of finite mixture distributions is often used with success for wind power
forecasts (e.g., [5,22–24]), but seldom employed for solar power [25]. Finite mixture distributions and
their companion hidden Markov models (HMMs) [26] are fully probabilistic models representing the
full distribution of event frequencies, where HMMs also incorporate a transition probability for the
shift between each regime. This option is attractive, as the atmospheric regimes driving clear or cloudy
sky conditions cannot necessarily be known a priori [27]. HMMs have been used to good effect in
combination with atmospheric patterns to improve climate projections [28] and seasonal forecasts
(e.g., [29]). However, the drawback of HMMs is that if the state transition matrix is unconstrained,
an infinite number of distribution components and state transitions can be identified [30]. As this is
inefficient and often difficult to interpret [31], a simpler approach is to identify the likely candidates
in the absence of transitions, i.e., to use finite mixture models to develop a plausible hypothesis of
driving mechanisms.

To date, finite mixture models have tended to employ Dirichlet multinomial distributions on
prepartition, subhourly data to forecast solar irradiance from sky clearness indices [20,32]. A drawback
of the Dirichlet method is the assumption that sky clarity is adequately described by a discrete
distribution, yet the continuous nature of sky clarity can render it sensitive to the choice of data
bins [33]. While there is considerable evidence for multimodality in the continuous distributions
of solar irradiance indices [21,34,35], the use of other statistical distributions has seldom been
explored. HMM and other Markov chain processes have similarly focused on subhourly to subdaily
forecasts [16,18,19,36]. However, the transition matrices between sky states are often assumed to be
the same for all days, once seasonality has been removed, which is unlikely to be correct [37] and can
lead to substantial forecast errors [38,39].

We suggest that a better forecast may be achievable by combining knowledge of both daily
and subdaily solar irradiance fluctuations to allow for both the synoptic driving conditions for daily
variability, and microscale processes, e.g., governing convective cloud development [40]. As a first
step in this analysis, we employ finite mixture models to explore whether it is possible to identify
clear, overcast, or cloudy days and associated synoptic processes in an objective manner. Mesoscale
variability could then be incorporated in a nonhomogeneous HMM to dictate the subhourly evolution
of irradiance, dependent on the daily state (e.g., [36,38,41]). This paper presents the first part of that
analysis for a large solar power plant in the western desert area of Kuwait where the Shagaya Renewable
Energy Plant is being deployed. The statistical model is applied to daily values of sky clearness indices.
Composites of geopotential mean relative humidity and wind at 850 hPa are then produced for the
representative days of each distribution component to identify driving synoptic conditions.

Section 2 summarizes the data and methods used for this research, and Section 3 presents initial
exploratory analyses. The results of the mixture model development and relation to geopotential
humidity and winds are presented in Section 4, while Section 5 concludes and suggests further
research avenues.

2. Data and Methods

2.1. Data

We combine on-site observations with other ground-based meteorological observations for
the exploratory analysis, and satellite observations of global horizontal irradiance (GHI) for
statistical analyses.

Meteorological data from surface weather stations and meteorological towers were supplied by
the Kuwait Institute for Scientific Research (KISR) and their contractors for the period July 2012 to
June 2018, with approximately 20% missing data. Supplementary daily observations were obtained
from three Global Historical Climatological Network Daily (GHCND) stations [42,43] in addition to
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hourly observations from eleven Integrated Surface Data locations [44]. All ground-based observation
stations are indicated in Figure 1, together with the site of interest. The meteorological data were used
for the exploratory analyses presented in Section 3, to establish likely mechanisms affecting sky clarity.
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Figure 1. Location of ground-based observation stations in Kuwait: WMO Daily stations (blue);
Integrated Surface Data stations (purple), Shagaya Renewable Energy Plant (red).

