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Abstract: Climate change is around us today and will affect human life in many ways. More frequent
extreme weather events raise mortality and car accident rates, global warming leads to longer growing
seasons for crops, which may change farmers’ crop choices, and the relationship between energy
demand in residential buildings and weather is widely investigated. In this paper, we focus on the
impact of weather on energy consumption, in particular, gasoline consumption through the more
frequent use of both vehicles themselves and the air conditioner of the vehicle that decreases fuel
economy, which has not been paid enough attention in the literature. We estimate the relationship
between fuel consumption and weather using unique U.S. panel data. We find that hot days increase
gasoline consumption, but in contrast to the results of residential energy consumption literature,
there is no statistically significant effect on cold weather. With climate prediction data from General
Circulation Models (GCMs), we simulate the impact of climate change on fuel energy consumption.
The results show that the fuel consumption in the transportation sector may increase by up to 4%
under the “business-as-usual” (RCP 8.5) scenario. Also, climate change has heterogeneous impacts
across the continental United States.
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1. Introduction

Human choices and activities contribute to climate change, and in return, climate change alters
our lifestyle as well. In other words, climate change is expected to have noticeable impacts on human
life and social systems. For example, global warming can result in increased energy use through
reliance on technologies used for cooling, such as air conditioners, and can change farmers’ crop
choices to maximize their profits according to weather conditions and predictions.

Recent empirical literature has begun to examine the impact of climate on energy demand,
mortality rates, and agricultural yields (e.g., [1–6]). In particular, the relationship between weather
and energy demand is widely investigated. The common conclusion in the literature is a nonlinear
response at the extreme of the temperature. Also, climate change will trigger a significant increase and
heterogeneity across geographical regions in energy demand through simulation study with various
climate change scenarios.

However, most of the empirical literature on the impact of climate change on energy demand is
limited to the residential energy sector [7]. There are several reasons that the literature focuses on the
residential sector rather than the industrial or commercial sectors. First, access to a firm or individual
commercial-building-level data is generally restricted to researchers. Second, residential energy
consumption is, in general, more responsive to weather than other sectors, because the proportion of
cooling and heating appliance in residential energy demand is much larger than other sectors.

According to EIA statistics, however, in 2014 the industrial, commercial, and transportation
sectors accounted for around 80% of total U.S. energy use, while the residential sector accounts for
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only 22% (Source: EIA Monthly Energy Review, http://www.eia.gov/totalenergy/data/monthly/
archive/00351510.pdf). For more comprehensive analysis of the impact of climate change on energy
demand, further studies that investigate the relationship in other sectors are essential. In particular,
few studies have empirically examined the impact of climate change on fuel consumption in the
transportation sector—especially passenger vehicle usage (Recently, a few studies investigate the
impact of climate change on vehicle use, in particular, traffic accident (e.g., [8,9]).). Intuitively, there
are two channels that weather affects fuel consumption in passenger vehicles. First, fuel efficiency
may be affected both directly and indirectly by weather conditions. According to EPA’s vehicle
fuel economy test, operating the air conditioner reduced the stated fuel economy by roughly 5–25%
(http://www.fueleconomy.gov/feg/factors.shtml).

“Even outside temperatures in the 60 s can cause a car temperature to rise well above 110◦F. When the
outside temperature is 83◦F, even with the window rolled down 2 inches, the temperature inside the car can reach
109◦F in only 15 min.”

In other words, the temperature inside the vehicle can be heated even in relatively lower
outside temperatures, which means small changes in weather can have a large impact on gasoline
consumption. Moreover, cold weather can also significantly reduce fuel economy through engine
and transmission friction and various other engineering reasons (https://www.fueleconomy.gov/
feg/coldweather.shtml.). Second, hot or cold weather can increase fuel consumption through more
frequent short-distance vehicle use. On the other hand, extreme weather makes people stay home
longer, which leads to less driving. Therefore, the significance and size of weather variables on fuel
consumption in passenger vehicles are totally empirical questions that need investigation.

One of the main econometric concerns in estimating weather impact on energy consumption is that
estimates are subject to omitted variable bias, in particular when empirical models use cross-sectional
or aggregated time-series data [7]. While unobserved heterogeneity in panel data is easy to control
through fixed-effects models, in a cross-sectional setting, an instrumental variable or structural
approach, such as a discrete-continuous choice model, is needed to address omitted variable bias.
However, as well-known, finding proper instrumental variable is very difficult.

Another important issue in measuring weather impact is how to appropriately measure
temperature effects not only on energy consumption but also agriculture, human behavior,
and mortality rates. As several prior studies indicate, a piece single of information on weather, such as
monthly average temperature, maximum and minimum temperature, or cooling and heating degree
days cannot fully capture true weather distribution. [10] draws attention to a fat-tailed uncertainty of
climate change. Indeed, even though global warming is typically described as an increase in average
temperature, the serious risks of climate change are associated with shifts in the frequency and severity
of extreme events.

This paper fills those gaps. First, this paper investigates the relationship between weather and
vehicle fuel consumption, which is not considered in the economics literature. Second, this study
applies and compares several different weather variables used in the literature such as monthly average,
degree days, and temperature bins using daily average temperature. Lastly, this study applies unique
panel data with a fixed-effects model to control for unobservable spatial and temporal differences.
As [7] point out, the empirical analysis with panel data has more consistent estimates through including
time and household fixed effects. In this study, we find that hot days increase gasoline consumption,
but in contrast to the results of residential energy consumption literature, there is no statistically
significant effect for cold lweather (In the case of electric vehicles, both the performance of battery
and cabin climate control are affected by temperature [11]. However, the effect of temperature on the
performance of gasoline vehicle is little. Because this study focuses on gasoline demand, the battery
performance by cold weather is not considered.).

