A Contribution to the Geological Characterization of a Potential Caprock-Reservoir System in the Sulcis Coal Basin (South-Western Sardinia)
Abstract
:1. Introduction
2. Geological Setting
3. Data and Methods
3.1. Petrographical and Petrophysical Laboratory Tests
3.2. Geodesy GNSS SAR
3.2.1. SAR-Data
3.2.2. SAR-Method
3.2.3. GNSS-Data
3.2.4. GNSS-Method
4. Results
4.1. Siliciclastic Cixerri Fm.
4.1.1. Textural and Compositional Characteristics
4.1.2. Thin Section Porosity
4.1.3. MIP Analyses.
4.1.4. Acoustic Velocity, Bulk Density, and Porosity
4.2. Carbonate Lithologies (Produttivo Auct., Miliolitico Auct., Macroforaminifera Limestones)
4.2.1. Textural and Compositional Characteristics
4.2.2. Thin Section Porosity
4.2.3. MIP Analyses
4.2.4. Acoustic Velocity, Density, and Porosity
4.2.5. Acoustic Impedances
4.3. Geodynamic Characterization of the Study Area
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- International Energy Agency. World Energy Outlook 2018; International Energy Agency: Paris, France, 2018. [Google Scholar]
- Mureddu, M.; Ferrara, F.; Pettinau, A. Highly efficient CuO/ZnO/ZrO2@SBA-15 nanocatalysts for methanol synthesis from the catalytic hydrogenation of CO2. Appl. Catal. B Environ. 2019, 258, 117941. [Google Scholar] [CrossRef]
- Van der Spek, M.; Roussanaly, S.; Rubin, E.S. Best practices and recent advances in CCS cost engineering and economic analysis. Int. J. Greenh. Gas Con. 2019, 83, 91–104. [Google Scholar] [CrossRef]
- Cau, G.; Tola, V.; Ferrara, F.; Porcu, A.; Pettinau, A. CO2–free coal–fired power generation by partial oxy–fuel and post–combustion CO2 capture: Techno–economic analysis. Fuel 2018, 214, 423–435. [Google Scholar] [CrossRef]
- Hermanson, J.; Kirste, D. Representation of Geological Heterogeneities and Their Effects on Mineral Trapping During CO2 Storage Using Numerical Modeling. Procedia Earth Planet. Sci. 2013, 7, 350–353. [Google Scholar] [CrossRef]
- Nakajima, T.; Ito, T.; Xue, Z. Numerical Simulation of the CO2 Behavior to Obtain a Detailed Site Characterization: A Case Study at Nagaoka Pilot–Scale Injection Site. Energy Procedia 2017, 114, 2819–2826. [Google Scholar] [CrossRef]
- Leung, D.Y.C.; Caramanna, G.; Maroto-Valer, M.M. An Overview of Current Status of Carbon Dioxide Capture and Storage Technologies. Renew. Sustain. Energy Rev. 2014, 39, 426–443. [Google Scholar] [CrossRef]
- Solomon, S.; Carpenter, M.; Flach, T.A. Intermediate Storage of Carbon Dioxide in Geological Formations: A Technical Perspective. Int. J. Greenh. Gas Con. 2008, 2, 502–510. [Google Scholar] [CrossRef]
- Fais, S.; Ligas, P.; Moia, F.; Pisanu, F.; Sardu, G. Characterization of CO2 Storage Reservoir—A Case Study from South Western Sardinia, Italy. In Proceedings of the 75th EAGE Conference and Exhibition Incorporating SPE EUROPEC 2013, London, UK, 13 June 2013. [Google Scholar]
- Fais, S.; Ligas, P.; Cuccuru, F.; Maggio, E.; Plaisant, A.; Pettinau, A.; Casula, G.; Bianchi, M.G. Detailed Petrophysical and Geophysical Characterization of Core Samples from the Potential Caprock–Reservoir System in the Sulcis Coal Basin (Southwestern Sardinia–Italy). Energy Procedia 2015, 76, 503–511. [Google Scholar] [CrossRef]
- Plaisant, A.; Maiu, A.; Maggio, E.; Pettinau, A. Pilot–Scale CO2 Sequestration Test Site in the Sulcis Basin (SW Sardinia): Preliminary Site Characterization and Research Program. Energy Procedia 2017, 114, 4508–4517. [Google Scholar] [CrossRef]
- Tartarello, M.C.; Bigi, S.; Colucci, F.; Civile, D.; Giustiniani, M.; Accaino, F.; Moia, F.; Plaisant, A.; Fais, S.; Maggio, E.; et al. Characterization of Fractured Rocks as Potential CO2 Storage: The Case of Sulcis Coal Basin, Italy. In Proceedings of the 14th Greenhouse Gas Control Technologies Conference, Melbourne, Australia, 21–25 October 2018; pp. 21–26. [Google Scholar]
- Murru, M.; Salvadori, A. Ricerche Stratigrafiche sul Bacino Paleogenico del Sulcis (Sardegna Sud–Occidentale). Geol. Rom. 1987, 26, 149–165. [Google Scholar]
- Barca, S.; Costamagna, L.G. New Stratigraphic and Sedimentological Investigations on the Middle Eocene–Early Miocene Continental Successions in Southwestern Sardinia (Italy): Paleogeographic and Geodynamic Implications. CR Geosci. 2010, 342, 116–125. [Google Scholar] [CrossRef]
- Barca, S.; Costamagna, L.G. Il Bacino Paleogenico del Sulcis–Iglesiente (Sardegna SW): Nuovi Dati Stratigrafico–Strutturali per un Modello Geodinamico nell’ambito dell’orogenesi Pirenaica. Boll. Soc. Geol. Ital. 2000, 119, 497–515. [Google Scholar]
- Bigi, S.; Tartarello, M.C.; Ruggiero, L.; Graziani, S.; Beaubien, S.E.; Lombardi, S. On–going and future research at the Sulcis Site in Sardinia, Italy–Characterization and experimentation at a possible future CCS pilot. Energy Procedia 2017, 114, 2742–2747. [Google Scholar] [CrossRef]
- Carbosulcis. Il Bacino Carbonifero del Sulcis: Geologia, Idrogeologia, Miniera; Montan Consulting GMBH (1990–91); Carbosulcis S.p.A., Rimin S.p.A., Carbosulcis: Cagliari, Italy, 1994; p. 143. [Google Scholar]
