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Abstract: The effect of frequency variation on system stability becomes crucial when a voltage source
converter (VSC) is connected to a weak grid. However, previous studies lack enough mechanism
cognitions of this effect, especially on the stability issues in DC voltage control (DVC) timescale
(around 100 ms). Hence, this paper presented a thorough analysis of the effect mechanism of frequency
variation on the weak grid-connected VSC system stability in a DVC timescale. Firstly, based on
instantaneous power theory, a novel method in which the active/reactive powers are calculated with
the time-varying frequency of voltage vectors was proposed. This method could intuitively reflect
the effect of frequency variation on the active/reactive powers and could also help reduce the system
order to a certain extent. Then, a small-signal model was established based on the motion equation
concept, to depict the effect of frequency variation on the weak grid-connected VSC system dynamics.
Furthermore, an analytical method was utilized to quantify the effect of frequency variation on the
system’s small-signal stability. The quantitative analysis considered the interactions between the DC
voltage control, the terminal voltage control, phase-locked loop, and the power network. Finally, case
studies were conducted, and simulation results supported the analytical analyses.

Keywords: frequency variation; weak grid; DC voltage control (DVC) timescale; motion equation;
stability analysis; power calculation method; voltage source converter (VSC)

1. Introduction

In many parts of the world, including China, wind farms are often located far away from load
centers [1]. Voltage source converters (VSCs) are widely used to connect wind power generation units
to the grid in modern power systems. Integrating wind farms into the grid with long transmission
lines will lead to VSCs connected to the weak grid, viz. short-circuit ratio (SCR < 3) [2]. VSC dynamics
become more complicated when connected to the weak grid, which is often associated with stability
issues [3] and considerable variation in converter-interface frequency [4,5]. In a report of general
electric company [4], the frequency oscillation scenario was reported under weak-grid conditions.
Additionally, it was concluded in reference [5] that the frequency variation can greatly affect the stability
of distributed generation systems. Therefore, systematic analysis to reveal the effect mechanism of
frequency variation on the weak grid-connected VSC system stability is urgently needed.

Many studies have been devoted to carrying out a thorough analysis of the effect mechanism of
frequency variation on phase-locked loop (PLL)-synchronized VSC system stability. In references [6,7],
a state-feedback PLL model is first proposed, and then the effect of frequency variation on system
stability is described by a positive-feedback loop. It is concluded that the positive-feedback loop
threatened the system’s small-signal stability. In reference [8], it was found that the additional feedback
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loop by frequency variation may have deteriorated the system’s large-signal stability. In reference [9],
an impedance-based VSC model was developed, and the effect of frequency variation on system stability
was explored from the perspective of impedance interaction. It was concluded that the instability was
a result of the negative incremental resistance behavior of the VSC’s impedance. However, the above
analyses mainly focused on the dynamics of the PLL, and the DC voltage control (DVC) dynamics were
not included. Generally, the interactions between DVC, terminal voltage control and PLL—whose
dynamics lie within the DVC timescale (around 100 ms)—become crucial under weak-grid conditions
and could bring the corresponding stability problems [10]. Hence, a thorough analysis of the effect
mechanism of frequency variation on the DVC timescale stability problems is also needed.

Some models that include DC voltage control dynamics could be utilized for dynamic analysis
in DVC timescale. A state-space equation model is proposed in reference [11]. In reference [12],
a grid-connected VSC system is modeled in the form of a closed-loop transfer function. However, those
models may be lack of mechanism cognitions of the VSC’s characteristics, e.g., the interactions of
different control loops in VSC [13]. Then, a VSC model that contains the details of different control
loops is established in [13] to reflect the VSC’s characteristics. However, due to its complexity, this
model is intractable to analyze the frequency dynamics and its effects on the stability in systems
with multiple VSCs. To analyze the dynamics of power systems with large scale VSCs in DVC
timescale, [14] proposes a small-signal model of VSC based on the motion equation concept. In this
model, the self-characteristics of VSC are depicted by the relationship between the unbalanced
active/reactive powers and the phase/amplitude dynamics of the VSC’s internal voltage (viz. the output
voltage of VSC). This modeling method has already been expanded for multi-VSC dynamic analysis
in [15,16]. The form of this model resembles the rotor motion equation of the synchronous generator
(SG) [17]. However, drawing lessons from conventional SG-dominated power systems, the reactance
of the power network under the nominal frequency was utilized to calculate the active/reactive
powers by references [14–16]. Owing to this nominal-frequency-based power calculation method,
the existing motion-equation-concept models cannot depict the effect of frequency variation on the
weak grid-connected VSC system dynamics.

The instantaneous power theory could be used to improve the nominal-frequency-based results,
which has been effectively applied in the control algorithms of modern power electronic devices [18–21].
The existing calculation methods can be roughly divided into two categories. The first category calculates
the active/reactive powers with the AC voltages/currents in αβ coordinate [18,19], and the second
category calculates the powers with the voltage/current in dq coordinate [20,21]. However, utilizing
these methods to improve the nominal-frequency-based results will significantly increase the system
order, especially for systems consisting of thousands of nodes [22]. Besides, due to the features of the
chosen calculated variables, these methods are intractable to intuitively reflect the effect of frequency
variation on the active/reactive powers, which may limit its flexibility when applied for further analysis
of the effect of frequency variation on system stability.

