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Abstract: The use of water-based fracturing fluids during fracturing treatment can be a problem in
water-sensitive formations due to the permeability damage hazard caused by clay minerals swelling.
The article includes laboratory tests, analyses and simulations for nitrogen foamed fracturing fluids.
The rheology and filtration coefficients of foamed fracturing fluids were examined and compared to
the properties of conventional water-based fracturing fluid. Laboratory results provided the input for
numerical simulation of the fractures geometry for water-based fracturing fluids and 50% N2 foamed
fluids, with addition of natural, fast hydrating guar gum. The results show that the foamed fluids
were able to create shorter and thinner fractures compared to the fractures induced by the non-foamed
fluid. The simulation proved that the concentration of proppant in the fracture and its conductivity
are similar or slightly higher when using the foamed fluid. The foamed fluids, when injected to the
reservoir, provide additional energy that allows for more effective flowback, and maintain the proper
fracture geometry and proppant placing. The results of laboratory work in combination with the 3D
simulation showed that the foamed fluids have suitable viscosity which allows opening the fracture,
and transport the proppant into the fracture, providing successful fracturing operation. The analysis
of laboratory data and the performed computer simulations indicated that fracturing fluids foamed by
nitrogen are a good alternative to non-foamed fluids. The N2-foamed fluids exhibit good rheological
parameters and proppant-carrying capacity. Simulated fracture of water-based fracturing fluid is
slightly longer and higher compared to foamed fluid. At the same time, when using a fluid with a
gas additive, the water content in fracturing fluid is reduced which means the minimization of the
negative results of the clay minerals swelling.

Keywords: hydraulic fracturing; energized frac fluids; reservoir stimulation; tight gas; fracturing
fluids rheology

1. Introduction

Considering the continuing depletion of energy resources in the world [1,2], the extraction of
natural gas has become a priority and it is believed to be a more ecological solution than the extraction
of high-emission solid fossils. Hydraulic fracturing is the most efficient method for stimulating
hydrocarbon deposits [3] and has been used for many years to produce gas from deep and poorly
permeable geological formations. Multistage fracturing of horizontal wells significantly improves the
production performance of low and ultralow permeability gas reservoirs. One of the fundamental
components of hydraulic fracturing treatment is fracturing fluids that ensure transport of proppant into
the fractures. Fracturing fluids based on polymers such as guar and guar derivatives have been widely
used for fracturing treatments, but polymer based fluids could cause serious formation damages and
may cause numerous environmental problems [4–6], which is why alternative solutions are tested,
among which the use of foamed fluid is a relatively new but effective technique [7]. Foamed fluid is
generated by mixing the gaseous phase with the liquid phase, in the presence of a proper surface-active
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agent. The primary parameter of such fluid, so-called foam quality, depends on the percentage of gas
in the fracturing fluid [8,9]. The quality of fluid is determined by the following formula (Equation (1)):

Q = (Vg) / (Vg + Vl) · 100 (1)

where Q = foam quality, Vg = gas volume, Vl = volume of liquid in the foam.
Foam and energized fluids are composed of one compressible component such as carbon dioxide or

nitrogen that are considered to overcome the formation damage and clean-up efficiency of conventional
fracturing fluids especially in tight unconventional formations. The properties of foam injected into a
deposit, including its rheology and viscosity, are important for the success of the fracturing process.
The viscosity of foamed fluid should be high enough at the beginning to provide good proppant
transport, and low enough at the end of fracturing treatment to get good clean up of fracture and
formation. Better transport properties for the proppant, lower consumption of water and chemicals, a
faster and easier flowback and potentially a lower environmental impact—these are the advantages
of fracturing with foamed fluids [10]. On the other hand, there is still lack of knowledge and an
insufficient amount of experimental research related to the use of foams. Furthermore, high costs and
potential harm to the environment caused by surface-active agents constitute limitations in the use of
this technology, while technical requirements for foam generation process (equipment, separate storage
facilities of liquid, gas, surfactants, and proppants) are one of the main drawbacks of the foam-based
fluid fracturing [11].