- Anselmetti, F.S.; Eberli, G.P. Controls on Sonic Velocity in Carbonates. Pure Appl. Geophys. 1993, 141, 287–323. [Google Scholar] [CrossRef]
- Kenter, J.A.M.; Ivanov, M. Parameters Controlling Acoustic Properties of Carbonate and Volcaniclastic Sediments at Sites 866 and 869. In Proceedings of the Ocean Drilling Program, 143 Scientific Results; Winterer, E.L., Sager, W.W., Firth, J.V., Sinton, J.M., Eds.; Texas A&M University, Ocean Drilling Program: College Station, TX, USA, 1995; Volume 143, pp. 287–303. [Google Scholar]
- Kenter, J.A.M.; Anselmetti, F.S.; Kramer, P.H.; Westphal, H.; Vandamme, M.G.M. Acoustic Properties of “Young” Carbonate Rocks, ODP Leg 166 and Boreholes Clino and Unda, Western Great Bahama Bank. J. Sediment. Res. 2002, 72, 129–137. [Google Scholar] [CrossRef]
- Kenter, J.A.M.; Braaksma, H.; Verwer, K.; van Lanen, X.M.T. Acoustic Behavior of Sedimentary Rocks: Geologic Properties versus Poisson’s Ratios. Lead. Edge 2007, 26, 436–444. [Google Scholar] [CrossRef]
- Weger, R.J.; Baechle, G.T.; Masaferro, J.L.; Eberli, G.P. Effects of Porestructure on Sonic Velocity in Carbonates. SEG Tech. Program Expand. Abstr. 2004, 23, 1774–1777. [Google Scholar] [CrossRef]
- Weger, R.J.; Eberli, G.P.; Baechle, G.T.; Massaferro, J.L.; Sun, Y.-F. Quantification of Pore Structure and Its Effect on Sonic Velocity and Permeability in Carbonates. AAPG Bull. 2009, 93, 1297–1317. [Google Scholar] [CrossRef]
- Brigaud, B.; Vincent, B.; Durlet, C.; Deconinck, J.-F.; Blanc, P.; Trouiller, A. Acoustic Properties of Ancient Shallow–Marine Carbonates: Effects of Depositional Environments and Diagenetic Processes (Middle Jurassic, Paris Basin, France). J. Sediment. Res. 2010, 80, 791–807. [Google Scholar] [CrossRef]
- Török, Á.; Vásárhelyi, B. The Influence of Fabric and Water Content on Selected Rock Mechanical Parameters of Travertine, Examples from Hungary. Eng. Geol. 2010, 115, 237–245. [Google Scholar] [CrossRef]
- Fais, S.; Cuccuru, F.; Ligas, P.; Casula, G.; Bianchi, M.G. Integrated Ultrasonic, Laser Scanning and Petrographical Characterisation of Carbonate Building Materials on an Architectural Structure of a Historic Building. Bull. Eng. Geol. Env. 2017, 76, 71–84. [Google Scholar] [CrossRef]
- Fais, S.; Casula, G.; Cuccuru, F.; Ligas, P.; Bianchi, M.G. An Innovative Methodology for the Non–Destructive Diagnosis of Architectural Elements of Ancient Historical Buildings. Sci. Rep. 2018, 8, 4334. [Google Scholar] [CrossRef] [PubMed]
- Verwer, K.; Braaksma, H.; Kenter, J.A. Acoustic Properties of Carbonates: Effects of Rock Texture and Implications for Fluid Substitution. Geophysics 2008, 73, B51–B65. [Google Scholar] [CrossRef]
- Gabriel, A.K.; Goldstein, R.M.; Zebker, H.A. Mapping Small Elevation Changes over Large Areas: Differential Radar Interferometry. J. Geophys. Res. 1989, 94, 9183. [Google Scholar] [CrossRef]
- Anzidei, M.; Baldi, P.; Coticchia, A.; Del Mese, S.; Galvani, A.; Hunstad, I.; Pesci, A.; Pierozzi, M.; Surace, L.; Zanutta, A. Utilizzo della Rete GPS IGM95 per lo Studio delle Deformazioni Cosismiche dei Terremoti Umbro Marchigiani del 26 Settembre 1997. Boll. Geod. Sci. Affin. 1998, 3, 325–335. [Google Scholar]
- Sansosti, E.; Casu, F.; Manzo, M.; Lanari, R. Space–Borne Radar Interferometry Techniques for the Generation of Deformation Time Series: An Advanced Tool for Earth’s Surface Displacement Analysis. Geophys. Res. Lett. 2010, 37, 1–9. [Google Scholar] [CrossRef]
- Bock, Y.; Wdowinski, S.; Ferretti, A.; Novali, F.; Fumagalli, A. Recent Subsidence of the Venice Lagoon from Continuous GPS and Interferometric Synthetic Aperture Radar: Research Letter. Geochem. Geophys. Geosy. 2012, 13, 1–13. [Google Scholar] [CrossRef]
- Fiaschi, S.; Tessitore, S.; Bonì, R.; Di Martire, D.; Achilli, V.; Borgstrom, S.; Ibrahim, A.; Floris, M.; Meisina, C.; Ramondini, M.; et al. From ERS–1/2 to Sentinel–1: Two Decades of Subsidence Monitored through A–DInSAR Techniques in the Ravenna Area (Italy). GISCI Remote Sens. 2017, 54, 305–328. [Google Scholar] [CrossRef]
- Fiaschi, S.; Fabris, M.; Floris, M.; Achilli, V. Estimation of Land Subsidence in Deltaic Areas through Differential SAR Interferometry: The Po River Delta Case Study (Northeast Italy). Int. J. Remote Sens. 2018, 39, 8724–8745. [Google Scholar] [CrossRef]
- Farolfi, G.; Bianchini, S.; Casagli, N. Integration of GNSS and Satellite InSAR Data: Derivation of Fine–Scale Vertical Surface Motion Maps of Po Plain, Northern Apennines, and Southern Alps, Italy. IEEE Trans. Geosci. Remote Sens. 2019, 57, 319–328. [Google Scholar] [CrossRef]
- Farolfi, G.; Piombino, A.; Catani, F. Fusion of GNSS and Satellite Radar Interferometry: Determination of 3D Fine–Scale Map of Present–Day Surface Displacements in Italy as Expressions of Geodynamic Processes. Remote Sens. 2019, 11, 394. [Google Scholar] [CrossRef]