HelioSat-4 [45] is a physical model that uses aerosol properties, total column water vapor, and
ozone content from the Copernicus Atmospheric Monitoring Service (CAMS) in combination with
Meteosat satellite observations of cloud properties to derive the global, direct, and diffuse solar surface
irradiances, at ground level and normal angle of incidence. McClear [46] provides estimates of the
Global Horizontal Irradiance (GHI) under cloudless (or clear-sky) conditions, and has been validated
for 1-min measurements. McCloud [45] uses the McClear model to estimate the GHI under all sky
conditions by calculating the reduction in irradiance caused by clouds. Time-series are available for a
given location from 2004 to the present in 1 min, 15 min, 1 h, 1 day, and 1 month sums over Europe,
Africa, the Middle East, the Atlantic Ocean, and eastern parts of South America, interpolated to the
point of interest [46]. The data used for the present study are for complete years 2005–2017, 1 min
interval GHI (McClear and McCloud) at the Shagaya Renewable Energy Plant, available from the
Copernicus portal (http://atmosphere.copernicus.eu/).

Daily mean 850 hPa wind vectors and 850 hPa relative humidity fields for the greater Middle East
area were obtained from the ERA-Interim reanalysis archive [47] for the period 2005–2017.

2.2. Method

2.2.1. Clearness Index

Clouds present the greatest source of subhourly variability in GHI, with the fractional changes
greatest at midday [2,17]. Furthermore, daily and seasonal changes in the zenith angle can introduce
other errors in GHI measurements [38]. While solar power forecasts are usually at a high temporal
resolution (e.g., [1]), this analysis is on daily, and longer, variability. Given that our focus is on
synoptic-scale conditions, we avoid the influence of daily zenith angle fluctuations (i.e., sunrise and
sunset) and very short irradiance fluctuations by working with cumulative daily total GHI for the
purpose of this initial assessment. Further, cumulative daily total GHI removes the emphasis of diurnal
variability, or the errors inherent in utilizing the mean of highly variable data. Seasonal variations in
the theoretical available irradiance are removed by working with the Clearness Index.

http://atmosphere.copernicus.eu/
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The Clearness Index (Kt) [48] is the quotient of observed surface (It) and extra-terrestrial irradiation
(It

clr), or Kt =
It

Iclr
t

. This nondimensional measure is also deseasonalized, and can be calculated for

any temporal aggregation from hourly to monthly (e.g., [49]). Kt values are in the range (0, 1), where
values of 0 correspond with dark or fully obscured skies, and values of 1 correspond to the theoretical
maximum sky clarity for that particular location, time, and date.

2.2.2. Mixture Distributions

Finite mixture models are selected to account for the unobserved heterogeneity caused by different
sky conditions; a benefit is that exact proportions of the mixes do not need to be defined, but rather, can
be inferred from the data [26]. We assume that the data can be described by a homogeneous mixture
(i.e., >1 components derived from the same distribution family) for the different sky conditions. Further,
we assume that the data are continuously distributed and are Gaussian derived [13,21], although some
have suggested that other distributions are more appropriate [36].

An independent mixture model f (y)with k components is the weighted average, wi, for i = 1, . . . , k
component distributions with θ the parameter space, fi(y;θi) and for wi ≥ 0. Where:

f (y) =
k∑

i=1

wi fi(y;θi) (1)

and
k∑

i=1

wi = 1 (2)

The mean is a weighted average of the component means, while the variance comprises the
weighted variance of each component distribution and an increase in dispersion arising from the
difference in component means. Differences in the means tending to zero, or a vector of component
weights tending to (0, 1), is indicative of the underlying data converging to a single component
distribution [50]. For a two-component distribution, i = 1, 2, the mean, µ, and variance, σ, of the
mixture can be expressed as:

µ = w1µ1 + w2µ2 (3)

σ2 = w2σ
2
1 + w2σ

2
2 + w1w2(µ1 − µ2)

2 (4)

While it is possible that a two-component distribution may exist with a small difference between
the means and different estimates of variance, manifesting as a unimodal mixture, it is unlikely in this
case where there are clear differences in the sky conditions.

The Expectation-Maximization (EM) algorithm [51] is an iterative, two-step procedure to estimate
the partition (wi) between distinct distributions and the relevant parameters (θi), when the exact values
for wi and θi are unknown. The Expectation step (E-step) develops an “averaged” log-likelihood
function for the parameter estimates, which is then maximized to select improved parameter estimates
in the Maximization step (M-step). The process is iterated until convergence is reached for estimates of
wi and θi [52]. Other algorithms such as the Levenburg-Marquardt or Quasi-Newton methods may be
more efficient and effective in avoiding “noninteresting maxima”, but they are far more sensitive to the
initial parameter estimates [22].