The search for new technologies stimulating extraction from unconventional deposits is related to
the issue of reducing water consumption [12–14], as well as the aspect of sensibility of clay minerals to
contact with water [15] and extending the productive lifetime of each well [14]. The elimination or
reduction of the water amount for the fracturing fluid can be a significant advantage in the dissemination
of alternative technologies.

The process of hydraulic fracturing of unconventional deposits, especially those which are
characterized by low reservoir pressures, and sensitive to contact with water, is performed very
frequently with the use of foams or energized fluids [16,17]. Compressed gas which is present in
the foam (e.g., nitrogen), expand during the clean-up of fracturing fluid, facilitating the removal of
fluid from the fracture. Foams accelerate the flowback from a propped fracture and this is why they
are suitable for use in deposits with low reservoir pressures [18]. In the case of water-based fluids,
their foaming causes a considerable decrease in the amount of liquid which is in contact with the
reservoir formation [19], since such a fluid can contain up to 95% by volume of gas. Harris at al.
(1996) conducted research for 95% nitrogen content foam, trying to use different combinations of
additives to produced stable foams at lower quality [20]. The selection of the foam quality, liquid
phase and gas types depends on economic aspects and reservoir conditions (rock permeability and
porosity, water availability, reservoir temperature, pressure, clay content, etc.). This is why foams are
also recommended in the case of deposits particularly sensitive to contact with water due to water
absorption into the clay minerals structure. Their use allows a significant reduction of water necessary
for fracturing operations [21,22]. Due to this, there is a considerable decrease in the costs of its purchase,
transport and preparation, including clean up, and the costs of chemical additives, as well as the costs
of storage and subsequent post-treatment fluids purification.

Currently, on the market there are several available commercial simulators used by reservoir
engineers for designing and analyzing hydraulic fracturing operations [23–27]. Based on the collected
reservoir data as well as fracturing fluids and proppant data, precise and advanced design of
hydraulic fracturing operations is possible [28], including the use of foamed fluids. According to
McAndrew et al. (2014), fracture length, height and conductivity are mostly dependent on the fracturing
fluid type. Authors simulated the fracture conductivity using slick water, 75% quality CO2 foams, and
75% quality N2 foams. Although slick water provides a longer fracture compared to 70% quality N2

foams, it does not deliver proppant in the whole fracture length and height. It has been also shown
that for fractures created with foam, the fracture length is smaller, but the proppants are delivered to a
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larger area of the fracture. CO2 and N2 foams provide very similar proppant placement [29]. Foam as
fracturing fluid performs better in terms of proppant transportation with higher corresponding fracture
conductivity than water based fracturing fluids [30]. Fei Y. et al. showed that the foam quality
could contribute to a higher fracture pressure. This is because higher viscosity of foam improved
leakoff control, with greater proppant carrying capacity comparing with slickwater to increase fracture
conductivity. For 3D hydraulic fracture, simulation in a vertical well was developed and validated
with postfrac production data and sensitivity analysis was performed using a selection of different
fracturing fluid treatments. It was found that the use of foam results in a more rapid clean-up of
the fracture itself and inside the wellbore, which is expected to provide higher productivity. Gu et al.
studied foam fracturing using polymer free foam considering ultra-lightweight proppants [31,32].
They also developed empirical correlations through the modification of the power law model, which
were then applied in a fracturing and reservoir model using a commercial simulator CMG IMEX.
They used ultra-lightweight proppants to predict the formation productivity with foams. Foam-based
hydraulic fracturing fluid utilized less water compared to that of slickwater fluid.

For this paper a commercial fracture simulator (Fracpro) was used to simulate fluid design and
fracture properties, and it allows users to import a type of fracture growth behavior that may be
unique to a certain formation. The 3D shear-decoupled model (version 10.3.) predicts longer and
more confined hydraulic fractures caused by the introduction of a composite layering effect (CLE).
This model is used to simulate fracture growth behavior for this research because layered tight gas
sands have been shown to exhibit this behavior [33].