- Lanari, R.; Mora, O.; Manunta, M.; Mallorqui, J.J.; Berardino, P.; Sansosti, E. A Small–Baseline Approach for Investigating Deformations on Full–Resolution Differential SAR Interferograms. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1377–1386. [Google Scholar] [CrossRef]
- Raspini, F.; Bianchini, S.; Ciampalini, A.; Del Soldato, M.; Solari, L.; Novali, F.; Del Conte, S.; Rucci, A.; Ferretti, A.; Casagli, N. Continuous, Semi–Automatic Monitoring of Ground Deformation Using Sentinel–1 Satellites. Sci. Rep. 2018, 8, 7253. [Google Scholar] [CrossRef] [PubMed]
- Bianchini, S.; Raspini, F.; Solari, L.; Del Soldato, M.; Ciampalini, A.; Rosi, A.; Casagli, N. From Picture to Movie: Twenty Years of Ground Deformation Recording Over Tuscany Region (Italy) With Satellite InSAR. Front. Earth Sci. 2018, 177. [Google Scholar] [CrossRef] [Green Version]
- Devoti, R.; D’Agostino, N.; Serpelloni, E.; Pietrantonio, G.; Riguzzi, F.; Avallone, A.; Cavaliere, A.; Cheloni, D.; Cecere, G.; D’Ambrosio, C.; et al. A Combined Velocity Field of the Mediterranean Region. Ann. Geophys. Italy 2017, 60, 1. [Google Scholar] [CrossRef] [Green Version]
- Balia, R.; Fais, S.; Klingelé, E.; Marson, I.; Porcu, A. Aeromagnetic Constraints on the Geostructural Interpretation of the Southern Part of the Sardinian Rift, Italy. Tectonophysics 1991, 195, 347–358. [Google Scholar] [CrossRef]
- Gattacceca, J.; Deino, A.; Rizzo, R.; Jones, D.S.; Henry, B.; Beaudoin, B.; Vadeboin, F. Miocene Rotation of Sardinia: New Paleomagnetic and Geochronological Constraints and Geodynamic Implications. Earth Planet. Sci. Lett. 2007, 258, 359–377. [Google Scholar] [CrossRef]
- Costamagna, L.G.; Barca, S. The “Germanic” Triassic of Sardinia (Italy): A Stratigraphic, Depositional and Palaeogeographic Review. Riv. Ital. Paleontol. Stratigr. 2002, 108, 67–100. [Google Scholar]
- Maxia, C. Giura e Creta nella Regione Maladroxia (Isola di S. Antioco–Sardegna Sudoccidentale); Università degli Studi di Cagliari, Istituto di Geologia e Paleontologia: Cagliari, Italy, 1963; p. 36. [Google Scholar]
- Azema, J.; Chabrier, G.; Fourcade, E.; Jaffrezo, M. Nouvelles Données Micropaléontologiques, Stratigraphiques et Paléogéographiques sur Le Portlandien et Le Néocomien de Sardaigne. Rev. Micropaléontol. 1977, 20, 125–139. [Google Scholar]
- Gandin, A.; Murru, M.; Pasci, S.; Pittau, P.; Sarria, E. Sardegna, Miliolitico, Lignitifero. In Carta Geologica d’Italia 1:50,000; Commissione Italiana di Stratigrafia della Società Geologica Italiana: Rome, Italy, 2007; Volume 7, pp. 302–313. [Google Scholar]
- Murru, M.; Ferrara, C.; Da Pelo, S.; Ibba, A. The Palaeocene–Middle Eocene Deposits of Sardinia (Italy) and Their Palaeoclimatic Significance. CR Geosci. 2003, 335, 227–238. [Google Scholar] [CrossRef]
- Salvadori, A. Contributo alla Conoscenza del Bacino “Carbonifero” del Sulcis. L’Industria Mineraria 1980, 1f, 15–19. [Google Scholar]
- Fanni, S.; Murru, M.; Salvadori, A.; Sarria, E. Nuovi Dati Strutturali Sul Bacino Del Sulcis. L’Industria Mineraria 1982, 4, 25–31. [Google Scholar]
- Carmignani, L.; Funedda, A.; Oggiano, G.; Pasci, S. Tectono–Sedimentary Evolution of Southwest Sardinia in the Paleogene: Pyrenaic or Apenninic Dynamic? Geodin. Acta 2004, 17, 275–287. [Google Scholar] [CrossRef]
- Pecorini, G.; Cherchi, A.P. Ricerche Geologiche e Biostratigrafiche sul Campidano Meridionale (Sardegna). Mem. Soc. Geol. Ital. 1969, 8, 421–451. [Google Scholar]
- Barca, S.; Palmerini, V. Contributo alla Conoscenza degli Ambienti di Sedimentazione Relativi alla “Formazione del Cixerri” (Sardegna Sud–Occidentale). Boll. Soc. Sarda Sc. Nat. 1973, 12, 13–50. [Google Scholar]
- Costamagna, L.G.; Schäfer, A. The Cixerri Fm (Middle Eocene–Early Oligocene): Analysis of a “Pyrenean” Continental Molassic System in Southern Sardinia. JMES Spec. Issue 2013, 41, 44. [Google Scholar]
- Barca, S.; Maxia, C.; Palmerini, V. Sintesi Sulle Attuali Conoscenze Relative alla Formazione del Cixerri (Sardegna Sud–Occidentale). Boll. Serv. Geol. Ital. 1973, 44, 307–318. [Google Scholar]
- Finetti, I.R.; Del Ben, A.; Fais, S.; Forlin, E.; Klingelé, E.; Lecca, L.; Pipan, M.; Prizzon, A. Crustal Tectono–Stratigraphic Setting and Geodynamics of the Corso–Sardinian Block from the New CROP Seismic Data. In CROP Project: Deep Seismic Exploration of the Central Mediterranean and Italy, Atlases in Geoscience, Volume 1, 1st ed.; Finetti, I.R., Ed.; Elsevier, B.V.: Amsterdam, The Netherlands, 2005; pp. 413–446. ISBN 9780080457604. [Google Scholar]
- Garbarino, C.; Maccioni, L. Contributo alla Conoscenza delle Vulcaniti dell’isola di S. Pietro (Sardegna Sud–Occidentale): Nota 1.: Le Commenditi. Period Min. 1968, 3, 895–983. [Google Scholar]
- Funedda, A.; Carmignani, L.; Pasci, S.; Patta, C.; Uras, V.; Conti, P.; Sale, V. Note Illustrative della Carta Geologica d’Italia alla Scala 1:50,000, Foglio 556, Assemini. In GSE “Le Attività del Gestore dei Servizi Energetici–Rapporto”; ISPRA–Servizio Geologico d’Italia: Rome, Italy, 2009; p. 192. [Google Scholar]
- Normal 22/86: Misura Della Velocita Di Propagazione Del Suono; CNR, ICR: Roma, Italy, 1986.