In this vein, based on instantaneous power theory, this paper firstly proposes a novel method in
which the active/reactive powers are calculated with the time-varying frequency of voltage vectors.
The proposed power calculation method could intuitively reflect the effect of frequency variation on the
active/reactive powers and can also help reduce the system order to a certain extent, which is applicable
for further analysis of the effect of frequency variation on multi-VSC system stability in the DVC
timescale. This is one main contribution of this paper. Then, a small-signal model is established based
on the motion equation concept, to depict the effect of frequency variation on the weak grid-connected
VSC system dynamics. Finally, an analytical method introduced in references [14,16] is utilized to
quantify the effect of frequency variation on the system’s small-signal stability. The quantitative
analysis considers the interactions between the DVC, the terminal voltage control, PLL, and the power
network. This is another main contribution of this paper.

The remaining parts of this paper are organized as follows. In Section 2, the studied grid-connected
VSC system and the motion equation concept in DVC timescale are briefly introduced. Section 3 firstly
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introduces the time-varying frequency of the VSC’s internal voltage and then proposes a method to
calculate the active/reactive powers with the time-varying frequency of voltage vectors. In Section 4,
with the proposed power calculation method, a small-signal model is established based on the motion
equation concept in order to depict the effect of frequency variation on the weak grid-connected VSC
system dynamics. The effectiveness of the established model is verified through the simulation results
and eigenvalue analysis. In Section 5, based on the established model, the quantitative analysis of the
effect of frequency variation on the system’s small-signal stability is conducted. Section 6 discusses the
practicability of the proposed power calculation method in multi-VSC power systems, and Section 7
draws the conclusions.

2. Description of Grid-Connected VSC System and Motion Equation Concept in DVC Timescale

2.1. Description of Grid-Connected VSC System

Figure 1 depicts a simplified diagram of a grid-connected VSC utilizing a typical vector control
scheme with terminal voltage vector oriented [21]. The output voltage of VSC (viz., the VSC’s
internal voltage) is produced from a DC voltage Udc by pulse-width modulation (PWM) techniques.
To eliminate current harmonics, the VSC is connected to the grid through a LC filter. And the grid is
represented by an infinite voltage bus and a power transmission line.

Figure 1. Typical diagram of a grid-connected voltage source converter (VSC) system. PI:
Proportional-plus-integral; PWM: Pulse-width modulation.

The vector control scheme allows for decoupled control between active and reactive powers [21].
The active power control loop includes cascaded DVC and d-axis current (active power current
component) control. DVC is aimed to balance the active power flowing through the DC capacitor and
keep the DC voltage constant at the same time. The reactive power control includes terminal voltage
control (TVC) and q-axis current (reactive power current component) control. TVC, as one scheme of
the reactive power control, is adopted to maintain the terminal voltage within given values. Both active
and reactive currents are controlled in a PLL-synchronized reference frame. PLL is used to capture the
phase of terminal voltage as a synchronization signal employed by the transformations between abc
and dq frames. A typical scheme of PLL is illustrated in Figure 1, and typical proportional-plus-integral
(PI) regulators are applied in each VSC control loop.

2.2. Motion Equation Concept in DVC Timescale

2.2.1. Definition of DVC Timescale

For VSC control loops as introduced in Section 2.1, the response time constant of current control is
often designed around 10ms (which is closely related to the switching frequency), and those of DVC,
TVC, and PLL are selected to be about ten times larger [23]. Considering the designed response time
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constant of different controllers, stability issues related to VSC can be classified into the DVC timescale
stability problems [14–16,24] and the current control timescale stability problems [22,25]. For simplicity,
the dynamics in these two timescales can be analyzed individually due to their relatively separated
response times. Therefore, for stability analysis in the DVC timescale, AC currents can be considered
to instantaneously track their reference values [14–16,24]. Besides, since the filter capacitor Cf mainly
contributes to the high-frequency oscillations, which belong to the current control timescale [22,25],
for stability analysis in the DVC timescale, the effect of the filter capacitor can be neglected [14–16,24].

2.2.2. Motion Equation Concept

The motion equation concept has already been used to describe the rotor dynamics of SGs in
conventional SG-dominated power systems [17]. The basic rotor motion equation is shown in Figure 2a,
where Pm and Pe are the mechanical and electromagnetic powers, ωr and δ are the rotor speed and
displacement of the rotor, ωSG is the frequency of the SG’s internal voltage, viz. back electromotive
force (EMF). MSG represents the rotor inertia, KPδ represents the power network.

Figure 2. (a) Rotor motion equation of a synchronous generator (SG). (b) Previous proposed
grid-connected VSC system model for stability analysis in DC voltage control (DVC) timescale
based on the motion equation concept [14].

The motion equation concept can also be used to depict the characteristics of power electronics
devices [14–16]. Previous proposed grid-connected VSC system model for stability analysis in DVC
timescale based on the motion equation concept [14] is shown in Figure 2b. In this model, the internal
voltage was chosen to describe the VSC’s external characteristics. The inputs of the VSC model are the
unbalanced active/reactive powers, and the phase/amplitude of the internal voltage are the outputs.
The detailed modeling process is presented in Section 4.

A reasonable power calculation method is important to describe VSC’s internal voltage dynamics
in DVC timescale. In [14], the active/reactive powers are calculated with the network reactance under
nominal frequency, which is also the modeling for power network. This nominal-frequency-based
power network model is originated from conventional SG-dominated power systems. For SG’s internal
voltage, the nominal-frequency assumption is generally accepted due to the direct coupling between
the rotor motion and back EMF, viz. ∆ωSG ≈ ∆ωr [17]. However, the dynamics of the VSC’s internal
voltage is greatly dependent on the fast controls. This difference may lead to the irrationality of the
nominal-frequency assumption in VSC-dominated power systems, especially in a weak grid. In the next
section, the time-varying frequency of VSC internal voltage will be introduced at first. Then, a novel
power calculation method in which the effect of frequency variation is included will be proposed for
improving the nominal-frequency-based results.