The selection of the initial parameter estimates can be important to ensure that convergence to
a global optimum is achieved. However, where maxima that are not representative of the data, or
insignificant differences between distributions occur, the process is repeated with different initial
conditions to validate the result. We adopt the default conditions for initial parameter estimates,
convergence (changes in loglikelihood ≤ 1 × 10−8), and iterations (<1000) provided in the R software
package (version 3.5.2, R Core Team, Vienna, Austria) [53], mixtools [54]. That is, data are randomly
partitioned into k components with parameters selected as the initial mean of each component and a
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common variance. Mixture weights are random selections from a uniform distribution (i.e., random
selections that are normalized to sum to 1). The optimum number of distribution components is tested
using a combination of Akaike’s Information Criterion (AIC) [55] and a bootstrapping approach with
100 repetitions.

3. Exploratory Evidence

The annual distributions of the daily and subdaily clearness index (in Figure 2) demonstrate
multimodal properties that are suggestive of multiple component distributions. This multimodality is
more apparent for subdaily (Figure 2a) than daily data (Figure 2b). However, the subdaily data includes
twilight observations at zenith angles <10◦ that may cause abnormal fluctuations of irradiance [56].

Energies 2019, 12, x FOR PEER REVIEW 5 of 17 

 

The Expectation-Maximization (EM) algorithm [51] is an iterative, two-step procedure to 
estimate the partition (ݓ) between distinct distributions and the relevant parameters (ߠ), when the 
exact values for ݓ and ߠ are unknown. The Expectation step (E-step) develops an “averaged” log-
likelihood function for the parameter estimates, which is then maximized to select improved 
parameter estimates in the Maximization step (M-step). The process is iterated until convergence is 
reached for estimates of ݓ  and  ߠ  [52]. Other algorithms such as the Levenburg-Marquardt or 
Quasi-Newton methods may be more efficient and effective in avoiding “noninteresting maxima”, 
but they are far more sensitive to the initial parameter estimates [22]. 

The selection of the initial parameter estimates can be important to ensure that convergence to a 
global optimum is achieved. However, where maxima that are not representative of the data, or 
insignificant differences between distributions occur, the process is repeated with different initial 
conditions to validate the result. We adopt the default conditions for initial parameter estimates, 
convergence (changes in loglikelihood ≤  1 ×  10ି଼ ), and iterations (<1000) provided in the R 
software package (version 3.5.2, R Core Team, Vienna, Austria) [53], mixtools [54]. That is, data are 
randomly partitioned into ݇  components with parameters selected as the initial mean of each 
component and a common variance. Mixture weights are random selections from a uniform 
distribution (i.e., random selections that are normalized to sum to 1). The optimum number of 
distribution components is tested using a combination of Akaike’s Information Criterion (AIC) [55] 
and a bootstrapping approach with 100 repetitions. 

3. Exploratory Evidence 

The annual distributions of the daily and subdaily clearness index (in Figure 2) demonstrate 
multimodal properties that are suggestive of multiple component distributions. This multimodality 
is more apparent for subdaily (Figure 2a) than daily data (Figure 2b). However, the subdaily data 
includes twilight observations at zenith angles <10° that may cause abnormal fluctuations of 
irradiance [56].  

 
Figure 2. Annual distributions of (a) Subdaily and (b) daily clearness indices (ܭ௧) from CAMS . Figure 2. Annual distributions of (a) Subdaily and (b) daily clearness indices (Kt) from CAMS.

Plotting the daily data by month (Figure 3) suggests that the same component distributions are
more prevalent at different times of the year, reflecting seasonal weather fluctuations at the site, and
the influence of latitude on solar intensity. For instance, Ref. [57] noted that winter season precipitation
is useful for estimating the likely frequency of dust-storms, which would correlate with periods of
lower sky clarity as appears to be the case for January, February, and December. Ref. [58] identified
that poor visibility events in the UAE arise either as a result of dry, wind-induced dust storms, or
wetter weather such as fog or haze. Thus, rare poor visibility events during the summer are probably
related to the Haboob winds transporting dust from the east and northeast [59]. Stronger wind speeds
occur the hotter months, strengthening in response to the Low Level Jet during nocturnal hours and
offset from the peak GHI [60]. In contrast, the winter north and northwesterly winds bringing higher
relative humidity from the Gulf of Aman impact at-site visibility while more stable, clearer, conditions
occur in the summer [59], as is apparent in Figures 3 and 4.