- ISRM. The Complete ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 1974–2006; Ulusay, R., Hodson, J.A., Eds.; Suggested Methods Prepared by the Commission on Testing Methods, International Society for Rock Mechanics; ISRM Turkish National Group: Ankara, Turkey, 2007; p. 628. [Google Scholar]
- ASTM D 4543-08. Standard Practices for Preparing Rock Core as Cylindrical Test Specimens and Verifying Conformance to Dimensional and Shape Tolerances; ASTM International: West Conshohocken, PA, USA, 2008.
- Cuccuru, F.; Fais, S.; Ligas, P. Dynamic Elastic Characterization of Carbonate Rocks Used as Building Materials in the Historical City Centre of Cagliari (Italy). Q. J. Eng. Geol. Hydrogeol. 2014, 47, 259–266. [Google Scholar] [CrossRef]
- Lønøy, A. Making Sense of Carbonate Pore Systems. AAPG Bull. 2006, 90, 1381–1405. [Google Scholar] [CrossRef]
- Folk, R.L. Practical Petrographic Classification of Limestones. AAPG Bull. 1959, 43, 1–38. [Google Scholar]
- Dunham, R.J. Classification of Carbonate Rocks According to Depositional Textures. In Classification of Carbonate Rocks—American Association of Petroleum Geologists Memoir 1; Ham, W.E., Ed.; AAPG: Tulsa, OK, USA, 1962; pp. 108–121. [Google Scholar]
- Blair, T.C.; McPherson, J.G. Grain–Size and Textural Classification of Coarse Sedimentary Particles. J. Sediment. Res. 1999, 69, 6–19. [Google Scholar] [CrossRef]
- Pettijohn, F.J.; Potter, P.E.; Siever, R. Sand and Sandstone; Springer: New York, NY, USA, 1987. [Google Scholar] [CrossRef]
- Katz, A.J.; Thompson, A.H. Quantitative Prediction of Permeability in Porous Rock. Phys. Rev. B 1986, 34, 8179–8181. [Google Scholar] [CrossRef] [PubMed]
- Katz, A.J.; Thompson, A.H. Prediction of Rock Electrical Conductivity from Mercury Injection Measurements. J. Geophys. Res. 1987, 92, 599. [Google Scholar] [CrossRef]
- Hager, J. Steam Drying of Porous Media. Ph.D. Thesis, Department of Chemical Engineering, Lund University, Lund, Sweden, 1998; p. 273. [Google Scholar]
- McCreesh, C.A.; Ehrlich, R.; Crabtree, S.J. Petrography and Reservoir Physics II: Relating Thin Section Porosity to Capillary Pressure, the Association Between Pore Types and Throat Size (1). AAPG Bull. 1991, 75, 1563–1578. [Google Scholar]
- Glover, P.W.; Zadjali, I.I.; Frew, K.A. Permeability Prediction from MICP and NMR Data Using an Electrokinetic Approach. Geophysics 2006, 71, F49–F60. [Google Scholar] [CrossRef]
- Pittman, E.D. Relationship of Porosity and Permeability to Various Parameters Derived from Mercury Injection–Capillary Pressure Curves for Sandstone. AAPG Bull. 1992, 76, 191–198. [Google Scholar] [CrossRef]
- Concu, G.; Fais, S. In time analysis of a viscous coupling agent effect in ultrasonic measurements. In Proceedings of the 3rd International Conference on Non–Destructive Testing of the Hellenic Society for NDT–NDT in Antiquity and Nowadays–Skills–Applications–Innovations, Book of Proceedings, Chania, Crete, Greece, 15–18 October 2003; Prassianakis, I.N., Ed.; The Hellenic Society of NDT (HSNT): Athens, Greece, 2003; pp. 104–108. [Google Scholar]
- ISRM. Upgraded ISRM Suggested Method for Determining Sound Velocity by Ultrasonic Pulse Transmission Technique; Ulusay, R., Ed.; The ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 2007–2014; Springer International Publishing: Cham, The Switzerland, 2014; pp. 95–99. [Google Scholar]
- De Zan, F.; Monti Guarnieri, A. TOPSAR: Terrain Observation by Progressive Scans. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2352–2360. [Google Scholar] [CrossRef]
- Yague–Martinez, N.; Prats–Iraola, P.; Rodriguez Gonzalez, F.; Brcic, R.; Shau, R.; Geudtner, D.; Eineder, M.; Bamler, R. Interferometric Processing of Sentinel–1 TOPS Data. IEEE Trans. Geosci. Remote Sens. 2016, 54, 2220–2234. [Google Scholar] [CrossRef] [Green Version]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A New Algorithm for Surface Deformation Monitoring Based on Small Baseline Differential SAR Interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef] [Green Version]
- SNAP. SNAP—Python Module of ESA’s Sentinel Application Platform. Available online: https://step.esa.int/main/toolboxes/snap/ (accessed on 26 November 2019).
- Sandwell, D.; Mellors, R.; Tong, X.; Wei, M.; Wessel, P. Open Radar Interferometry Software for Mapping Surface Deformation. Eos Trans. AGU 2011, 92, 234. [Google Scholar] [CrossRef] [Green Version]
- Sandwell, D.; Mellors, R.; Tong, X.; Wei, M.; Wessel, P. GMTSAR: An InSAR Processing System Based on Generic Mapping Tools; Scripps Institution of Oceanography: San Diego, CA, USA, 2011; Available online: http://escholarship.org/uc/item/8zq2c02m (accessed on 26 November 2019).