2. Materials and Methods

2.1. Sample Preparation

Foamed fracturing fluid was created based on tap water with the addition of N2. At first, the
following components were added to water with a temperature of 23 ◦C: an anionic foaming agent
P-1 (4 mL/L), a microemulsion M-1 (2mL/L), a clay-swelling inhibitor C-1 (2mL/L), a scale inhibitor
S-1 (1mL/L), followed by polymer W (natural, fast hydrating guar gum for oil field applications) in
an amount of 3.6 g/L. Additives to fracturing fluids were selected based on previous works, which
allowed the assessment of the best additives for the foamed fluids [34,35].

The samples of rock material representing Rotliegend sandstone from the Poznan Trough, Poland
(a tight-type formation) were used for tests. The analyzed cores represent aeolian sandstones originating
from a deposit situated in the top part of upper Rotliegend sediments belonging to a Permian–Mesozoic
structural unit. Numerous natural fractures occur within Rotliegend rocks. The medium which
saturates the sandstones is a nitrogen-rich natural gas with a methane content of approximately 75–80
vol.%, lacking gasoline, with a high carbon dioxide content and with no hydrogen sulphide.

The preparation of samples involved the cutting of cylindrical core plugs, 3.8 cm in diameter
and approximately 2.5 cm high. Core plugs were dried at a temperature of 105 ◦C for 24 hours.
After drying and cooling the cores, the gas permeability coefficient was determined for each of them
using a DGP-100 apparatus, (EPS, UK), along with the effective porosity coefficient measured by means
of an HGP-100 (EPS, UK) helium porosimeter. Measurements of the fracturing fluids rheological
parameters were made using a pipe rheometer with a foam generator, and measurements of leakoff

coefficients were made by means of combining a pipe rheometer with a leak-off chamber and an HPLC
pump (Sykam, GE).

2.2. Rheology

A fracturing fluid (prepared according to the description in Section 2.1) was introduced into
the pipes of rheometer designed specifically to measure the rheological properties of foamed fluids
under extended pressure and temperature conditions, and the fluid was stirred at a rate of 300 s−1

in the measurement system [7,36]. At the same time, the temperature and pressure were stabilized
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(6.89 MPa, T = 23 ◦C or T = 60 ◦C). Subsequently, in the case of measuring foamed fluids, N2 was
slowly injected into the measurement system, continuously stirring the fluid in the system with a shear
rate of 350 s−1. Simultaneously, the fluid followed by partially foamed fluid was collected from the
system, increasing the gas content in the foam. This process was performed until reaching 50% foam
quality, which was controlled by a densimeter. Once the foam quality stabilized, measurements of the
rheological properties were started in accordance with the prepared test plan. The test lasts 27 minutes,
at a pressure of 1000 psi, maintaining a shear rate of 100 s−1. To measure the rheological properties
during measurement loops (at minute 9, 18, and 27), the shear rates were assumed as follows: 40,
100, 200, 300, 200, 100, 40 s−1. During a measurement loop, the shear rate was kept at each of the
aforementioned levels for 30 s to obtain a stable result. Between measurements, the foam was stirred at
a rate of 100 s−1 for approximately 5 min.

2.3. Filtration Measurements

Filtration tests were performed under static conditions according to a modified measurement
procedure originating from quality standard API RP39 [7,37], involving the tests of fracturing fluids
and examinations of the leakoff coefficient. The core intended for tests was seated in a measurement
chamber using high-temperature silicone. Then, the remaining elements of the measurement chamber
were assembled and it was left for approximately 24 h. Next, the chamber was thermostatted to a
temperature of 60 ◦C and measurement commenced. The core was first saturated with a 2% KCl
solution with constant rate using a constatiometric pump. The chamber was then filled with fracturing
fluids (with non-foamed fluid or a fluid with a 50% N2 content) and a pressure of 6.89 MPa (1000 psi)
was applied. After opening the valve at the bottom of the chamber, the measurement was initiated by
measuring the value of filtration after 1, 4, 9, 16, 25, 36, 49 min. Taking into account data on the amount
of filtrate as a function of time, the relationship between the amount of filtrate (cm3) and the root of
time (min

1
2 ) was plotted and leakoff coefficients were calculated: Cw and Spurt Loss (Figure 1, Table 1).
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Table 1. A comparison of leakoff coefficients Cw and Spurt Loss of Rotliegend cores for the tested
fracturing fluids.