3. Proposed Power Calculation Method

In this section, we first introduced the time-varying frequency of the VSC’s internal voltage.
Then, a novel power calculation method in which the active/reactive powers are calculated with the
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time-varying frequency of voltage vectors was proposed. The proposed power calculation method
could conveniently improve the previous nominal-frequency-based results.

3.1. Time-Varying Frequency of VSC’s Internal Voltage

The output voltage of the converter was defined as the VSC’s internal voltage [14–16,25].
Its generation process was as follows. Firstly, based on a rotating reference frame employed by
PLL, the control system generated d-axis component ep

d and q-axis component ep
q , respectively.

Then, according to ep
d, ep

q , and the synchronization signal θp, the modulation module synthesized the
voltage vector E. A vector diagram for VSC’s internal voltage is shown in Figure 3.

Figure 3. Vector diagram for the VSC’s internal voltage. (a) At a steady state. (b) During the dynamic
process. PLL: Phase-locked loop.

According to Figure 3, the amplitude and phase of VSC’s internal voltage can be described as

E =

√
ep2

d + ep2

q , (1)

θE = arctan(ep
q/ep

d) + θP, (2)

and the instantaneous frequency of the VSC’s internal voltage is the differential of phase, which is:

ωE = dθE/dt = d[arctan(ep
q/ep

d)]/dt +ωP. (3)

According to Figure 3a, at a steady state, the terminal voltage Ut had the same phase with the
d-axis of the PLL-synchronized reference frame. Assume that a disturbance occurs, making the terminal
voltage vector lead the phase of steady-state situation, as shown in Figure 3b. Then, the PLL responded
to capture the terminal voltage phase. Owing to the dynamics of PLL, the PLL frequency ωP was
not equal to the nominal frequency ω0. Besides, the d-axis and q-axis internal voltage ep

d, ep
q will be

regulated by the DVC and TVC, respectively. According to Equation (3), the variation of ωP and the
regulation of ep

d, ep
q all led to the frequency variation of VSC’s internal voltage. Apart from the internal

voltage, the frequency of terminal voltage vector also varied with time during dynamics. Thus, in the
next section, a method in which the active/reactive powers were calculated with the time-varying
frequency of voltage vectors is presented.

3.2. Power Calculation with the Time-Varying Frequency of Voltage Vectors

In order to calculate the active/reactive powers with the time-varying frequency of voltage vectors,
several assumptions were made, which are listed as follows:

(1) The system is a symmetric 3-phase circuit;
(2) The power transmission line has lumped parameters, and the parameters are constant;
(3) The resistance and distributed capacitance in power transmission line are neglected.

The total instantaneous current flowing in the power transmission line was equal to the sum of
instantaneous current produced by each voltage source separately, according to the superposition
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theorem [26]. Thus, the instantaneous current produced by one voltage vector source E1 was calculated
first, and the equivalent circuit is shown in Figure 4a. Note that voltage vector E1 here is a general
expression of voltage vector, and it can represent both the VSC’s internal voltage E and the terminal
voltage Ut.

Figure 4. (a) Three-phase inductance circuit with voltage vector E1 as the source. (b) Spatial diagram
of E1 and the instantaneous voltage in abc frame.

In Figure 4a, the instantaneous voltage of each phase in the abc frame was the projection of voltage
vector E1, as shown in Figure 4b. Take phase a as an example, the instantaneous voltage e1a is

e1a = E1(t) cos(
∫ t

t0

ωE1(t)dt + θE10), (4)

where θE10 is the initial phase of voltage vector E1, which is constant. If the frequency of the voltage
vector was regarded to be the nominal frequency ω0, the instantaneous voltage in Equation (4) will
become e1a = E1(t)·cos(ω0t + θE10).

The instantaneous voltage e1a and instantaneous current ie1
a satisfy the relationship as follows

ie1
a − ie1

a (t0) =
1
L

∫ t

t0

e1adt =
1
L

∫ t

t0

[E1(t) cos(
∫ t

t0

ωE1(t)dt + θE10)]dt, (5)

where ie1
a (t0) is the initial current. L is the total inductance of the circuit to be analyzed.

In order to obtain the analytical expression of the instantaneous current ie1
a in Equation (5),

the well-known integration by parts formulae in calculus are utilized. Then, ie1
a can be described

as follows:

ie1
a − ie1

a (t0) =
E1(t)
ωE1(t)L

sinθE1(t)

∣∣∣∣∣∣t
t0

−
1
L

∫ t

t0

sinθE1(t)d
E1(t)
ωE1(t)

. (6)

Continuing to apply the integration by parts to the second part on the right-hand side of
Equation (7) gives∫ t

t0

sinθE1(t)d
E1(t)
ωE1(t)

= −
1

ωE1(t)
(

E1(t)
ωE1(t)

)′ cosθE1(t)

∣∣∣∣∣∣t
t0

+

∫ t

t0

cosθE1(t)d[
1

ωE1(t)
(

E1(t)
ωE1(t)