Figure 4 illustrates the daily clearness index, calculated from a time series of extra-terrestrial and
received solar irradiation between 2005 and 2017. For each day, the color represents the mean value of
the clearness index on that calendar day. While the figure is for illustrative purposes only, it highlights
the fact that for the majority of the year there are excellent visibility conditions (Ktx > 0.8), with the
lowest values occurring during the winter months.
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As daily maximum temperatures at the Shagaya Renewable Energy site were only available since
2012, GHCND Abraq Mazraa observations of daily maximum temperature are used as a proxy to
increase the period of record for comparison with daily clearness. The correlation between daily
maximum temperatures and daily clearness values is plotted in Figure 5 for 2007–2017. This supports
the correlation between the highest daily temperatures and the highest values of clearness also found
by [59]. Again, this result reflects the local climatology and expected seasonal pattern of higher
temperatures during July and August, as well as the highest clearness values during the summer
months (darker shades of red).

Solar panel efficiency starts to reduce at high temperatures, similar to the reduced efficiency of
wind power at high wind speeds. Recent research has demonstrated that while higher winds and
temperatures (and, thus, sky clarity) are seasonally coincident, higher wind speeds occur nocturnally,
allowing for more consistent power generation at sites combining wind and solar generation [60]; refer
to Figure 6a. The higher wind speeds can occasionally lead to dust storms that will impair solar panel
productivity [58], but these events are rare.
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4. Results

We assume that the distribution of daily clearness indices is Gaussian distributed. From the
evidence presented in Section 3, we expect a minimum mixture of two Gaussians, representing good
and poor conditions. A disadvantage of mixture model distributions is that they can appear to
improve statistical model fitting by using multiple mixture components to fit the data, rather than
each component truly arising from a different driving regime. With this in mind, it is possible that the
data are derived from a single exponential-type distribution [36]. Alternative distribution families,
including gamma, exponential, and Weibull, were compared using a range of model diagnostics
(loglikelihoods, AIC, goodness of fit), for distributions with 1 to 5 components (not shown), concluding
that multiple Gaussian distributions are the most appropriate choice [61].

4.1. Mixture Models

The exploratory analyses suggest that the multiple components of a distribution arise from
seasonally varying processes, and that within each season, there is not as much variability as there is
annually. Therefore, we can test the validity of model assumption using a bootstrapping approach,
iterating the model fits for 100 random samples of the data.

Figure 7 illustrates loglikelihood values for mixture distributions with 1 to 5 components fitted
to daily clearness indices; the process was repeated for 100 data samples, with no replacement.
The continued increase in loglikelihood values could suggest that there are 4 or 5 processes represented
by the mixture components. However, closer inspection reveals that the increase in loglikelihood
from 3 to 4, and then 4 to 5, is not significant. Further, the fourth and fifth components have very low
mixture weights and parameters that overlap with another distribution component, indicating that a
three-component Gaussian mixture model is the optimum configuration.
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The final 3-component mixture model is illustrated in Figure 8a in red, together with the results
from 100 random samples in darker red. Figure 8b shows the improvement in data representation by
comparing the quantile–quantile plots of a single distribution (grey), the three components (red), and
three components from 100 random samples (darker red). The mixture model comprises:

Component 1 : µ1 = 0.61 σ1 = 0.16 w1 = 0.27

Component 2 : µ2 = 0.89 σ2 = 0.05 w2 = 0.17

Component 3 : µ3 = 0.93 σ3 = 0.02 w3 = 0.56

where µi is the component mean; σi is the component standard deviation; and wi is the component
weight. Thus, the resultant probability density function for the full mixture has µ = 0.83 and σ = 0.06.
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We then examine the fitted distributions for plausibility to ensure that they reflect the assumption
of seasonality where each component arises from a common set of processes. Posterior probabilities
from the fitted mixture distributions are used to identify periods of clear, partly-cloudy, and cloudy
skies. When plotted with respect to the calendar day, the hypothesis that the three components reflect
seasonal weather patterns is supported. Figure 9 illustrates the observed value of daily clearness by
month in purple; gray dots represent the mean of each distribution component with respect to the
associated posterior probability of each observation. Thus, there are gaps in Component 1′s sequence
of gray dots during July and August when the sky clarity is highest. The posterior probabilities
predict that daily clearness indices fall mainly into Component 3; purple dots are spread around two
components, but are largely concentrated in the top portion of the chart. In contrast, the posterior
probabilities and observed indices for January and December show a broader spread across all values,
with a higher concentration of values in Component 1.
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4.2. Identification of Synoptic Weather Conditions

Statistical testing (Figure 7) indicates that a three-component Gaussian mixture model best
represents the distribution of daily clearness indices for this site in Kuwait. However, it is important to
evaluate whether there is a physical mechanism underlying the data distribution, or if the apparent
mixture components arose as a statistical artefact of the data. [31] assessed the reality of distribution
components by comparing the posterior probabilities to geopotential heights. We use the posterior
probabilities to select the days that have an observed clearness index closest to the component mean.
While the components are not calculated seasonally, the selected dates naturally partition according to
summer, winter, and spring/fall seasons. We then composite the low-level (850 hPa) relative humidity
and low-level (850 hPa) winds on those days to examine whether there is a clear signal of large-scale
synoptic behavior (Figure 10). This elevation was selected as an appropriate elevation to minimize the
influence of the variable terrain, while still illustrating surface weather patterns through the strength
and direction of moisture fluxes. As with [31], allowing the data to self-organize into regimes has led
to more readily-interpretable weather patterns (explained below).

Higher relative humidity can lead to aerosol particle growth and coalescence, reducing
visibility [58]. This is apparent in Component 1 (35–40% humidity), where the anticyclonic pattern
centered over Oman results in moderate south-westerly flow over Kuwait transporting moist air from
the Red Sea. Component 2 has the lowest relative humidity; however, the strong northwesterly winds
bring dust from the desert regions of Iraq (25–30% humidity). Component 2 also has a pronounced
trough centered over the Persian Gulf, associated with warmer conditions and the potential for strong
thunderstorms [62]. The high pressure center in Component 3 is over Saudi Arabia, resulting in dry
and light westerly winds over Kuwait that are more favorable for calm, clear conditions.

Several authors have examined weather and circulation patterns over the Arabian
Peninsula [57,62–64], with particular emphasis on improved water resource management and
renewable energy production. Differing seasonal foci mean that there are differences between
the low-level wind and relative humidity patterns found here and the defined weather types, as well
as differences between the studies in question. For instance, [64] focused solely on dust outbreaks
throughout the year, while [65] examined dust outbreaks only during the wet season. [66] did
not specifically identify weather types; however, they sought to explain their mixture distribution
allocations with regard to typical surface wind regimes in the United Arab Emirates.

Ref. [63] characterized weather types over Saudi Arabia using the Lamb weather-type
classification [67], finding that days with a cyclonic pattern followed by those with southeast directional
flow are the most frequent during the summer. This behavior parallels Component 3, where the high
pressure center is over Saudi Arabia, and is the most frequently occurring pattern during the summer
months. It also is the component that describes the clearest days (i.e., Kt > 0.9), as it is associated with
the synoptic patterns generating less moisture and dust transport.

All three components appear to correspond with anticyclonic weather patterns described by [62],
with high pressure centers over Iran or Saudi Arabia and lower pressure centers over north Africa.
Ref. [64] confirm that a trough over the Arabian Peninsula advects dust and is most commonly
associated with the onset of the Arabian Peninsula summer low during March to June. During summer
months, this same pattern is recognized as the summer Shamal, causing the majority of dust storms
during this season [58,64]. Ref. [65] confirm that the processes generating dust storms are very different
in winter and summer, with the majority of dust storms arising during the spring and early summer.
Further, winter months are affected by the southerly shift of the polar jet, increasing the contrast in
north and south air masses over the Arabian Peninsula, bringing more frontal systems and poorer
visibility. Again, this finding supports the frequency and occurrence of Component 1 during the winter
and transition seasons.
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5. Discussion and Conclusions

As support for renewable sources of electricity goes up [68], increasing the number of solar
power installations, there is also an increasing need to improve solar power forecasts. Recent
private–public–academic research identified the need to combine nowcasts of solar power forecasts
at high temporal resolution (subhourly), with coarser temporal resolution forecasts (out to several
days) to meet decision-maker needs [1]. The research presented here contributes to longer duration
forecasts by identifying large-scale weather systems affecting sky clarity and reducing reliance on
computationally-intensive numerical weather predictions.