In addition, we simulate the impact of climate change on gasoline consumption. The results show
that fuel consumption in the transportation sector may increase by up to 4% under “business-as-usual”
(RCP 8.5) scenarios. Compared to the previous findings for residential electricity consumption by [3,4],
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our results have a much smaller increase in energy consumption under the climate change scenarios.
However, the transportation and residential sectors accounted for 26% and 5.7%, respectively, of GHG
emissions in 2014, thus the total impact of this result is not small (Source: Inventory of U.S. Greenhouse
Gas Emissions and Sinks: 1990–2014, EPA). Also, climate change has heterogeneous impacts across the
continental United States. In particular, the impact in the South is bigger than in other regions.

The remainder of this paper is divided into five sections. In Section 2, we discuss related literature.
Section 3 presents our data, devoting particular attention to the construction of weather variables.
Section 4 describes empirical strategies. Section 5 presents empirical results. Section 6 concludes.

2. Related Literature

Several studies have investigated the relationship between energy consumption and weather shocks.
Recently, [7] give an extensive review of the empirical literature on climate and energy consumption,
focusing on residential electricity use. In this section, we give more attention to the econometric methods
and the types of data used by prior studies to measure weather effects on energy consumption.

Some prior studies used aggregate energy consumption or supply data rather than individual or
household-level data. [4] use the EIA annual state-level energy consumption data from 1968 to 2002.
The main strength of these aggregate data is to obtain long historical-panel type data to analyze the
effect of climate change on energy consumption over long periods. With the panel fixed-effects model
to capture unobserved heterogeneity, they obtain a U-shaped response that has more energy demand
in high and low temperatures.

In most studies, time-series econometric models are employed with long time-series national
and utility-level energy demand data. Ref. [12,13], for example, use total sales data from four utilities
in the United States and national sales data in Korea, respectively. Both studies focus on capturing
nonlinear response using piecewise linear splines or kernel estimation of temperature density with
semi-parametric econometric methods.

Other studies mostly use household-level microdata. Household-level data can be divided into
two categories: (a) one-year cross-sectional data; and, (b) panel type data. Ref. [14,15] use one-year
household-level survey data to understand the relationship between residential energy consumption
and weather variables. Both studies employ a two-step sequential estimation technique developed
by [16] to account for the connection between fuel choices or heating systems and consumption, which
may cause the endogeneity problem in estimation. On the other hand, [3] adopt household-level
monthly billing data for several years. They employ a panel fixed-effects model similar to [4].
As mentioned above, studies using one-year cross-sectional data adopt a structural model to solve
the endogeneity problem because finding appropriate instrumental variable is very difficult, whereas
panel data use a linear fixed-effects model to overcome the omitted variable bias.

In prior studies, two kinds of data are used to measure temperature effects on economic outcomes.
The first data set is station-level weather data, which are real observations collected from weather
stations (e.g., [3,4,13,17]). The other data are gridded data that are developed with weather models
using station-level observations (e.g., [2,18]). Two datasets are complementary since station-level
weather data are more precise, but cannot describe complete spatial and temporal resolution, while
gridded weather data have complete coverage, but include inherent errors from interpolation [19].

One other thing we need to note is how prior studies model the temperature effect on economic
outcomes of interest. First, some studies use monthly average temperature—the simplest approach—as
a measure of temperature effects (e.g., [15,20]). A second set of studies adopt monthly or yearly cooling
and heating degree days rather than using average temperature (e.g., [21,22]). However, these two
measures can hide extreme events in both cold and hot weather and cannot reflect the nonlinear
relationship between economic outcome and weather.

There are several different approaches to overcome the problems mentioned above (i.e.,
nonlinearity and reflecting extreme weather conditions). Ref. [2] estimate temperature effects on
crop yields using monthly cumulative time exposure within each 1 ◦C temperature range with daily
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gridded data. Similarly, ref. [3,4] compute the cumulative days of each month belonging to several
pre-determined temperature intervals using daily mean temperature.

Ref. [13,23] introduce a nonparametric approach to capture temperature effect with high-frequency
data (i.e., hourly temperature data). They specify the temperature effect with functional coefficients
for the temperature density function estimated by a kernel method for estimating national electricity
consumption in Korea. This approach captures all information of hourly temperature data and reflects
nonlinear relationships between energy demand and temperature. However, in the case of the United
States, it is difficult to obtain historical hourly data covering all regions, since weather station data
have obvious limitations in spatial and temporal dimensions.

According to the types of data, different kinds of econometric strategies are used to estimate
the relationship. The time-series data are estimated by simple OLS regression [20] or cointegrating
regression methods [12,13] while fixed-effects models are used for panel data to deal with unobserved
confounders that cause omitted variable bias [3,4]. In contrast to time-series or panel data, a structural
model approach is used for cross-sectional data to address selection bias, such as the fuel choice or
appliance choice (e.g., [14,15]).

3. Data

The main dataset used in this study comes from the Panel Study of Income Dynamics
(PSID)—a nationally representative longitudinal survey for household and individual characteristics
including employment, income, health status, expenditure, and other topics. In addition, we construct
weather variables such as daily average temperature, cooling degree days and others. In this section,
we briefly describe the process of constructing our dataset. Supplementary material, including the
data sources and the process of data cleaning, is contained in the Appendixes A and B.