)′], (7)

where the superscript ′ represents the differentiation of time for the function in brackets.
And so on, continuously applying the integration by parts to the calculated result. Neglecting the

effect of the initial current ie1
a (t0), current ie1

a can be finally described with series including infinite
elements, and it can be written as follows:

ie1
a = I1 sinθE1(t) + [

∞∑
k=1

(−1)k−1I2k] cosθE1(t) + [
∞∑

k=1

(−1)kI2k+1] sinθE1(t), (8)

where I1 =
E1(t)
ωE1(t)L

,Ik+1 =
dIk/dt
ωE1(t)

k ∈ N+.
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According to Equation (8), the original form of instantaneous current ie1
a was extremely complex

when described with the time-varying frequency of the voltage vector. Thus, appropriate simplification
for the instantaneous current ie1

a was needed. In Equation (8), the elements Ik, k ≥ 2 were mainly
determined by the differentiation of time for the voltage vector’s amplitude/frequency and the total
inductance L. The oscillation frequency was relatively low for the DVC timescale stability issues this
paper was concerned with, thus the differentiation of time for the voltage vector’s amplitude/frequency
was small. Besides, in a weak grid, the power transmission line was long, thus the total inductance L
was large. Thus, the elements Ik, k ≥ 2 are quite small and can be neglected for stability analysis of
the weak grid-connected VSC system in DVC timescale. Then, the instantaneous current ie1

a can be
described as follows:

ie1
a =

E1(t)
ωE1(t)L

sinθE1(t). (9)

The form of Equation (9) is quite concise, and the effect of frequency variation can also be reflected
since the time-varying frequency of the voltage vector ωE1(t) appears in Equation (9). If the frequency
variation is neglected (adopted in reference [14]), the time-varying frequency ωE1(t) in Equation (9)
needs to be replaced by ω0. The reasonable simplification from Equation (8) to Equation (9) will also
help simplify the stability analysis in an actual power system with multiple VSCs, which will be
further discussed in Section 6. A two-node three-phase inductance circuit is chosen to calculate the
active/reactive powers, as shown in Figure 5. The voltage vector E1 and E2 are the sources. Note that
voltage vector E1, E2 here are general expressions of voltage vectors, and they can represent the VSC’s
internal voltage E, the terminal voltage Ut, or the infinite-bus voltage Ug.

Figure 5. A two-node three-phase inductance circuit with voltage vectors E1 and E2 as the sources.

Substituting the amplitude/phase/frequency of E1 and E2 into Equation (9), respectively,
the instantaneous current ia can be described as follows:

ia =
E1(t)
ωE1(t)L

sinθE1(t) −
E2(t)
ωE2(t)L

sinθE2(t). (10)

Based on the instantaneous power theory [18], the 3-phase instantaneous active power P and
reactive power Q can be calculated with the instantaneous voltage and instantaneous current in the abc
frame. The calculation formulae are as follows:

P = uaia + ubib + ucic, (11)

Q =
1
√

3
[(ub − uc)ia + (uc − ua)ib + (ua − ub)ic], (12)

where ua, ub, and uc are the instantaneous voltage in each phase for a node. For node E1 in Figure 5,
ua, ub, and uc are equal to e1a, e1b, and e1c, respectively. For node E2, ua, ub, and uc are, respectively,
equal to e2a, e2b, and e2c. Since the 3-phase system is symmetric, the instantaneous current in the other
2 phases ib and ic can be obtained accordingly. Substituting the corresponding instantaneous voltage
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and instantaneous current into Equations (11) and (12), the active/reactive power output of E1 can be
obtained, respectively, which are denoted with P1/Q1:

P1 =
E1(t)E2(t)
ωE2(t)L

sin[θE1(t) − θE2(t)], (13)

Q1 =
E2

1(t)

ωE1(t)L
−

E1(t)E2(t)
ωE2(t)L

cos[θE1(t) − θE2(t)]. (14)

Equations (13) and (14) are the calculated active/reactive powers with the proposed method in
this paper. The calculated results are general expressions and can be applied to a 2-node 3-phase
circuit for the calculation of active/reactive powers easily. For example, in the system in Figure 1, if E1

represents the VSC’s internal voltage E, E2 represents the terminal voltage Ut, then L will be the filter
inductance Lf. And if E1 represents the VSC’s internal voltage E, E2 represents the infinite-bus voltage
Ug, then L will be the total inductance Lf + Lg. The nominal-frequency-based results in reference [14]
were equal to the results with the nominal frequency ω0 replacing the time-varying frequency ωE1(t),
ωE2(t) in Equations (13) and (14). Thus, the proposed power calculation method can further include
the effect of frequency variation. Besides, Equations (13) and (14) describe the relationship between the
active/reactive powers and the phase/amplitude of voltage vectors, which can be directly used for the
power network modeling based on motion equation concept. Hence, in the next section, a small-signal
model of the studied grid-connected VSC system will be established based on the motion equation
concept, utilizing the proposed power calculation method.

4. System Modeling with the Proposed Power Calculation Method

In this section, a small-signal model of the studied grid-connected VSC system in Figure 1 was
established based on the motion equation concept in order to depict the effect of frequency variation on
the system dynamics. As introduced in Section 2.2.2, the VSC and the power network were modeled
separately, with the internal voltage as the interface. For VSC modeling, firstly, a small-signal model
was established to describe the VSC’s internal voltage dynamics in DVC timescale, and then it was
converted into a concise one based on the motion equation concept. For power network modeling,
it can be derived easily with the proposed power calculation method. Finally, the effectiveness of the
established model was verified through simulation results and eigenvalue analysis.