Non-Foamed Fluid Fluid 50% N2

Cw (m/min1/2) Spurt (m3/m2) Cw (m/min1/2) Spurt (m3/m2)
5.373·10−4 3.473·10−4 4.057·10−4 9.904·10−4



Energies 2019, 12, 4465 5 of 17

2.4. Simulation of Fracturing Treatment and Fracture Propagation

The obtained laboratory results: measurements of average cores permeability (0.14–0.16 mD),
porosity (9–10%), parameters of filtration (Table 1) and viscosity coefficients (Tables 2 and 3) enabled
the performance of computer simulations of hydraulic fracturing process in a vertical borehole using a
3D Fracpro computer simulator (Tables 4 and 5). For this purpose, a number of data were assumed for
performing the simulations of hydraulic fracturing process, such as, e.g.: lithostratigraphy, Young’s
modulus, Poisson’s ratio and stress gradient. Table 6 presents the data used for the construction of a
geomechanical model, assuming the thickness of the productive horizon of approximately 25 m, with
an insert of anhydrite.

Table 2. Rheological parameters of non-foamed fluids and fluids energized with N2, foam quality of
50% at 23 ◦C.

Fluid Type Time
(min)

n’ (-) K’
(Pa·sn’)

Dynamic Viscosity at a Given
Shear Rate (mPa·s)

40 s−1 100 s−1 170 s−1

Non-foamed
9 0.6000 0.2154 49.2 34.1 27.6
18 0.6006 0.2172 49.8 34.5 27.9
27 0.5982 0.2224 50.5 34.9 28.2

50% N2

9 0.4043 1.4727 163.6 94.8 69.1
18 0.4038 1.4840 164.5 95.2 69.4
27 0.3964 1.5414 166.2 95.6 69.4

Table 3. Rheological parameters of non-foamed fluids and energized with N2 foam quality of 50% at 60
◦C.

Fluid Type Time
(min)

n’ (-) K’
(Pa·sn’)

Dynamic Viscosity at a Given
Shear Rate (mPa·s)

40 s−1 100 s−1 170 s−1

Non-foamed
9 0.7674 0.0436 18.5 14.9 13.2
18 0.7496 0.0475 18.9 15.0 13.1
27 0.7620 0.0445 18.5 14.9 13.1

50% N2

9 0.5801 0.4111 87.3 59.4 47.6
18 0.5630 0.4618 92.1 61.7 48.9
27 0.5652 0.4613 92.8 62.3 49.4
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Table 4. Designed treatment schedule for non-foamed fluid.

Stage No. Treatment
Stage Type

Elapsed Time
(min) Fluid Type

Volume of
Liquid without
Proppant (m3)

Proppant
Concentration

(g/L)

Proppant per
Stage (kg)

Slurry Rate
(m3/min) Proppant Type

- Wellbore Fluid 2% KCL 11.26 - - -
1 Main frac acid 1 15%HCl 5.00 0 0 4.0 -
2 Main frac flush 4 Non-foamed 12.00 0 0 4.0 -
3 Main frac pad 14 Non-foamed 40.00 0 0 4.0 -
4 Prop slug 19 Non-foamed 20.00 120 2400 4.0 100 mesh
5 Main frac pad 29 Non-foamed 40.00 0 0 4.0 -
6 Prop slug 34 Non-foamed 20.00 120 2400 4.0 100 mesh
7 Main frac pad 44 Non-foamed 40.00 0 0 4.0 -
8 Main frac slurry 49 Non-foamed 20.00 120 2400 4.0 30/50
9 Main frac pad 59 Non-foamed 40.00 0 0 4.0 -