3.1. Household Data

The primary source of household’s vehicle information and fuel consumption is the PSID, which
also includes a variety of variables to control heterogeneity across households. The PSID is widely
used for various types of research including wealth inequality, health, household’s consumption,
and saving, and other issues. Even though most of the information on the household in the survey
is freely available, some confidential information of respondents is provided through confidential
contracts. For this study, we contracted with PSID to obtain details on vehicle ownership, such as
specific models and higher levels of geocode data. Confidential data are used to construct more
accurate household gasoline and residential energy consumption. The information on vehicle models
that households own is only collected from 1999 onward while the PSID is the longest ongoing
longitudinal household survey from 1968. Therefore, the samples are from 1999, 2001, 2003, 2005,
2007, 2009, and 2011 (Beginning with the 1999 survey, the PSID switched from annual to biennial
basis interviews.).

The data include the vehicle information such as year, make, and specific model, up to three
vehicles for each household. To construct accurate fuel consumption, we match vehicle information
with characteristics, such as fuel economy, from Ward’s Automotive Yearbooks and EPA fuel economy
data sets based on vehicle year, make, and model. Since gasoline prices vary significantly across regions,
we draw county-level detailed gasoline prices from the American Chamber of Commerce Researchers
Association (ACCRA) database (If gasoline prices are missing in certain counties, we impute those
counties with state-level gasoline prices from EIA.). We compute gasoline consumption with gasoline
prices and fuel economy with gasoline expenditure information for each household.

Panel A of Table 1 presents the summary statistics of constructed households characteristics over
the years. As shown in the table, the median income ($2010) of households has been stagnant and
declined before and after the financial crisis of 2007–2008. In addition, a significant decline in fuel
consumption after the economic downturn is consistent with national-level sales data. According
to EIA statistics, U.S. total motor gasoline sales was 551,080,000 and 497,980,000 gallons per day in
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2008 and 2009, respectively, and 597,780,000 gallons per day in 2006 (source: https://www.eia.gov/
dnav/pet/PETCONSREFMGAEPM0VTRMGALPDA.htm). The household survey data such as PSID
and consumer expenditure survey (CEX) collect an expenditure on gasoline rather than gasoline
consumption itself. Therefore, for an accurate fuel consumption calculation, it is important that our
sample data have consistency with national-level aggregate gasoline sales.

Table 1. Summary Statistics.

1999 2001 2003 2005 2007 2009 2011

A. Household Characteristics

Family Size 2.79 2.76 2.71 2.71 2.70 2.68 2.64
(1.44) (1.43) (1.42) (1.4) (1.42) (1.43) (1.41)

Number Adults 1.84 1.85 1.84 1.84 1.83 1.83 1.80
(0.67) (0.69) (0.71) (0.7) (0.69) (0.69) (0.69)

Age of Head 43.63 43.93 43.93 43.98 44.09 44.34 44.17
(15.14) (15.17) (15.1) (15.41) (15.52) (15.63) (15.66)

Median Income ($2010) 58,460 59,009 56,533 57,890 56,407 56,588 54,163
(89,167) (91,211) (103,097) (123,449) (72,493) (76,055) (75,567)

Average Fuel Consumption 85.29 84.35 77.92 77.81 74.77 77.48 66.46
(Gallon) (70.45) (96.54) (67.71) (64.19) (60.77) (67.58) (55.30)
Fuel Economy (MPG) 20.28 20.19 19.99 19.82 19.83 19.93 20.26

(3.12) (3.4) (3.42) (3.5) (3.64) (3.72) (3.98)
Gasoline Price ($/Gallon) 1.09 1.57 1.63 2.28 2.94 2.28 3.76

(0.17) (0.17) (0.18) (0.23) (0.26) (0.28) (0.32)
Number of Vehicles 1.71 1.73 1.74 1.72 1.75 1.74 1.66

(0.69) (0.70) (0.70) (0.68) (0.70) (0.70) (0.67)
Observations 4823 5191 5598 5687 5917 6264 5,759

B. Weather Variables

Daily Temperature 55.5 55.1 54.2 55.1 55.2 53.7 55.0
(16.7) (17.2) (17.9) (17.6) (18.2) (17.8) (18.5)

Cooling Degree Days 1225.5 1228.3 1165.4 1335.9 1361.9 1099.4 1434.5
(802.3) (772.3) (771.4) (787.3) (787.1) (863.8) (949.4)

Days < 10 ◦F 4.0 3.8 6.7 5.6 6.6 7.6 6.5
(7.2) (8.4) (12.7) (9.9) (11.2) (13.8) (11.2)

Days 10 ◦–20 ◦F 7.1 10.4 12.3 10.9 13.0 12.1 10.7
(8.8) (13) (12.8) (12.5) (13.9) (12.7) (11.5)

Days 20 ◦–30 ◦F 21.3 24.9 25.8 22.4 25.0 24.8 24.0
(19.5) (19.8) (19.1) (17.7) (18.2) (17.4) (18.2)

Days 30 ◦–40 ◦F 44.2 43.7 44.5 44.0 41.6 42.9 46.4
(25.1) (20.2) (20.4) (21.2) (17.7) (19.8) (22.0)

Days 40 ◦–50 ◦F 59.9 55.2 52.6 59.3 50.6 58.2 57.3
(18.2) (15.6) (14.9) (15.2) (15.0) (13.6) (15.5)

Days 50 ◦–60 ◦F 65.7 62.4 59.1 57.7 53.0 62.8 56.6
(11.9) (11.5) (11.5) (16.6) (13.9) (13.1) (12.1)