4.1. Small-Signal Modeling of VSC’s Internal Voltage Dynamics in DVC Timescale

As introduced in Section 2.2.1, in the DVC timescale, the fast dynamics of current control loops
were neglected for simplicity, which gives iref

d ≈ ipd and iref
q ≈ ipq . Then, the relationship between control

loops and the dynamics of internal voltage can be described as depicted in Figure 6.

Figure 6. Relationship between control loops and the dynamics of internal voltage in the DVC timescale.

In the equivalent circuit of Figure 6, the active and reactive power outputs of VSC can be
easily obtained with the proposed power calculation method. Substituting the corresponding
amplitude/frequency/phase of the VSC’s internal voltage E and the terminal voltage Ut into
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Equations (13) and (14). And replacing L with the filter inductance Lf. Consequently, the active
and reactive power outputs of the VSC are:

P =
EUt

ωtL f
sinθEt, (15)

Q =
E2

ωELf
−

EUt

ωtLf
cosθEt. (16)

Then, the active and reactive current component iEp, iEq of the VSC’s internal voltage can be
calculated, respectively,

iEp =
P
E
=

Ut

ωtLf
sinθEt, (17)

iEq =
Q
E

=
E

ωELf
−

Ut

ωtLf
cosθEt, (18)

where the active current component iEp has the same phase as the VSC’s internal voltage, and the
reactive current component iEq leads or lags 90◦ with the internal voltage phase. According to the vector
diagram in Figure 3, ipd and ipq can be described with iEp and iEq as follows:

ipd = iEp cos(θE − θp) + iEq sin(θE − θp), (19)

ipq = iEp sin(θE − θp) − iEq cos(θE − θp). (20)

Substituting Equations (17) and (18) into Equations (19) and (20), and then linearizing Equations (19)
and (20), we get

∆ipd = −
Ut0

ω0Lf
∆θtp +

E0

ω0Lf
(∆θEg − ∆θpg), (21)

∆ipq =
∆Ut

ω0Lf
−

∆E
ω0Lf

−
Ut0

ω02Lfωbase
∆ωt +

E0

ω02Lfωbase
∆ωE. (22)

Here, the initial power angle between the internal voltage and the terminal voltage δ0 = θEg0 −

θtg0 is regarded to be small enough such that sinδ0 ≈ 0 and cosδ0 ≈ 1, which is also adopted in [14].
Additionally, ∆ωE = s∆θEg, and ∆ωt = s∆θtg.

Equations related to DVC, TVC, and PLL are described in detail in [14]:

∆Udc =
1

sCdcUdc0
(∆Pin − ∆P), (23)

∆ipd = (∆Udc − ∆Uref
dc )(kp1 + ki1/s), (24)

∆ipq = (∆Ut − ∆Uref
t )(kp2 + ki2/s), (25)

∆θpg = ∆θtp(kp4/s + ki4/s2). (26)

Based on Equations (21)–(26), the corresponding small-signal model to describe the dynamics of
VSC’s internal voltage can be described as shown in Figure 7. Therein, the black lines were consistent
with the previous nominal-frequency-based model in reference [14], and the red lines were related to
the effect of frequency variation.
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Figure 7. The small-signal model of VSC’s internal voltage in DVC timescale. (a) Phase dynamics of
VSC’s internal voltage. (b) Amplitude dynamics of VSC’s internal voltage.

4.2. Established VSC Model based on Motion Equation Concept

In Figure 7, the terminal voltage dynamics were determined not only by the VSC itself
but also by all other devices in the grid, thus they cannot be used to describe VSC’s
self-characteristics. Hence, the terminal voltage dynamics should be replaced with VSC’s own
parameters. Through linearizing Equations (15) and (16), the terminal voltage phase and amplitude
dynamics can be expressed as

∆θtg = ∆θEg −
ω0Lf

E0Ut0
∆P, (27)

∆Ut = (∆E−
E0

ω0ωbase
∆ωE +

Ut0

ω0ωbase
∆ωt) +

E0 −Ut0

E0
∆E−

ω0Lf

E0
∆Q. (28)

According to Equations (27) and (28), the block diagram of Figure 7 can be converted into the
form depicted in Figure 8, where the variation of terminal voltage Utejθt are equivalently replaced
by the dynamics of powers P, Q, and internal voltage EejθE, as indicated by the blue dotted lines.
Then, the equivalent inertia MVSC(s) for the phase motion of the VSC’s internal voltage can be obtained,
as shown in Figure 9a. In Figure 9a, the transfer function GEω(s) describes the effect of frequency
variation on the amplitude dynamics of VSC’s internal voltage, which is not considered by [14].
The detailed expressions of MVSC(s), GEQ(s) and GEω(s) are listed in Appendix A.

Figure 8. Replacing the variation of terminal voltage Utejθt in Figure 7 with the dynamics of powers P,
Q, and internal voltage EejθE. (a) Phase dynamics of VSC’s internal voltage. (b) Amplitude dynamics
of VSC’s internal voltage.
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Figure 9. Established system model based on the motion equation concept. (a) VSC model. (b) Power
network model.