Many have examined the use of statistical methods to improve solar forecasting, but limited
attention has been paid to the use of finite mixture distributions. Often, those applications utilizing
finite mixture models have employed Dirichlet multinomial distributions on prepartitioned, subdaily
data [20,32], and neglected the influence of larger-scale processes on the subdaily fluctuations. Apart
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from the drawback of selecting an appropriate bin interval to describe continuous data with discrete
distributions, we consider that an objective classification of the overall sky condition is more likely to
lead to improved forecasts.

We examined daily clearness indices for the Shagaya renewable energy plant in Kuwait, calculated
from satellite retrieved global horizontal irradiance data between 2005–2017. After analyzing the data,
we assume that they are best described by a mixture of Gaussian distributions [13,21]. Exploratory
analysis reveals that there are multiple peaks in the data frequency, and that the variability in subdaily
clearness indices is greater than in daily clearness indices. As noted by [40], subdaily variability is more
sensitive to local features and meso- to micro-scale processes, while multiday variability is dependent
on synoptic-scale systems. Our focus here was on the synoptic-scale, and so we analyzed only the
distribution of daily indices.

Seasonal distribution of the clearness indices corresponded with the observed weather conditions.
That is, the hottest periods of the year, which have low humidity and stable air conditions, also had the
highest clearness indices, while the lowest values correspond with the more turbulent conditions of
winter and the transition seasons. A three-component Gaussian mixture model fit these data very well,
with the posterior probabilities reproducing the observed distribution of clearness indices throughout
the year. Alternative distribution families were examined and found to be inadequate, highlighting
instead that multiple mixture components can erroneously improve the statistical model in the absence
of physical reasoning. Utilizing the posterior probabilities, we composited the 850 mb humidity and
850 mb wind on the day’s most clearly assigned to each component. This procedure generated three
patterns associated with the typical synoptic conditions governing the sky clarity, and hence, potential
solar power.

As noted by several authors, limited attention has been paid to circulation types, specifically with
respect to precipitation occurrence, over the Arabian Peninsula [58,63,65]. The sparse observation
network is frequently cited as the cause for the low research interest in this region. Thus, Kuwait’s
lower density observation network has received even less attention than larger neighboring countries
such as Iran or Saudi Arabia. While our focus was not directly on precipitation occurrence, it is
correlated with cloudy sky conditions. Poor visibility conditions also arise from haze, fog, or dust
storms [58], which can also be attributed to wind conditions generated by different circulation types.
We have not determined specific weather types, but the exploratory analyses of wind and temperatures
throughout the year generally corroborate the circulation patterns and associated air flow directions.
The peak wind gusts occur during the summer months, with much lower wind speeds during the
transition seasons and winter. This result emphasizes that poor visibility conditions are driven by
different mechanisms during the summer and winter [63,65], where cooler temperatures are likely to
give rise to more fog and cloud cover rather than the dust storms of the summer.

The similarities that are apparent between the humidity and geopotential wind patterns for each
distribution component and the weather type studies, as well as the differences between each of
these studies, suggest that a hidden Markov Model would be appropriate for statistical forecasting.
This approach would permit the data to identify the hidden states driving sky clearness, rather than
predefining the process from a short observation time series. Further developments of such a model
should focus on incorporating the subdaily variability to create a stochastic weather generator dependent
on the hidden large-scale synoptic processes together with local microscale drivers. For instance, [31]
found some success in predicting subdaily wind two to five days out using hidden Markov Models. A
key requirement for developing such a model would be sufficiently long observation series to estimate
the transition probabilities for each weather pattern.
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