10 Main frac slurry 65 Non-foamed 20.00 150 3000 4.0 30/50
11 Main frac pad 75 Non-foamed 40.00 0 0 4.0 -
12 Main frac slurry 80 Non-foamed 20.00 150 3000 4.0 30/50
13 Main frac pad 90 Non-foamed 40.00 0 0 4.0 -
14 Main frac slurry 95 Non-foamed 20.00 200 4000 4.0 30/50
15 Main frac pad 105 Non-foamed 40.00 0 0 4.0 -
16 Main frac slurry 111 Non-foamed 20.00 200 4000 4.0 30/50
17 Main frac pad 121 Non-foamed 40.00 0 0 4.0 -
18 Main frac slurry 126 Non-foamed 20.00 250 5000 4.0 30/50
19 Main frac pad 136 Non-foamed 40.00 0 0 4.0 -
20 Main frac slurry 142 Non-foamed 20.00 250 5000 4.0 30/50
21 Main frac pad 152 Non-foamed 40.00 0 0 4.0 -
22 Main frac slurry 157 Non-foamed 20.00 250 5000 4.0 30/50
23 Main frac pad 167 Non-foamed 40.00 0 0 4.0 -
24 Main frac slurry 173 Non-foamed 20.00 250 5000 4.0 30/50
25 Main frac pad 183 Non-foamed 40.00 0 0 4.0 -
26 Main frac slurry 188 Non-foamed 20.00 250 5000 4.0 30/50
27 Main frac flush 191 Non-foamed 11.00 0 0 4.0 -
28 Shut-in 221 SHUT-IN 0 0 0 0.0 -
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Table 5. Design of the treatment schedule for foamed fluid.

Treatment
Stage Type

Elapsed Time
(min) Fluid Type Bottom N2

Quality (%)
Bottom Clean
Foam vol (m3)

Bottom
Proppant

Concentration
(g/L)

Proppant per
Stage (kg)

Bottom Slurry
Foam Rate
(m3/min)

Proppant Type

1 1 15% HCl 0 5.00 0 0 4.00 -
2 4 Non-foamed 0 12.00 0 0 4.00 -
3 6 Non-foamed 0 10.00 0 0 4.00 -
4 12 Non-foamed 0 20.00 120 2400 4.00 100 mesh
5 22 Non-foamed 0 40.00 0 0 4.00 -
6 27 Non-foamed 0 20.00 120 2400 4.00 100 mesh
7 37 Non-foamed 0 40.00 0 0 4.00 -
8 42 Non-foamed 0 20.00 120 2400 4.00 30/50
9 62 Non-foamed 0 40.00 0 0 2.00 -

10 73 N2 50% 50.7 40.56 74 3000 3.95 30/50
11 93 N2 50% 49.3 78.94 0 0 3.95 -
12 103 N2 50% 51.6 41.28 121 5000 3.95 30/50
13 118 N2 50% 49.3 59.20 0 0 3.95 -
14 135 N2 50% 52.3 62.90 162 10,200 3.95 30/50
15 150 N2 50% 49.3 59.20 0 0 3.95 -
16 167 N2 50% 52.4 63.01 167 10,500 3.95 30/50
17 182 N2 50% 49.3 59.20 0 0 3.95 -
18 199 N2 50% 52.4 63.01 167 10,500 3.95 30/50
19 205 Non-foamed 0 11.00 0 0 2.00 -
20 220 SHUT-IN 0 0 0 0 0 -
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Table 6. Reservoir parameters.