4.3. Established Power Network Model

A small-signal power network model can be derived easily with the proposed power calculation
method. Firstly, substituting the amplitude/phase/frequency of the internal voltage E and the infinite-bus
voltage Ug into Equations (13) and (14), respectively, the active/reactive power output P/Q are

P =
EUg

ω0L
sinθEg, (29)

Q =
E2

ωEL
−

EUg

ω0L
cosθEg. (30)

After linearizing Equations (29) and (30), the power network model is established, as depicted in
Figure 9b,

∆P =
Ug

ω0L
sinθEg0︸         ︷︷         ︸
KPE

∆E +
E0Ug

ω0L
cosθEg0︸            ︷︷            ︸

KPθ

∆θEg (31)

∆Q =
2E0 −Ug cosθEg0

ω0L︸                 ︷︷                 ︸
KQE

∆E +
E0Ug sinθEg0

ω0L︸           ︷︷           ︸
KQθ

∆θEg +
−E0

2

ω2
0ωbaseL︸     ︷︷     ︸

KQω

∆ωE (32)

Combining the linear block diagram of the VSC and the power network, the small-signal model
of the grid-connected VSC system in Figure 1 has been established, as depicted in Figure 9. Based on
the established model, the effect of frequency variation on system dynamics in DVC timescale can
be depicted. According to Figure 9, the frequency variation could affect the amplitude dynamics of
the internal voltage through the control loops in VSC, which is described with GEω(s). The frequency
variation could also affect the reactive power dynamics through the power network, which is described
with KQω.

4.4. Verification of the Established Small-Signal Model

The effectiveness of the established model depicted in Figure 9 was verified by comparisons
with the detailed model in MATLAB/SIMULINK and the previous nominal-frequency-based model.
The parameters are listed in Appendix B. Assume that a small disturbance in the grid occurred at
2 s. Figure 10 shows the comparative responses of active/reactive power outputs P/Q between the
established model, the previous model, and the detailed model. Here, Pin = 0.8 p.u. It was observed
that responses of the established model were in good agreement with those of the detailed model,
while the responses of the previous model deviated some from the detailed model. Figure 11a further
compared the dominant eigenvalue locus of the established model and the previous model at varied
grid strengths. It was observed that when Lg increases to 1 p.u., the dominant eigenvalue of the
previous model enters the right-half plane, which means that the system was judged to be unstable.
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However, the dominant eigenvalue of the established model in this paper was still in the left-half
plane, which means that the system was judged to be stable. The established model became unstable
after Lg increases to 1.01 p.u. Then, Figure 11b shows the simulation results of active power output P
for the detailed model. According to Figure 11b, the actual stability of the system was the same as
the conclusion judged via the established model in this paper but was different from that judged via
the previous nominal-frequency-based model. Comparisons of simulation responses and eigenvalue
analysis validated that the established model could hold the main behaviors of concern, even under
weak grid conditions. The established model could depict the effect of frequency variation on the weak
grid-connected VSC system dynamics in DVC timescale.

Figure 10. Comparisons of simulation responses between the established model, the previous
nominal-frequency-based model, and the detailed model when the phase of Ug decreases 5◦ at 2s.

Figure 11. (a) Comparisons of dominant eigenvalue locus between the established model and the
previous model at different grid strengths. (b) Responses of active power output P for the detailed model.

5. Effect Analysis of Frequency Variation on the System Stability in DVC Timescale

Based on the established model in Figure 9, this section presents a quantitative analysis of the
effect of frequency variation on the system’s small-signal stability. The quantitative analysis considered
the interactions between the DVC, TVC, PLL, and the power network. Firstly, an analytical method
introduced in references [14,16] was utilized to quantify the effect of frequency variation on the system’s
small-signal stability. Then, case studies were conducted under different controller parameters, and the
effectiveness of the analytical analyses was verified through simulation results.
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5.1. Stability Analysis of the Grid-Connected VSC System in Frequency Domain

The method introduced in references [14,16] can be used to analyze the small-signal stability of
the system in Figure 9, by judging whether the system produces positive or negative damping at the
oscillation frequency. According to Figure 9, the relationship between ∆θEg and ∆E is

GEθ(s) =
KQθGEQ(s)

1−KQEGEQ(s)
. (33)

The relationships between ∆ωE and ∆E include two kinds, one is related to the control loops in
VSC, and another is related to the power network, which is denoted with GEω-VSC(s) and GEω-net(s):

GEω−VSC(s) =
GEω(s)

1−KQEGEQ(s)
, (34)

GEω−net(s) =
KQωGEQ(s)

1−KQEGEQ(s)
. (35)

Based on Equations (33)–(35), the dynamics of amplitude can be equivalently converted into the
VSC’s phase motion, as shown in Figure 12.

Figure 12. Converting the effect of amplitude dynamics into the VSC’s phase motion (including the
effect of frequency variation).

In Figure 12, the active power variation ∆P resulting from ∆E consisted of three branches, which
affected the phase motion by the power network coupling. Two of these resulted from the frequency
variation ∆ωE, and they represent the effect from the control loops in VSC and the effect from the
power network, respectively, as indicated with the red dotted line. The remaining branch resulted
from the phase variation ∆θEg. Through breaking the loop at the points in Figure 12, the frequency
characteristics are calculated as:

∆aE

∆ωE
= −

KPEGEθ(s) + KPθ

sMVSC(s)
−

KPE[GEω−net(s) + GEω−VSC(s)]
MVSC(s)

, (36)

where ∆aE is the dynamics of acceleration of the VSC’s phase motion.
The stability of the system can be judged by Equation (36) with the following principle. If the

real part of the transfer function ∆aE/∆ωE(jω) in Equation (36) is negative, the system will produce
positive damping, which means the system is stable; otherwise, the produced negative damping will
lead to instability. This principle can be extended. The larger the real part of the transfer function
∆aE/∆ωE(jω), the greater the negative damping produced by the system, the more unstable the system
will be, and vice versa. According to the transfer function of Equation (36), the damping of the
system can be divided into two parts. One part is the damping produced by the frequency variation
itself, the other part is the damping produced by the phase variation (assume that the frequency is
quasi-steady-state). It can be concluded that the controller parameters of TVC, DVC, PLL, the operating
points, and the grid strengths all influence the characteristics of the term related to frequency variation’s
effect. The following case studies are given as examples to quantify the effect of frequency variation on
the system’s small-signal stability under different controller parameters.