- Wessel, P.; Smith, W.H. New, Improved Version of Generic Mapping Tools Released. Eos Trans. AGU 1998, 79, 579. [Google Scholar] [CrossRef]
- Wessel, P.; Smith, W.H.F.; Scharroo, R.; Luis, J.; Wobbe, F. Generic Mapping Tools: Improved Version Released. Eos Trans. AGU 2013, 94, 409–410. [Google Scholar] [CrossRef] [Green Version]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45, RG2004. [Google Scholar] [CrossRef] [Green Version]
- An InSAR Processing System Based on GMT. Available online: http://topex.ucsd.edu/gmtsar/ (accessed on 26 November 2019).
- Chen, C.W.; Zebker, H.A. Network Approaches to Two-Dimensional Phase Unwrapping: Intractability and Two New Algorithms. JOSA A 2000, 17, 401–414. [Google Scholar] [CrossRef]
- Chen, C.W.; Zebker, H.A. Network Approaches to Two-Dimensional Phase Unwrapping: Intractability and Two New Algorithms: Erratum. JOSA A 2001, 18, 1192. [Google Scholar] [CrossRef]
- Chen, C.W.; Zebker, H.A. Phase Unwrapping for Large SAR Interferograms: Statistical Segmentation and Generalized Network Models. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1709–1719. [Google Scholar] [CrossRef] [Green Version]
- HxGn Smartnet. Available online: https://hxgnsmartnet.com/it–it/ (accessed on 11 July 2019).
- Topcon Positioning. Available online: http://www.netgeo.it (accessed on 11 July 2019).
- Bruyninx, C.; Legrand, J.; Fabian, A.; Pottiaux, E. GNSS metadata and data validation in the EUREF Permanent Network. GPS Solut. 2019, 23, 1–14. [Google Scholar] [CrossRef]
- Castagnetti, C.; Casula, G.; Dubbini, M.; Capra, A. Adjustment and Transformation Strategies of ItalPoS Permanent GNSS Network. Ann. Geophys. Italy 2009, 52, 1–15. [Google Scholar]
- Casula, G. Geodynamics of the Calabrian Arc Area (Italy) Inferred from a Dense GNSS Network Observations. Geod. Geodyn. 2016, 7, 76–86. [Google Scholar] [CrossRef] [Green Version]
- Casula, G.; Bianchi, M.G. Comparison of the Historic Seismicity and Strain–Rate Pattern from a Dense GPS–GNSS Network Solution in the Italian Peninsula. Geod. Geodyn. 2016, 7, 303–316. [Google Scholar] [CrossRef] [Green Version]
- Herring, T.A.; King, R.W.; Floyd, M.A.; McClusky, S.C. Global Kalman Filter VLBI and GPS Analysis Program Reference Manual Version 10.6. Dep. Earth Atmos. Planet. Sci. Mass. Inst. Technol. 2015, 16, 1–91. [Google Scholar]
- Herring, T.A.; King, R.W.; Floyd, M.A.; McClusky, S.C. GAMIT (GPS at MIT) Reference Manual Version 10.7; Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology: Cambridge, MA, USA, 2018; pp. 1–168. [Google Scholar]
- Altamimi, Z.; Rebischung, P.; Métivier, L.; Collilieux, X. ITRF2014: A New Release of the International Terrestrial Reference Frame Modeling Nonlinear Station Motions: ITRF2014. J. Geophys. Res. Solid Earth 2016, 121, 6109–6131. [Google Scholar] [CrossRef] [Green Version]
- Herring, T. MATLAB Tools for Viewing GPS Velocities and Time Series. GPS Solut. 2003, 7, 194–199. [Google Scholar] [CrossRef]
- Tucker, M.E. Sedimentary Petrology: An Introduction to the Origin of Sedimentary Rocks, 3rd ed.; Blackwell Science: Oxford, OX, UK, 2001; p. 262. ISBN 978-0-632-05735-1. [Google Scholar]
- Schmidt, V.; McDonald, D.A. The Role of Secondary Porosity in the Course of Sandstone Diagenesis. In Aspects of Diagenesis SEPM Special Publication Volume 26; Scholle, P.A., Schluge, P.R., Eds.; The Society of Economic Paleontologists and Mineralogists—A Division of the AAPG: Tulsa, OK, USA, 1979; pp. 175–207. [Google Scholar]
- Amaefule, J.O.; Altunbay, M.; Tiab, D.; Kersey, D.G.; Keelan, D.K. Enhanced Reservoir Description: Using Core and Log Data to Identify Hydraulic (Flow) Units and Predict Permeability in Uncored Intervals/Wells. In SPE Annual Technical Conference and Exhibition 3–6 October, Houston Texas USA; Society of Petroleum Engineers (SPE): Houston, TX, USA, 1993; pp. 205–220. [Google Scholar]
- Cantrell, D.L.; Hagerty, R.M. Microporosity in Arab Formation Carbonates, Saudi Arabia. GeoArabia 1999, 4, 129–154. [Google Scholar]
- Levorsen, A.I.; Berry, F.A.F. Geology of Petroleum; W.H. Freeman and Company: San Francisco, CA, USA, 1967; p. 724. [Google Scholar]