Days 60 ◦–70 ◦F 71.1 69.7 72.9 64.6 68.9 71.6 64.4
(12.7) (13.6) (12.7) (12.5) (12.2) (14.5) (12.6)

Days 70 ◦–80 ◦F 63.1 70.9 67.9 70.9 79.7 63.3 59.3
(28.3) (31.8) (28.9) (25.5) (30.3) (34.2) (24.1)

Days 80 ◦–90 ◦F 28.3 23.7 22.9 29.6 26.4 21.4 37.1
(28.8) (26.8) (28.2) (33.4) (27.9) (31.0) (36.7)

Days > 90 ◦F 0.2 0.4 0.2 0.1 0.2 0.3 2.7
(2.2) (2.8) (2.5) (2.2) (2.8) (3.0) (8.8)

3.2. Weather Data

One other main explanatory variables are weather information. The historical weather data are
drawn from the Parameter-Elevation Regressions on Independent Slopes Model (PRISM), which is
gridded weather data that include daily maximum and minimum temperature, precipitation and
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other weather variables on a 2.5 × 2.5-m scale for the contiguous United States. The PRISM data do
not have missing data problem because it is produced through an interpolation technique using data
from weather stations [19]. In this study, county-level aggregated data are used, which the gridded
temperature and precipitation are averaged with an inverse-distance weight from the centroid of
each county to give high weight on the values close to the county’s centroid. The balanced panel
weather variables of 3105 counties are constructed from 1999 to 2011. The summary statistics of the
constructed weather variables are reported in Panel B of Table 1. The yearly average of daily average
temperature is consistent over the years. We calculate cooling degree days (CDD) by subtracting 65
from each county’s daily average temperature (CDDctj = ∑365

i=1 max(Tmean
ctj − 65, 0)). The CDD share

the common fluctuation with the average temperature despite relatively large standard deviations.
We also calculate the number of days that the daily average temperature belongs to 10 pre-determined
temperature intervals by 10◦F steps.

To simulate the impact of climate change on fuel consumption, the NASA Earth Exchange Global
Daily Downscaled Projections (NEX-GDDP) dataset is used. The NEX-GDDP is downscaled global
climate scenarios derived from the General Circulation Model (GCM) runs conducted under the
Coupled Model Intercomparison Project Phase 5 l(CMIP5) (The NEX-GDDP was produced by the
Bias-Correction Spatial Disaggregation (BCSD) which is a statistical downscaling algorithm [24].).
The NEX-GDDP included two of the four greenhouse gas emission scenarios, known as the
Representative Concentration Pathways (RCPs). RCPs 4.5 and 8.5 are used in the Fifth Assessment
Report of the Intergovernmental Panel on Climate Change (IPCC AR5). RCP 4.5 is a stabilization
scenario in which total radiative forcing is stabilized shortly after the year 2100, without overshooting
the long-run radiative forcing target level. The RCP 4.5 scenario is characterized by the relatively small
increase of temperature by 2.4 ◦C. On the other hand, RCP 8.5 scenario is a representative scenario
that leads to high GHG concentration level which is, characterized by 4.9 ◦C increase of temperature.
It assumes “business-as-usual” scenarios. Among the 21 models, we use two GCMs, CCSM5 and
GFDL-CM3 for climate prediction.

4. Econometric Strategy

We address concerns related to omitted variables bias arising from time-invariant unobserved
confounders such as the distance to work or heterogeneous preference for heating or cooling by
adopting a fixed effects model including individual and regional fixed effects terms. We employ a
simple log-linear specification which is commonly used in previous studies (e.g., [3,4]).

log(Eit) = αi + Xitβ + γ f (Wct) + θdt + εit (1)

where log(E)it is the logarithm of household i’s fuel consumption at time t; Xit denotes a vector
consisting of time-variant explanatory variables to affect fuel consumption such as gasoline prices,
income, and other household characteristics; αi and θdt are household and census division by year
fixed effects; εit denotes an unobserved disturbance; and f (Wct) represents a function of weather
variables such as temperature and precipitation.

The first candidate for f (Wct) is a simple average temperature at time t, Tmean
ct . The simplest way

to measure temperature effects on energy consumption is using annual average temperature. However,
it cannot reflect the nonlinear response of energy demand to temperature. Another simple approach is
using CDD which is commonly used in estimating the relationship between energy consumption and
temperature. Although the degree day approach can capture some information on extreme days, the
principal drawback is that the relationship between temperature and energy consumption is linear.
However, the literature reports a nonlinear relationship. To overcome this problem, ref. [3,4] use a
piecewise linear spline function. They construct temperature bins that count the number of days the
mean daily temperature falls into each pre-determined temperature interval. Therefore, the coefficients
and functional form of the weather variables are written as followings by models;
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γ f (Wct) =


γ · Tavg if Model 1.

γ · CDD if Model 2.

∑9
j=1 γj · Tmean

ctj if Model 3.

∑5
j=1 γj · Tmean

ctj if Model 4.

(2)

where Tmean
ctj denotes the number of days that the daily mean temperature in county c for a month t

belongs to temperature bin j.

5. Results

This section is divided into two subsections: (a) the main estimates of equation (1) with five
different specifications; and (b) the simulation results of the impact of climate change on fuel
consumption in passenger vehicle use.