Layer Number Top of Zone
Measured depth (m) Lithostratigraphy Fracture Toughness

(kPa·cm1/2)
Young’s Modulus

(bar) Poisson’s Ratio Stress Gradient
(bar/m)

1 0 Overburden 21,976.9 4.14 × 105 0.250 0.190
2 2343 Salt 10,988.4 2.40 × 105 0.440 0.190
3 2463 Anhydrite 16,482.7 5.20 × 105 0.300 0.180
4 2479 Limestone 5494.2 1.00 × 105 0.300 0.180

5 * 2483 Rotliegend 10,988.4 2.00 × 105 0.245 0.170
6 2501 Anhydrite 16,482.7 5.20 × 105 0.300 0.180

7 * 2503 Rotliegend 10,988.4 2.00 × 105 0.245 0.170
8 2510 Anhydrite 16,482.7 5.20 × 105 0.300 0.180
9 2512 Sandstone 10,988.4 3.45 × 105 0.200 0.180
10 2660 Underlying rocks 21,976.9 4.14 × 105 0.250 0.190
11 3000 Underlying rocks 21,976.9 4.14 × 105 0.250 0.190

* productive horizon.
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A very important aspect of analyzing treatment data using a simulator involves the selection of
proper fracturing fluids parameters. Rheological parameters of the fluid directly affect the parameters
of treatment, flow resistances and pressures in the well and fracture, slurry efficiency and the geometry
of the generated fracture. The composition and rheological parameters of specific fluids are presented
in Tables 2 and 3. During the simulation, other technological fluids were also used, e.g. 15% HCl.
Table 7 presents a comparison between the parameters of simulated fracturing process performed by
means of a non-foamed and foamed fluid.

Table 7. Basic data on simulated hydraulic fracturing operations.

Non-Foamed Fluid Foamed Fluid

Quantity

15% HCl 5.0 m3 5.0 m3

Linear gel 3.6 g/L 743.0 m3 473.0 m3

N2 - 89,244.7 sm3

Proppant 100 mesh 4800.0 kg 4800.0 kg
Proppant 30/50 mesh 41,399.9 kg 41,600.0 kg

Average pumping rate 4 m3/min 4 m3/min
Reservoir temperature in the

perforation interval 60 ◦C

Reservoir pressure in the
perforation interval 250 bar

When performing the simulation, the following were assumed: a comparable volume of treatments
(the amount of liquid or foam and proppant) and a similar pumping plan and slurry rate.

3. Results and Discussion

3.1. The Results of Rheological Tests of Non-Foamed and Foamed Fluids

Rheological parameters are of key significance for fracturing fluids, since they largely decide
about the geometry of the created fracture and transport properties for proppant materials during
fracturing process. The rheological parameters (n’ and K’) of non-foamed and foamed fluids are
presented on Figures 2 and 3 and in Tables 2 and 3, where n’ is the dimensionless flow index and K’ is
the consistency factor.

Tables 2 and 3 present test results for foamed fracturing fluids with 50% foam quality and
non-foamed fluids. A drop in viscosity along with an increase in temperature is particularly visible for
non-foamed fluids (Tables 2 and 3). A non-foamed fluid with a quality of 50%, whose viscosity in the
ambient temperature was approximately 35 cP, with a shear rate of 100 s−1, upon heating up to 60 ◦C
dropped to a viscosity of 15 cP. For foamed solutions of polymer W-1, a considerably higher viscosity
is observed compared to non-foamed fluids. The viscosity of foamed fluids at a temperature of 23 ◦C
with a shear rate of 100 s−1 is approximately 3-fold higher, and about 4-fold higher at a temperature of
60 ◦C compared to non-foamed fluids.
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3.2. Filtration Test Results