- Cannon, S. Petrophysics: A Practical Guide; John Wiley & Sons, Ltd: Chichester, UK, 2015; p. 199. ISBN 9781118746745. [Google Scholar]
- Choquette, P.W.; Pray, L.C. Geologic Nomenclature and Classification of Porosity in Sedimentary Carbonates. AAPG Bull. 1970, 54, 207–250. [Google Scholar]
- Rashid, F.; Glover, P.W.J.; Lorinczi, P.; Collier, R.; Lawrence, J. Porosity and Permeability of Tight Carbonate Reservoir Rocks in the North of Iraq. J. Petrol. Sci. Eng. 2015, 133, 147–161. [Google Scholar] [CrossRef] [Green Version]
- Tian, Z.; Song, X.; Wang, Y.; Ran, Q.; Liu, B.; Xu, Q.; Li, Y. Classification of Lacustrine Tight Limestone Considering Matrix Pores or Fractures: A Case Study of Da’anzhai Member of Jurassic Ziliujing Formation in Central Sichuan Basin, SW China. Petrol. Explor. Dev. 2017, 44, 234–246. [Google Scholar] [CrossRef]
- Anselmetti, F.S.; Eberli, G.P. Sonic Velocity in Carbonate Sediments and Rocks. In Carbonate Seismology; Palaz, I., Marfurt, K.J., Eds.; Society of Exploration Geophysicists: Tulsa, OK, USA, 1997; pp. 53–74. [Google Scholar]
- Eberli, G.P.; Baechle, G.T.; Anselmetti, F.S.; Incze, M.L. Factors Controlling Elastic Properties in Carbonate Sediments and Rocks. Lead. Edge 2003, 22, 654–660. [Google Scholar] [CrossRef]
- Soete, J.; Kleipool, L.M.; Claes, H.; Claes, S.; Hamaekers, H.; Kele, S.; Özkul, M.; Foubert, A.; Reijmer, J.J.G.; Swennen, R. Acoustic Properties in Travertines and Their Relation to Porosity and Pore Types. Mar. Petrol. Geol. 2015, 59, 320–335. [Google Scholar] [CrossRef] [Green Version]
- Vasanelli, E.; Colangiuli, D.; Calia, A.; Sileo, M.; Aiello, M.A. Ultrasonic Pulse Velocity for the Evaluation of Physical and Mechanical Properties of a Highly Porous Building Limestone. Ultrasonics 2015, 60, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Ercikdi, B.; Karaman, K.; Cihangir, F.; Yılmaz, T.; Aliyazıcıoğlu, Ş.; Kesimal, A. Core Size Effect on the Dry and Saturated Ultrasonic Pulse Velocity of Limestone Samples. Ultrasonics 2016, 72, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Anselmetti, F.S.; Eberli, G.P. Sonic Velocity in Carbonates—A Combined Product of Depositional Lithology and Diagenetic Alterations. In Surface Geology of a Prograding Carbonate Platform Margin, Great Bahama Bank: Results of the Bahamas Drilling Project; SEPM, Spec. Publ. 70; Ginsburg, R.N., Ed.; SEPM: Tulsa, OK, USA, 2001; pp. 193–216. ISBN 978-1-56576-077-6. [Google Scholar]
- Solaro, G.; Manzo, M.; Bonano, M.; Castaldo, R.; Casu, F.; De Luca, C.; De Novellis, V.; Manunta, M.; Pepe, S.; Tizzani, P. Ground Deformation Analysis through Spaceborne SAR Interferometry and Geophysical Modelling. GEAM 2017, 152, 73–80. [Google Scholar]
- Montuori, A.; Anderlini, L.; Palano, M.; Albano, M.; Pezzo, G.; Antoncecchi, I.; Chiarabba, C.; Serpelloni, E.; Stramondo, S. Application and Analysis of Geodetic Protocols for Monitoring Subsidence Phenomena along On–Shore Hydrocarbon Reservoirs. Int. J. Appl. Earth Obs. 2018, 69, 13–26. [Google Scholar] [CrossRef]
- Solari, L.; Del Soldato, M.; Bianchini, S.; Ciampalini, A.; Ezquerro, P.; Montalti, R.; Raspini, F.; Moretti, S. From ERS 1/2 to Sentinel–1: Subsidence Monitoring in Italy in the Last Two Decades. Front. Earth Sci. 2018, 6, 149. [Google Scholar] [CrossRef]
- Devoti, R.; Esposito, A.; Pietrantonio, G.; Pisani, A.R.; Riguzzi, F. Evidence of Large Scale Deformation Patterns from GPS Data in the Italian Subduction Boundary. Earth Planet. Sci. Lett. 2011, 311, 230–241. [Google Scholar] [CrossRef]
- Devoti, R.; Pietrantonio, G.; Riguzzi, F. GNSS Networks for Geodynamics in Italy. Física de la Tierra 2014, 26, 11–24. [Google Scholar] [CrossRef] [Green Version]
- Casula, G. GPS Data Processing of Five Years of More Than 300 Permanent Station Database With the Distributed Sessions Approach Using Gamit/Globk 10.5 Data Analysis Software in Italian Peninsula. In Proceedings of the 1st International Electronic Conference on Remote Sensing, Basel, Switzerland, 22 June–5 July 2015. [Google Scholar] [CrossRef]