5.1. Estimation Results

Table 2 presents the estimates of the impact of weather on gasoline consumption. We estimate four
different specifications as described in Section 4. The same explanatory variables, except for different
specifications of temperature, are used across all specifications. All specifications include fixed effects
for vehicle age and the interaction between years and nine Census Bureau-designated divisions to
control unobserved heterogeneity. The precipitation has a negative sign across all specification, but
not statistically significant. The estimates of income, number of family members, and the number of
adults are significantly positive values consistent with prior studies and intuitions. There are two
important variables in estimating equations with gasoline consumption of passenger vehicles as a
dependent variable—gasoline prices and fuel economy. Since the logged gasoline consumption is
used as a dependent variable in estimation equations, the parameter means an elasticity of gasoline
consumption with respect to gasoline prices. Over four different specifications, the estimates for
gasoline prices are significantly negative and stable. The one important notion in fuel economy
policy, in particular, Corporate Average Fuel Economy (CAFE) standards, is the rebound effect, which
is originally defined as the elasticity of miles traveled to fuel economy. However, under specific
conditions (i.e., gasoline prices are exogenous), miles traveled are only the function of gasoline price
per mile, and fuel economy is constant, the elasticity of fuel consumption to fuel economy is equivalent
to the size of the rebound effect [25].

The second row below in Table 3 presents the chi-square test statistic of the panel bootstrap
Hausman test (The standard Hausman test can be applied when the random-effect (RE) estimator is
efficient. However, in our application, we choose the robust standard errors to account for clustering.
Following [26], we use a panel bootstrap Hausman test with 200 repetitions.). The Hauman test
statistics lead us to reject the null hypothesis of no systematic differences between RE and fixed-effect
(FE) model. In other words, the results imply that RE cannot provide consistent estimates with these
datasets. Therefore, we choose the preferred estimates of fixed effects models (The estimation results
of the random-effects model are reported in Table A1.) In columns 2–5 of Table 3, the estimates are
around -0.58, which is relatively larger than the estimates from recent studies, but it still lies in the
range of estimates of prior studies using household-level data [27]. The sign for income parameter
is intuitive, given that higher-income households are more likely to drive. The first specification
is using simple monthly average temperature as typically used in the literature. As expected, the
estimate for average temperature has positive and significant at the one-percent level. The second
measure for weather is cooling degree days which are calculated by subtracting 65 from the daily
average temperature (We estimate the same equation with heating degree days (HDD) as well.
However, it was not statistically significant.). The coefficient is also significantly positive (i.e., people
consume more gasoline when the temperature is high). The third and fourth models use the number
of days in pre-determined temperature bins. The third specification uses common categorizations of
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10 temperature bins used in the literature, in particular, estimating the impact of weather on residential
electricity consumption. However, the ‘Days 40◦–50◦F’ is used as a base temperature bin in our
estimation rather than ‘Days 50◦–60◦F’ in the literature because the inside of a passenger vehicle is
hotter than the outside ambient temperature, as NHTSA reports. The coefficients in model 3 of Table 3
show positive responses except for ‘Days 30◦–40◦F’ relative to ‘40◦–50◦F’. The result implies that hot
and cold weather increase fuel consumption.

Table 2. Estimation Results.

Variables Model 1 Model 2 Model 3 Model 4

Tavg 0.0022 ***
(0.0004)

CDD 0.0001 ***
(0.0000)

Days < 10 ◦F 0.0013
(0.0039)

Days 10 ◦–20 ◦F 0.0025
(0.0031)

Days 20 ◦–30 ◦F 0.0002
(0.0020)

Days 30 ◦–40 ◦F −0.0010
(0.0017)

Days 40 ◦–50 ◦F

Days 50 ◦–60 ◦F 0.0019 0.0019 **
(0.0014) (0.0009)

Days 60 ◦–70 ◦F 0.0036 *** 0.0037 ***
(0.0010) (0.0007)

Days 70 ◦–80 ◦F 0.0024 ** 0.0025 ***
(0.0010) (0.0007)

Days 80 ◦–90 ◦F 0.0039 *** 0.0040 ***
(0.0013) (0.0010)

Days > 90 ◦F 0.0080 0.0081
(0.0059) (0.0058)

Precipitation/100 −0.3423 * −0.2791 −0.2794 −0.3073
(0.1919) (0.1912) (0.1937) (0.1915)

ln(GasPricet) −0.5957 *** −0.5428 *** −0.5893 *** −0.5959 ***
(0.0498) (0.0486) (0.0503) (0.0498)

ln(Income) 0.0726 *** 0.0728 *** 0.0728 *** 0.0727 ***
(0.0092) (0.0092) (0.0092) (0.0092)

ln(MPG) −0.5304 *** −0.5289 *** −0.5306 *** −0.5306 ***
(0.0390) (0.0390) (0.0390) (0.0390)

Number of Vehicles 0.2106 *** 0.2099 *** 0.2107 *** 0.2109 ***
(0.0102) (0.0102) (0.0102) (0.0102)

Number of Family 0.0277 *** 0.0273 *** 0.0277 *** 0.0277 ***
(0.0069) (0.0069) (0.0069) (0.0069)

Number of Adults 0.0457 *** 0.0462 *** 0.0458 *** 0.0457 ***
(0.0123) (0.0123) (0.0123) (0.0123)

Adjusted-R2 0.489 0.488 0.489 0.489

All specifications include fixed effects for educations, vehicle age fixed effects, and the interactions fixed effects
between years and nine Census Bureau-designated divisions. Standard errors are reported in parentheses and
clustered by household, and * denotes significance at the 10%, ** at the 5%, and *** at the 1%, respectively.
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Table 3. Estimation Results.