The filtration test was performed for Rotliegend cores using a non-foamed fracturing fluids and a
fluid foamed by 50% of N2 (Figure 1, Table 1).
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The Cw coefficient is directly proportional to the speed of filtration through the generated filter
cake. On the other hand, the Spurt value approximates the volume of fluid which was filtered out
during the generation of the filter cake. Leakoff coefficients calculated based on the measurements
(Table 1) were used for simulation assumptions presented in the following part of the paper. The leakoff

coefficient was lower for a foamed fluid than for a single-phase fluid. This may have been caused by
the penetration of gas bubbles into rock pores, which impedes the escape of liquid from a fracture.
It should be mentioned that observations were performed based on relatively short filtration tests
according to the guidelines of quality standard API RP39. In this case, the generation of a filtration
cake is a key phenomenon at the initial stage of flow of a fluid through the core. This process is strictly
associated with rock permeability, since at the beginning of the fracturing process filtration depends
on the permeability of the formation. At the next stage, in the case of gelled single-phase fluids it
is controlled by the filter cake formation on the walls of the fracture, whose permeability is lower
than the permeability of the reservoir rock. This causes an increase in the slurry efficiency, because
its smaller volume penetrates from the fracture to reservoir during the treatment. This also implies a
lower invasion of liquid into the zone surrounding a hydraulically generated fracture. This enables
easier clean-up of the reservoir formation after the fracturing process.

It has been observed that the foam generated based on the gelled fluid also causes the creation
of filter cake on the fracture walls, but its thickness is smaller than in the case of single-phase fluids;
nonetheless, filtration is often lower for foam, due to the penetration of gas into the rock formation,
which decreases its phase permeability. Due to this, for foams generated using linear gel, it is possible
to minimize damage to the formation during the fracturing process.

3.3. 3D Simulation Results

Figures 4 and 5 present a simulation of the fracturing process with non-foamed and nitrogen-
foamed fluids, along with the most important parameters of the process, such as: net pressure, bottom
hole pressure, surface pressure, concentration of proppant, slurry rate and efficiency of the fracturing
fluids. The pumping schedules differ from each other, which was forced by initial assumptions of
using similar volumes of fluid and proppant in both cases of the simulated treatment. Originally, the
maximum pressure at the surface (at pumping units), in both cases of using foamed and non-foamed
fluid, amounts to 518 bar, and it equals the opening pressure of the fracture. During the treatment, it is
definitely lower in the case of non-foamed fluid and amounts to approximately 330–350 bar. In the case
of foamed fluid, at the beginning of the procedure it amounts to approximately 350 bar, upon which it
increases to approximately 500 bar in the second part of the process. During the use of a non-foamed
fluid, the slurry rate is pumped at 4 m3/min. In the case of foamed fluid, a non-foamed linear polymer
is injected until stage 9 of pumping (Table 4), while nitrogen is added from stage 10 to 18 in an amount
of 50% relative to the pumped linear gel. Figure 4 presents the pumping rate of linear gel which
amounts to approximately 2 m3/min, and N2 is introduced at the same rate. Net pressure—one of the
most important parameters during the fracturing treatment—as the difference between the bottom
dynamic pressure during treatment and the fracture closure pressure [38–40], behaves similarly in
both simulated cases. Maximum value is reached at the end of fracturing treatments and amounts to
76.1 bar for non-foamed fluid and 83.9 bar for foamed fluid, respectively. The efficiency of non-foamed
fluid (Figure 4) increases slowly during the performed fracturing, due to a gradual stabilization of the
filter cake generated on the fracture surface. Close to the end of fracturing, this value amounts to 0.49.
The efficiency of foamed fluid (Figure 5) is constant until stage 8 of pumping; then it decreases in the
pumping stage 9, which is caused by a decrease in the fluid rate (therefore, there is a decrease in the
fracture). When pumping a foamed fluid, its efficiency improves considerably, and reaches a value of
0.50 at the end of treatment.
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Figures 6 and 7 present the characteristics of fractures generated in the simulation, and a summary
as well as list of values describing the fractures are presented in Table 8. When using non-foamed
fluid, the fracture is slightly longer and higher compared to foamed fluid, while its width is smaller.
When fracturing with the foam, the proppant placement in the Rotliegend productive horizon
(Figure 6) is much more preferable in terms of the treatment performance, while high concentration of