- Bordicchia, F.; Marini, C.; Pala, A. Studio idrogeologico delle acque minerali dell’area di «Zinnigas» (Siliqua, Sardegna SW). Rend. Semin. Fac. Sci. Univ. Cagliari 2002, 72, 91–108. [Google Scholar]
- Nelson, P.H. Pore–Throat Sizes in Sandstones, Tight Sandstones, and Shales. AAPG Bull. 2009, 329–340. [Google Scholar] [CrossRef]
- Zou, C. Meaning of Unconventional Petroleum Geology. In Unconventional Petroleum Geology; Elsevier, B.V.: Amsterdam, The Netherlands, 2017; pp. 49–95. [Google Scholar]
Borehole | Sample | Core Depth (m) | d50 (μm) | Bulk Density (g/cm3) | Skeletal Density (g/cm3) | Porosity (%) | Permeability (mD) | Tortuosity |
---|---|---|---|---|---|---|---|---|
37–87 | C1 | 502.00 | 0.15 | 2.38 | 2.62 | 9.27 | 9.17 | 9.12 |
37–87 | C2 | 646.70 | 0.06 | 2.49 | 2.70 | 7.78 | 30.44 | 7.84 |
37–87 | C3 | 649.80 | 0.16 | 2.39 | 2.64 | 9.72 | 8.20 | 22.42 |
55–90 | C1 | 453.95 | 0.04 | 2.58 | 2.65 | 2.65 | 4.30 | 2.84 |
57–90 | C1 | 452.00 | 0.02 | 2.61 | 2.71 | 3.62 | <0.01 | 69.11 |
57–90 | C2 | 453.45 | 0.02 | 2.51 | 2.61 | 3.81 | 0.27 | 5.50 |
57–90 | C3 | 457.85 | 0.03 | 2.49 | 2.69 | 7.33 | <0.01 | 50.67 |
57–90 | C4 | 465.50 | 0.02 | 2.56 | 2.73 | 6.17 | 3.54 | 1.26 |
57–90 | C5 | 469.43 | 0.02 | 2.49 | 2.65 | 6.12 | 2.44 | 3.57 |
57–90 | C6 | 472.20 | 0.02 | 2.66 | 2.72 | 2.12 | 4.52 | 14.55 |
57–90 | C7 | 476.80 | 0.01 | 2.60 | 2.73 | 4.78 | 3.57 | 1.26 |
57–90 | C8 | 478.80 | 0.02 | 2.44 | 2.73 | 10.45 | <0.01 | 48.37 |
57–90 | C9 | 485.85 | 0.01 | 2.64 | 2.70 | 2.15 | 2.54 | 1.33 |
57–90 | C10 | 486.60 | 0.02 | 2.46 | 2.58 | 4.73 | 2.27 | 1.46 |
59–90 | C1 | 490.80 | 0.05 | 2.51 | 2.62 | 4.13 | 6.40 | 2.62 |
59–90 | C2 | 513.85 | 0.02 | 2.61 | 2.69 | 2.83 | 2.50 | 4.05 |
62–90 | C1 | 370.13 | 0.23 | 2.53 | 2.69 | 5.80 | 7.76 | 2.68 |
Borehole | Sample | Lithology | Core Depth (m) | Vp(Dry) (m/s) | Vp(Sat) (m/s) | Dry Bulk Density (g/cm3) | Sat Bulk Density (g/cm3) | Acoustic Impedance (106 kg/m2 s) | Porosity (%) |
---|---|---|---|---|---|---|---|---|---|
37–87 | C1 | Congl | 502.00 | 3100 | 3160 | 2.51 | 2.57 | 7.78 | 8.0 |
37–87 | C2 | Subark | 646.70 | 3490 | 3953 | 2.59 | 2.67 | 9.04 | 7.9 |
37–87 | C3 | Congl | 649.80 | 3297 | 3361 | 2.52 | 2.60 | 8.31 | 8.3 |
55–90 | C1 | Sandst | 453.95 | 5082 | 5344 | 2.72 | 2.74 | 13.82 | 2.0 |
57–90 | C1 | Siltst | 452.00 | 3968 | / | 2.62 | / | 10.40 | 3.3 |
57–90 | C2 | Wacke | 453.45 | 3836 | 3930 | 2.62 | 2.69 | 10.05 | 7.0 |
57–90 | C3 | Siltst | 457.85 | 3070 | / | 2.31 | / | 7.09 | 6.5 |
57–90 | C4 | Siltst | 465.50 | 3670 | / | 2.56 | / | 9.41 | 5.1 |
57–90 | C5 | Siltst | 469.43 | 4012 | 2640 | 2.64 | 2.71 | 10.59 | 7.2 |
57–90 | C6 | Sandst | 472.20 | 4860 | 5035 | 2.71 | 2.78 | 13.17 | 2.0 |
57–90 | C7 | Siltst | 476.80 | 4160 | 3038 | 2.66 | 2.73 | 11.07 | 4.3 |
57–90 | C8 | Siltst | 478.80 | 3320 | / | 2.41 | / | 8.00 | 8.4 |
57–90 | C9 | Sandst | 485.85 | 5034 | 4773 | 2.77 | 2.84 | 13.94 | 1.9 |
57–90 | C10 | Sandst | 486.60 | 5162 | 5289 | 2.74 | 2.81 | 14.14 | 4.2 |
59–90 | C1 | Wacke | 490.80 | 3958 | 3927 | 2.59 | 2.64 | 10.25 | 4.9 |
59–90 | C2 | Sandst | 513.85 | 4890 | 4958 | 2.68 | 2.70 | 13.11 | 2.7 |
62–90 | C1 | Sandst | 370.13 | 4958 | 5043 | 2.66 | 2.69 | 13.19 | 3.4 |
Borehole | Sample | Core Depth (m) | d50 (μm) | Bulk Density (g/cm3) | Skeletal Density (g/cm3) | Porosity (%) | Permeability (mD) | Tortuosity |
---|---|---|---|---|---|---|---|---|
6–79 | C1 | 487.55 | 0.01 | 2.67 | 2.72 | 1.60 | <0.01 | 7.04 |
6–79 | C2 | 509.40 | 0.42 | 2.16 | 2.73 | 20.77 | 0.03 | 6.77 |
6–79 | C3 | 509.70 | 0.41 | 2.10 | 2.60 | 19.44 | 111.25 | 3.84 |
6–79 | C4 | 536.80 | 0.02 | 2.62 | 2.67 | 1.67 | <0.01 | 25.22 |
6–79 | C5 | 537.10 | 0.02 | 2.63 | 2.68 | 1.97 | 1.19 | 33.17 |
36–87 | C1 | 609.25 | 0.01 | 2.61 | 2.70 | 3.24 | <0.01 | 5.26 |
36–87 | C2 | 609.55 | 0.02 | 2.53 | 2.61 | 3.18 | 15.23 | 8.55 |
36–87 | C3 | 617.25 | 0.01 | 2.60 | 2.65 | 1.90 | 10.03 | 14.93 |
55–90 | C1 | 479.20 | 0.06 | 2.58 | 2.69 | 3.88 | <0.01 | 6.43 |
55–90 | C2 | 479.50 | 0.05 | 2.56 | 2.69 | 4.83 | 23.59 | 12.69 |
55–90 | C3 | 485.40 | 0.02 | 2.55 | 2.69 | 4.58 | 2.71 | 2.33 |