Variables Model 1 Model 2 Model 3 Model 4

Tavg 0.0022 ***
(0.0004)

CDD 0.0001 ***
(0.0000)

Days < 10 ◦F 0.0013
(0.0039)

Days 10 ◦–20 ◦F 0.0025
(0.0031)

Days 20 ◦–30 ◦F 0.0002
(0.0020)

Days 30 ◦–40 ◦F −0.0010
(0.0017)

Days 40 ◦–50 ◦F

Days 50 ◦–60 ◦F 0.0019 0.0019 **
(0.0014) (0.0009)

Days 60 ◦–70 ◦F 0.0036 *** 0.0037 ***
(0.0010) (0.0007)

Days 70 ◦–80 ◦F 0.0024 ** 0.0025 ***
(0.0010) (0.0007)

Days 80 ◦–90 ◦F 0.0039 *** 0.0040 ***
(0.0013) (0.0010)

Days > 90 ◦F 0.0080 0.0081
(0.0059) (0.0058)

Precipitation/100 −0.3423 * −0.2791 −0.2794 −0.3073
(0.1919) (0.1912) (0.1937) (0.1915)

ln(GasPricet) −0.5957 *** −0.5428 *** −0.5893 *** −0.5959 ***
(0.0498) (0.0486) (0.0503) (0.0498)

ln(Income) 0.0726 *** 0.0728 *** 0.0728 *** 0.0727 ***
(0.0092) (0.0092) (0.0092) (0.0092)

ln(MPG) −0.5304 *** −0.5289 *** −0.5306 *** −0.5306 ***
(0.0390) (0.0390) (0.0390) (0.0390)

Number of Vehicles 0.2106 *** 0.2099 *** 0.2107 *** 0.2109 ***
(0.0102) (0.0102) (0.0102) (0.0102)

Number of Family 0.0277 *** 0.0273 *** 0.0277 *** 0.0277 ***
(0.0069) (0.0069) (0.0069) (0.0069)

Number of Adults 0.0457 *** 0.0462 *** 0.0458 *** 0.0457 ***
(0.0123) (0.0123) (0.0123) (0.0123)

Adjusted-R2 0.489 0.488 0.489 0.489

All specifications include fixed effects for educations, vehicle age fixed effects, and the interactions fixed effects
between years and nine Census Bureau-designated divisions. Standard errors are reported in parentheses and
clustered by household, and * denotes significance at the 10%, ** at the 5%, and *** at the 1%, respectively.

Figure 1 plots the estimates of temperature bins in the specification. Even though it shows the
U-shaped curve, the coefficients below ‘40◦–50◦F’ are not statistically significant. On the other hand,
‘60◦–70◦F’ to ‘70◦–80◦F’ have significantly positive responses. However, the hottest interval, ‘Days
> 90◦F’ does not have a statistically significant effect on fuel consumption because there are small
observations and deviations for the temperature bin. Based on the results of (3), we estimate the same
specifications, but drop below ‘40◦–50◦F’ intervals. Therefore, the coefficients in (4) imply the relative
response to ‘Days < 50◦F’. Unlike the result of (3), the estimates in (4) have significant responses even
though the magnitudes are similar.

Figure 2 displays the coefficients for temperature responses. Similar to the coefficient for ‘Days
> 90◦F’ in (3), the estimate for the hottest interval in (4) has large confidence levels. Also, we estimate
two types of disaggregated samples by region and income level.
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Figure 1. Estimates of Impact of Weather on Fuel Consumption: Model 3.

Figure 2. Estimates of Impact of Weather on Fuel Consumption: Model 4.

Table 4 presents the regional specific estimates. The magnitudes and statistical significance vary
with census regions. The coefficients for ‘Days 60 ◦–70 ◦F’ range from 0.0024 to 0.0058, but the estimate
for Northeast is not statistically significant. Overall, only the South region has statistical precision as
much as the whole sample, but other regions do not.

Table 5 reports the estimates by income groups. We divide the households into three groups,
lower, middle, and upper class within each year. As regional specific estimates, the coefficients vary
with income level. Interestingly, the estimates for the high-income group are statically significant,
but not for lower- and middle-income groups. The results imply that households with high income are
more responsive to weather variations because they frequently use cooling equipment such as air
conditioners while poor households occasionally do not use or buy it.
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Table 4. Estimation Results: Regional Specific Estimates.

Model Northeast Midwest South West

Days 50 ◦–60 ◦F 0.0027 0.0040 * 0.0013 0.0007
(0.0023) (0.0021) (0.0021) (0.0017)

Days 60 ◦–70 ◦F 0.0040 0.0042 ** 0.0024 ** 0.0058 ***
(0.0025) (0.0021) (0.0012) (0.0018)

Days 70 ◦–80 ◦F −0.0006 0.0042 * 0.0027 ** 0.0005
(0.0028) (0.0021) (0.0012) (0.0021)

Days 80 ◦–90 ◦F 0.0117 0.0015 0.0035 ** 0.0021
(0.0087) (0.0046) (0.0014) (0.0032)

Days > 90 ◦F 0.0461 0.0017 −0.0018 0.0084
(0.1083) (0.0114) (0.0204) (0.0063)

All specifications include fixed effects for educations, vehicle age fixed effects, and the interactions fixed effects
between years and nine Census Bureau-designated divisions. Standard errors are reported in parentheses and
clustered by household, and * denotes significance at the 10%, ** at the 5%, and *** at the 1%, respectively.

Table 5. Estimation Results: Income-group Specific Estimates.