Energies 2019, 12, 4458 14 of 19

5.2. Case Studies

5.2.1. Case Study 1: Effect of Frequency Variation under Different TVC Controller Parameters

Using the parameters listed in Appendix B, the frequency responses of Re[∆aE/∆ωE(jω)] with
different TVC controller parameters are illustrated, as shown in Figure 13. Note that the value of
Re[∆aE/∆ωE(jω)] is closely related to the oscillation frequency ωd. Generally, a lower TVC bandwidth
will result in a lower oscillation frequency of the analytical system, and the corresponding oscillation
frequency in Figure 13 are ωd1 = 49.45 rad/s, ωd2 = 47.91 rad/s, and ωd3 = 46.15 rad/s. The solid lines
consider the effect of frequency variation, while the dotted lines ignore it. The difference between
the values of Re[∆aE/∆ωE(jωd)] resulting from considering and ignoring the frequency variation are
∆Re(ωd1) = 2.94, ∆Re(ωd2) = 7.75, ∆Re(ωd3) = 11.78, respectively. It is shown that the difference
between them increased as the TVC bandwidth decreased. This means that a lower TVC bandwidth
will result in a larger effect of frequency variation on the system stability. Furthermore, when the TVC
controller parameter was set as (0.1, 6), Re[∆aE/∆ωE(jωd3)] < 0 when considering the effect of frequency
variation. However, the conclusion under this set of parameters was the opposite when the effect of
frequency variation was ignored, which indicates that the system was unstable.

Figure 13. Impacts of different TVC controller parameters (kp2, ki2) on the frequency responses of the
real part of the transfer function ∆aE/∆ωE. (The dotted lines are cases ignoring the effect of frequency
variation, and the solid lines represent cases where it is considered. ∆Re(ωd) is the difference between
the values of Re[∆aE/∆ωE(jωd)] of them.).

Figure 14 shows the simulation responses of the VSC’s internal voltage frequency ωE for the
detailed model. It was observed that a larger frequency variation of the VSC’s internal voltage was
associated with a lower TVC bandwidth. Besides, the system was stable when the TVC controller
parameter was (0.1, 6), which was not consistent with the above analytical result when the effect of
frequency variation was ignored. Therefore, the frequency variation had a great effect on the weak
grid-connected VSC system’s small-signal stability, especially with a lower TVC bandwidth.

Figure 14. VSC internal voltage frequency dynamics with varied TVC controller parameters (kp2, ki2).
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5.2.2. Case Study 2: Effect of Frequency Variation under Different PLL Controller Parameters

Using the parameters listed in Appendix B, the frequency responses of Re[∆aE/∆ωE(jω)] with
different PLL controller parameters are illustrated, as shown in Figure 15. The corresponding oscillation
frequency in Figure 15 are ωd1 = 54.75 rad/s, ωd2 = 49.45 rad/s, and ωd3 = 45.87 rad/s. The solid lines
consider the effect of frequency variation, while the dotted lines ignore it. The difference between
the values of Re[∆aE/∆ωE(jωd)] resulting from considering and ignoring the frequency variation are
∆Re(ωd1) = 3.83, ∆Re(ωd2) = 2.73, ∆Re(ωd3) = 1.98, respectively. It was shown that the difference
between them became larger, with a higher PLL bandwidth when keeping the control loop’s damping
ratio constant. This means that a higher PLL bandwidth will result in a larger effect of frequency
variation on the stability of a weak grid-connected VSC system. Figure 16 showed the simulation
responses of VSC’s internal voltage frequency ωE for the detailed model. It was observed that a
larger frequency variation of the VSC’s internal voltage was associated with a higher PLL bandwidth.
The simulation results supported the analytical results above.

Figure 15. Impacts of different PLL controller parameters (kp4, ki4) on the frequency responses of the
real part of the transfer function ∆aE/∆ωE. (The dotted lines are cases ignoring the effect of frequency
variation, and the solid lines represent the cases where it is considered. ∆Re(ωd) is the difference
between the values of Re[∆aE/∆ωE(jωd)] of them.).

Figure 16. VSC internal voltage frequency dynamics with varied PLL controller parameters (kp4, ki4).

6. Discussion

In this section, the practicability of the proposed power calculation method in multi-VSC power
systems is discussed. Take a power system consisting of n VSCs as an example. By collecting the
information of the controller parameters and the operating points of each VSC, the small-signal model
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of each VSC can be obtained, as shown in Figure 17. It is obvious that each VSC is interfaced with
the grid through the amplitude/phase dynamics of the internal voltage. Through the superposition
theorem, the active/reactive power outputs Pi/Qi of each VSC can be calculated with the corresponding
time-varying frequency of VSC’s internal voltage replacing the nominal frequency, as described in
Figure 17. The complete power network equations in the multi-VSC system can be described as a
n × n matrix. Each element of the n × n matrix is a 2 × 2 matrix. Comparing with the previous
nominal-frequency-based model in reference [14], the effect of frequency variation will increase the
system order by about 2n, including the n order brought by the power network matrix and the n order
brought by the control loops in VSC GEωi(s).