Energies 2019, 12, 4465 13 of 17

the proppant in the case of using a non-foamed fluid is obtained only in the top part of the Rotliegend
productive horizon (Figure 7). Foamed fluid increases the viscosity of fracturing fluid and higher
fluid viscosity increases fracture width and eases the improved proppant placement and transport
of proppant into the formation. Fracture geometry details and other important treatment data are
presented in Table 8 as a stimulation treatment comparison.
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The final result of the simulation is a technical plan which describes in detail how the fracturing
treatment is to be performed. One of the essential parts of this plan is the pumping schedule, which
includes the information on: what, when, in what amount, with what capacity and with what pressure
will be pumped into the fractured reservoir (Tables 7 and 8; Figures 4 and 5). However, before a
technical plan is developed and the hydraulic fracturing treatment is performed in the borehole, it is
necessary to carry out tests intended to confirm or correct key reservoir data [41]. Nonetheless, due to
the complex nature of hydraulic fractures and very low permeability of tight reservoirs, to predict the
performance of gas production of such complicated reservoirs is very difficult. The best way to improve
these methods’ accuracy is combining them by the numerical simulations to production, because there
are areas where commercial simulators reaches unrealistic estimates unacceptable for shale/tight gas
reservoirs [42]. Jia [43] highlights the importance of production simulations which should take into
account the complex-flow behaviors in both fractures and the matrix. After performing comprehensive
sensitivity analysis, it was recognized that natural-fracture spacing was the most prominent factor
affecting shale gas reservoir performance. Simulation results of tight gas formation by foam compared
to simulating conventional treatment, in this paper, could guide to more accurate reservoir modeling
regarding tight gas production.
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Table 8. Stimulation treatment comparison.

Parameters Non-Foamed Fluid Fluid 50% N2

Fracture Length (m) 206.8 202.1
Propped Length (m) 206.8 202.1

Total Fracture Height (m) 83.0 76.6
Total Propped Height (m) 83.0 76.6
Fracture Top Depth (m) 2453.1 2459.8

Fracture Bottom Depth (m) 2536.1 2536.4
Average Fracture Width (cm) 1.2 1.5

Average Proppant Concentration (kg/m2) 1.5 1.7
Dimensionless Conductivity 2.699 2.785

Total Clean Fluid Pumped (without proppant) (m3) 750.8 750.1
Total Slurry Pumped (with proppant) (m3) 766.2 765.5

Design proppant pumped (kg) 46,200 46,400

4. Conclusions

The following conclusions were drawn based on the experimental results and the findings of
the study:

1. For the simulated treatments with foamed and non-foamed fluid, with the same amounts of
proppant and base fluid (Tables 7 and 8) the resulting values of average surface concentration of
the proppant inside a fracture and its conductivity were similar (1.5 and 1.7 kg/m2 respectively).

2. Based on laboratory tests and simulations, it can be concluded that foamed fluids exhibit good
rheological parameters and capability of opening a fracture (Figures 5 and 6; Table 8) and
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proppant-carrying capacity, which is crucial during fracturing treatment. In general: similar
geometries of the fracture and proppant concentrations are obtained for the non-foamed as well as
for 50% quality nitrogen foamed fluids. At the same time, when using a fluid with a gas additive,
the water content in fracturing fluid is reduced, up to 50%, which means the minimization of the
negative results of the clay minerals swelling.

3. When using non-foamed fluid, the fracture is slightly longer (4.7 m) and higher (6.4 m) compared
to foamed fluid, while its width is smaller (0.3 cm less). When fracturing with the foam, the
placement of the proppant in the productive horizon is much more beneficial in terms of the
fracturing treatment performance. High concentration of the proppant, in the case of using a
non-foamed fluid, is obtained only in the top part of the Rotliegend productive horizon, causing
an irregular proppant distribution in the fracture (Figures 6 and 7).

4. The analysis of laboratory data (Table 8), and the performed simulations indicated that fracturing
fluids foamed by nitrogen are a good alternative to conventional fluids (non-foamed), especially
for the low-pressure reservoirs and with high sensitivity to contact with water.
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