Model Lower Middle Upper

Days 50 ◦–60 ◦F 0.0041 * −0.0003 0.0027 *
(0.0023) (0.0022) (0.0015)

Days 60 ◦–70 ◦F 0.0028 0.0042 ** 0.0043 ***
(0.0018) (0.0017) (0.0013)

Days 70 ◦–80 ◦F 0.0017 0.0008 0.0050 ***
(0.0018) (0.0017) (0.0013)

Days 80 ◦–90 ◦F 0.0041 * 0.0031 0.0040 **
(0.0022) (0.0025) (0.0019)

Days > 90 ◦F 0.0027 0.0005 0.0131
(0.0199) (0.0083) (0.0087)

All specifications include fixed effects for educations, vehicle age fixed effects, and the interactions fixed effects
between years and nine Census Bureau-designated divisions. Standard errors are reported in parentheses and
clustered by household, and * denotes significance at the 10%, ** at the 5%, and *** at the 1%, respectively.

5.2. Simulation Results

To simulate the impact of climate change on fuel consumption, we build weather prediction
data from two General Circulation Models (GCM), CCSM4 and GFDL-CM3. As implemented in
the literature, we divide four different periods, 2020–2039, 2040–2059, 2060–2079, and 2080–2099.
In addition, this study simulates based on two different climate change scenarios adopted in the IPCC
Fifth Assessment Report (IPCC AR5), RCP 4.5 (stabilization without overshoot) and RCP 8.5 (rising).
This study uses the simple equation used in [17] to measure the fuel consumption change by each
climate change scenario

(Et+h − Et)

Et
× 100 =

(exp(∑j θjTMEANt+h,j)− exp(∑j θjTMEANtj))

exp(∑j θjTMEANtj)
× 100 (3)

where Et and Et+h are the energy consumption for period t and t + h, TMEANtj and TMEANt+h,j are
the number of the days belonging to temperature bin j for period t and t + h. Equation (3) implies that
the change in fuel consumption comes only from climate change without any other effects.

Table 6 presents the results based on Model 3 and Model 4 for each scenario, the GCM model,
and period. The impact of climate change ranges from 0.56% (2020–2039, RCP 4.5 from CCSM4)
to 8.58% (2080–2099, RCP 8.5 from GFDL-CM3). In comparison, the impact on residential energy
consumption is up to 55% in [17] and 11% in [4]. It implies that the magnitude of climate change impact
on passenger vehicle fuel consumption is relatively small. However, as we know from estimation
results, fuel consumption in passenger vehicles is affected only in hot weather, while residential
electricity has a positive impact from both hot and cold temperatures. In summer, under RCP 8.5
scenario, the climate change increase in fuel consumption goes up to around 20%.



Energies 2019, 12, 4460 12 of 15

Table 6. Simulation of Climate Change Impacts.

2020–2039 2040–2059 2060–2079 2080–2099

Model Scenario CCSM4 GFDL-CM3 CCSM4 GFDL-CM3 CCSM4 GFDL-CM3 CCSM4 GFDL-CM3

Model 3

RCP 4.5 Mean 0.56 0.78 0.78 1.14 0.93 1.50 0.94 1.63
Min. −1.52 −1.27 −1.04 −1.21 −1.63 −0.63 −1.11 −0.58
Max. 2.59 4.57 3.79 4.81 4.07 5.91 4.50 6.49

RCP 8.5 Mean 0.65 0.73 1.04 1.33 1.58 2.52 2.22 3.82
Min. −1.05 −0.92 −1.45 −0.62 −0.62 −0.42 −0.32 −0.24
Max. 3.20 4.30 4.92 5.44 5.71 8.11 6.91 8.56

Model 4

RCP 4.5 Mean 0.67 0.91 0.94 1.29 1.06 1.65 1.07 1.78
Min. −0.87 −1.01 −0.81 −0.85 −0.73 −0.75 −0.68 −0.81
Max. 2.60 4.58 3.79 4.81 4.06 5.96 4.49 6.48

RCP 8.5 Mean 0.74 0.86 1.15 1.48 1.72 2.67 2.35 3.95
Min. −0.88 −0.92 −0.87 −0.85 −0.59 −0.49 −0.50 −0.47
Max. 3.20 4.31 4.91 5.43 5.69 8.13 6.87 8.58

Figures 3 and 4 show regional variations in the impact of climate change. Under the RCP 4.5
scenario, the impact is below 2% across the continental United States, even at the end of the century.
However, most counties in the South region are expected to see greater than a 5% increase under
RCP 8.5 scenario. In addition, most counties will have over a 3% increase in fuel consumption
caused by climate change. It implies that the impact of climate change on gasoline consumption is
heterogeneous locally.

(a) 2020–2039 (b) 2040–2059

(c) 2060–2079 (d) 2080–2099

Note: The results come from Model 4 with CCSM4 GCM climate prediction data.

Figure 3. Climate Change Simulation Results: RCP 4.5.

(a) 2020–2039 (b) 2040–2059

(c) 2060–2079 (d) 2080–2099

Note: The results come from Model 4 with CCSM4 GCM climate prediction data.