Figure 17. Schematic diagram of multi-VSC system modeling in DVC timescale with the proposed
power calculation method.

Assume that the multi-VSC system consists of m inductors in the power network (including n
filter inductors). For the existing instantaneous-power-theory-based method, the order of all inductors
will be 2m − 2, while it will be 2n for the proposed method in this paper, as stated above. Since the
number of inductors is usually huge (viz. m >> n), the proposed method can help reduce the system
order by about 2(m − n) − 2. Thus, when the effect of frequency variation is regarded to be crucial
for multi-VSC system stability analysis, the proposed method may be a better choice to improve the
nominal-frequency-based results. Note that the proposed power calculation method just aims to
analyze the stability problems in the DVC timescale. For the stability problems in the current control
timescale, the simplification may be irrational since the elements Ik, k ≥ 2 may be comparable with the
element I1. It is a follow-up goal to further verify the established model through the experimental
results. Besides, the power calculation scenarios are relatively simple since the capacitances and
resistances are neglected. A more general situation for power calculation is currently under study and
will be published in the near future.

7. Conclusions

This paper presented a thorough analysis of the effect mechanism of frequency variation on
the weak grid-connected VSC system stability in the DVC timescale. To achieve this goal, firstly,
a novel method in which the active/reactive powers are calculated with the time-varying frequency of
voltage vectors was proposed. The calculated results could intuitively reflect the effect of frequency
variation on the active/reactive powers and could also help reduce the system order to a certain extent.
Thus, the proposed method was applicable for further analysis of the effect of frequency variation on
multi-VSC system stability. This was one main contribution of this paper. Secondly, a small-signal
model was established based on the motion equation concept, to depict the effect of frequency
variation on the weak grid-connected VSC system dynamics in the DVC timescale. It was found that
the frequency variation affected the amplitude dynamics of the VSC’s internal voltage through the
interactions between the control loops in VSC, and also affected the reactive power dynamics through
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the interactions with the power network. Comparisons of simulation responses and eigenvalue analysis
validated that the established model could hold the main behaviors of concern, even under weak grid
conditions. Then, an analytical method was utilized to quantify the effect of frequency variation on the
system’s small-signal stability. This quantitative analysis considered the interactions between the DVC,
the TVC, PLL, and the power network. This was another main contribution of this paper. Case studies
were conducted under different controller parameters, and simulation results supported the analytical
analyses. The follow-up goals are to further verify the established model through the experimental
results and to expand the proposed power calculation method for a more general situation.
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Nomenclature

Pin Active power input of VSC
P, Q Active and reactive power output of VSC
E, Ut, Ug VSC’s internal voltage, terminal voltage and infinite-bus voltage vectors
E, θE, ωE VSC’s internal voltage amplitude, phase, and frequency
Ut, θt, ωt Terminal voltage amplitude, phase, and frequency
Ug, θg Infinite-bus voltage amplitude and phase
I Current vector
ωp, θp PLL frequency and output angle
ed

p, eq
p Direct-axis and quadrature-axis current control output in PLL-synchronized reference frame

idp, iqp Direct-axis and quadrature-axis current components in PLL-synchronized reference frame
Udc DC voltage
Lf VSC filter inductance
Lg Transmission line inductance
PIj= kpj+kij/s Transfer function of a generic PI controller (j = 1, 2, . . . ,4)
θxy Difference of phase θx and phase θy

Superscript:
ref Reference value
Subscripts:
abc Components in abc frame
0 Initial values in steady-state condition

Appendix A. The Expressions of MVSC(s), GEQ(s) and GEω(s)

MVSC(s) =
(E0 −Ut0)/(ω0Lf)

s2

E0
+ (

kp1

CdcUdc0
+

kp4

Ut0
)s +

(ki1kp4+kp1ki4)s−1

CdcUdc0
+ ki1ki4s−2

CdcUdc0
+

ki1+kp1kp4

CdcUdc0
+ ki4

Ut0

(A1)

GEQ(s) =
(ω0Lfkp2 − 1)s +ω0Lfki2

[(2E0 −Ut0)kp2 − (2E0 −Ut0)/(ω0Lf)]s + (2E0 −Ut0)ki2
(A2)

GEω(s) =
E0(E0 −Ut0)(kp2s + ki2) −MVSC(s)s2[(ω0Lfkp2 − 1)s +ω0Lfki2]

[(2E0 −Ut0)ω0ωbasekp2 − (E0 −Ut0)ωbase/Lf]s + (2E0 −Ut0)ω0ωbaseki2
(A3)
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Appendix B. 2-MW Grid-Connected VSC System Parameters

Sbase= 2 MW Ubase = 690 V(phase to phase RMS value)
ωbase = 2 πf base f base = 50 Hz Udcbase = 1200 V
Udc

* = 1 p.u. Cdc = 0.1 F Ut
* = 1 p.u.

Ug = 1 p.u. Lf= 0.1 p.u. Lg= 0.85 p.u.
Controller parameter values (p.u.)
DC voltage control kp1 = 3.5 ki1 = 140
Terminal voltage control kp2 = 1 ki2 = 60
Current control kp3 = 1.2 ki3 = 300
PLL control kp4 = 50 ki4 = 2000
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