Figure 4. Climate Change Simulation Results: RCP 8.5.
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6. Conclusions and Policy Implications

A general contribution of the paper is to expand the existing evidence on the impact of climate
change on energy consumption into the transportation sector, in particular, passenger vehicles.
This study uses household-level panel data from the Panel Study of Income Dynamics (PSID) from
1999 to 2011. With panel household data, we estimate the fixed-effect model to solve omitted variable
bias which is one of the main concerns in cross-section and time-series data. We investigate the
relationship between temperature and fuel consumption with several different functional forms for
temperature. In addition, with climate prediction data from GCMs, we simulate the impact of climate
change on fuel energy consumption. The results have three main implications for the impact of climate
change. First, hot days lead to higher fuel consumption, while cold days do not have a significant
impact. In the literature on empirical evidence of the relationship between temperature and residential
energy consumption, cold weather significantly increases energy consumption as well. Second, climate
change increases fuel consumption by up to around 4% under “business-as-usual” (RCP 8.5) scenario.
Even though the magnitude of the impact is less than in the residential energy consumption, the overall
impact on greenhouse gas emission would be large because the transportation sector accounted for over
25% of greenhouse gas emissions in 2014, which is much larger than the residential sector. In addition,
as mentioned above, fuel consumption in passenger vehicles is affected only by hot days. Therefore,
the annual increase is relatively small while there is a larger effect in the summer season. Third, climate
change has a heterogeneous impact across the continental United States. In particular, the impact in
the South is bigger while the other regions are relatively small. However, our results cannot speak to
all other regions or countries because the United States is the most car-dependent country in the world
(https://stats.oecd.org/Index.aspx?DataSetCode=ITF{_}PASSENGER{_}TRANSPORT). It implies that
the driver’s behavior in response to temperature changes can vary significantly. Moreover, since the
purpose of this study is to consider only the net effects of climate change on gasoline consumption,
we do not reflect technological improvements such as solar and biomass. It implies that the prediction
results of this study are likely to be exaggerated.
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through Climate Change R&D program, funded by Korea Ministry of Environment (MOE) (2018001310001).
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Abbreviations

GCM General Circulation Model
RCP Representative Concentration Pathway
CDD Cooling Degree Days
PRISM Parameter-Elevation Regressions on Independent Slopes Model
NEX-GDDP NASA Earth Exchange Global Daily Downscaled Projections
CCSM5 Community Climate System Model5
GFDL-CM3 Geophysical Fluid Dynamics Laboratory Coupled Model3
CMIP5 Coupled Model Intercomparison Project Phase 5
CAFE Corporate Average Fuel Economy

Appendix A

Sources of Data

• The Panel Study of Income Dynamic: http://simba.isr.umich.edu/data/data.aspx
• County-Level Gasoline Prices—ACCRA: https://www.coli.org
• EIA State-Level Gasoline Prices: http://www.eia.gov/petroleum
• EPA fuel economy: https://www.fueleconomy.gov
• NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP): https://cds.nccs.nasa.

gov/nex-gddp/
• PRISM: http://www.prism.oregonstate.edu

https://stats.oecd.org/Index.aspx?DataSetCode=ITF{_}PASSENGER{_}TRANSPORT
http://simba.isr.umich.edu/data/data.aspx
https://www.coli.org
http://www.eia.gov/petroleum
https://www.fueleconomy.gov
https://cds.nccs.nasa.gov/nex-gddp/
https://cds.nccs.nasa.gov/nex-gddp/
http://www.prism.oregonstate.edu
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Appendix B

Table A1. Estimation Results (Random-Effect Models).

Model (1) (2) (3) (4)

TAvg 0.0045 ***
(0.0003)

CDD 0.0003 ***
(0.0000)

Days < 10 ◦F −0.0017 -
(0.0030) -

Days 10 ◦–20 ◦F 0.0009 -
(0.0024) -

Days 20 ◦–30 ◦F −0.0018 -
(0.0016) -

Days 30 ◦–40 ◦F −0.0008 -
(0.0014) -

Days 40 ◦–50 ◦F - -
- -

Days 50 ◦–60 ◦F 0.0034 *** 0.0043 ***
(0.0011) (0.0007)

Days 60 ◦–70 ◦F 0.0050 *** 0.0055 ***
(0.0008) (0.0006)

Days 70 ◦–80 ◦F 0.0049 *** 0.0055 ***
(0.0008) (0.0005)

Days 80 ◦–90 ◦F 0.0075 *** 0.0080 ***
(0.0009) (0.0007)

Days > 90 ◦F 0.0114 *** 0.0119 ***
(0.0038) (0.0038)

Precipitation/100 −0.3341 ** −0.2534 * −0.2540 * −0.2339
(0.1436) (0.1436) (0.1463) (0.1434)

ln(GasPricet) −0.6090 *** −0.5066 *** −0.6030 *** −0.5998 ***
(0.0375) (0.0367) (0.0378) (0.0375)

ln(Income) 0.1013 *** 0.1015 *** 0.1014 *** 0.1014 ***
(0.0058) (0.0058) (0.0058) (0.0058)

ln(MPG) −0.6183 *** −0.6135 *** −0.6186 *** −0.6186 ***
(0.0248) (0.0249) (0.0248) (0.0248)

Number of Vehicles 0.2585 *** 0.2554 *** 0.2587 *** 0.2587 ***
(0.0068) (0.0068) (0.0068) (0.0068)

Number of Family 0.0661 *** 0.0673 *** 0.0659 *** 0.0659 ***
(0.0037) (0.0037) (0.0037) (0.0037)

Number of Adults 0.0135 * 0.0135 * 0.0136 * 0.0136 *
(0.0079) (0.0079) (0.0079) (0.0079)

R2 0.245 0.240 0.246 0.246

All specifications include fixed effects for educations, vehicle age fixed effects, and the interactions fixed effects
between years and nine Census Bureau-designated divisions. Standard errors are reported in parentheses and
clustered by household, and * denotes significance at the 10%, ** at the 5%, and *** at the 1%, respectively.
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