55–90 | C4 | 485.90 | 0.06 | 2.45 | 2.70 | 9.08 | 1.01 | 32.88 |
55–90 | C5 | 493.80 | 0.35 | 2.44 | 2.80 | 12.95 | 0.03 | 6.48 |
55–90 | C6 | 494.10 | 0.15 | 2.61 | 2.76 | 5.53 | 209.03 | 4.04 |
55–90 | C7 | 508.80 | 0.03 | 2.55 | 2.71 | 5.80 | <0.01 | 42.41 |
55–90 | C8 | 516.10 | 0.05 | 2.46 | 2.64 | 6.89 | 1.45 | 35.35 |
55–90 | C9 | 516.40 | 0.03 | 2.57 | 2.71 | 5.05 | <0.01 | 10.46 |
57–90 | C1 | 577.50 | 0.05 | 2.57 | 2.70 | 4.75 | 1.34 | 43.97 |
57–90 | C2 | 579.34 | 0.12 | 2.57 | 2.69 | 4.55 | 72.39 | 4.33 |
59–90 | C1 | 606.65 | 0.02 | 2.45 | 2.61 | 6.08 | 2.44 | 1.44 |
59–90 | C2 | 606.95 | 0.01 | 2.49 | 2.66 | 6.51 | 4.75 | 20.87 |
59–90 | C3 | 616.30 | 0.09 | 2.64 | 2.68 | 1.59 | 2.26 | 1.43 |
59–90 | C4 | 632.55 | 0.01 | 2.70 | 2.72 | 0.96 | <0.01 | 8.78 |
59–90 | C5 | 632.85 | 0.01 | 2.62 | 2.68 | 2.20 | 4.27 | 17.48 |
59–90 | C6 | 633.50 | 0.04 | 2.65 | 2.73 | 2.90 | 2.27 | 1.28 |
59–90 | C7 | 636.50 | 0.03 | 2.63 | 2.69 | 2.52 | 2.28 | 1.41 |
59–90 | C8 | 641.60 | 0.11 | 2.50 | 2.81 | 11.02 | 7.14 | 20.63 |
62–90 | C1 | 409.90 | 0.01 | 2.23 | 2.25 | 0.94 | <0.01 | 15.19 |
62–90 | C2 | 410.20 | 0.06 | 2.34 | 2.63 | 11.13 | 2.48 | 38.14 |
62–90 | C3 | 416.60 | 0.04 | 2.60 | 2.74 | 5.34 | <0.01 | 43.87 |
62–90 | C4 | 422.00 | 0.01 | 2.66 | 2.73 | 2.58 | <0.01 | 10.27 |
62–90 | C5 | 424.40 | 0.01 | 2.88 | 2.94 | 1.80 | 2.78 | 1.32 |
62–90 | C6 | 434.40 | 0.01 | 2.65 | 2.69 | 1.91 | 1.12 | 2.32 |
62–90 | C7 | 439.00 | 0.01 | 2.65 | 2.68 | 1.21 | 2.59 | 1.29 |
Borehole | Sample | Lithology | Core Depth (m) | Vp(Dry) (m/s) | Vp(Sat) (m/s) | Dry Bulk Density (g/cm3) | Sat Bulk Density (g/cm3) | Acoustic Impedance (106 kg/m2 s) | Porosity (%) |
---|---|---|---|---|---|---|---|---|---|
6–79 | C1 | Wacke | 487.55 | 5259 | 5323 | 2.68 | 2.70 | 14.09 | 1.2 |
6–79 | C2 | Wacke | 509.40 | 4920 | 5000 | 2.62 | 2.68 | 12.89 | 7.7 |
6–79 | C3 | Wacke | 509.70 | 4908 | 5000 | 2.60 | 2.67 | 12.76 | 7.9 |
6–79 | C4 | Grainst | 536.80 | 5690 | 5800 | 2.75 | 2.77 | 15.65 | 1.4 |
6–79 | C5 | Grainst | 537.10 | 5685 | 5829 | 2.75 | 2.76 | 15.63 | 1.2 |
36–87 | C1 | Mudst | 609.25 | 4964 | 5244 | 2.64 | 2.66 | 13.10 | 2.5 |
36–87 | C2 | Mudst | 609.55 | 5067 | 5341 | 2.65 | 2.67 | 13.43 | 2.4 |
36–87 | C3 | Mudst | 617.25 | 6067 | 6258 | 2.72 | 2.73 | 16.50 | 0.9 |
55–90 | C1 | Grainst | 479.20 | 5380 | 5630 | 2.60 | 2.70 | 13.99 | 3.0 |
55–90 | C2 | Grainst | 479.50 | 5393 | 5680 | 2.60 | 2.70 | 14.02 | 3.2 |
55–90 | C3 | Mudst | 485.40 | 5734 | 5942 | 2.70 | 2.74 | 15.48 | 4.4 |
55–90 | C4 | Mudst | 485.90 | 5949 | 6149 | 2.70 | 2.74 | 16.06 | 4.3 |
55–90 | C5 | Mudst | 493.80 | 6154 | 6519 | 2.77 | 2.79 | 17.05 | 1.5 |
55–90 | C6 | Mudst | 494.10 | 6165 | 6580 | 2.76 | 2.78 | 17.02 | 1.6 |
55–90 | C7 | Mudst | 508.80 | 4665 | 4826 | 2.65 | 2.69 | 12.36 | 4.4 |
55–90 | C8 | Grainst | 516.10 | 4348 | 4641 | 2.57 | 2.61 | 11.17 | 4.3 |
55–90 | C9 | Grainst | 516.40 | 4490 | 4770 | 2.57 | 2.60 | 11.54 | 4.1 |
57–90 | C1 | Grainst | 577.50 | 5259 | 5283 | 2.65 | 2.70 | 13.94 | 5.0 |
57–90 | C2 | Grainst | 579.34 | 5676 | 5645 | 2.66 | 2.70 | 15.10 | 4.2 |
59–90 | C1 | Wacke | 606.65 | 5202 | 5223 | 2.59 | 2.61 | 13.47 | 2.0 |
59–90 | C2 | Wacke | 606.95 | 5200 | 5265 | 2.60 | 2.61 | 13.52 | 2.1 |
59–90 | C3 | Grainst | 616.30 | 6190 | 6280 | 2.71 | 2.72 | 16.77 | 0.9 |
59–90 | C4 | Grainst | 632.55 | 5810 | 5890 | 2.66 | 2.68 | 15.45 | 2.3 |
59–90 | C5 | Grainst | 632.85 | 6178 | 6186 | 2.67 | 2.69 | 16.50 | 2.2 |
59–90 | C6 | Grainst | 633.50 | 6360 | 6223 | 2.61 | 2.63 | 16.60 | 2.0 |
59–90 | C7 | Grainst | 636.50 | 5686 | 5847 | 2.71 | 2.73 | 15.41 | 1.9 |
59–90 | C8 | Mudst | 641.60 | 5158 | 5175 | 2.61 | 2.70 | 13.46 | 9.1 |
62–90 | C1 | Wacke | 409.90 | 4820 | 5170 | 2.62 | 2.77 | 12.63 | 4.4 |
62–90 | C2 | Wacke | 410.20 | 4770 | 5143 | 2.62 | 2.77 | 12.50 | 4.5 |
62–90 | C3 | Wacke | 416.60 | 5349 | 6021 | 2.67 | 2.70 | 14.28 | 3.0 |
62–90 | C4 | Grainst | 422.00 | 5466 | 5900 | 2.68 | 2.70 | 14.65 | 3.0 |
62–90 | C5 | Mudst | 424.40 | 5588 | 5793 | 2.72 | 2.73 | 15.20 | 0.4 |
62–90 | C6 | Mudst | 434.00 | 4958 | 4970 | 2.70 | 2.71 | 13.39 | 0.6 |
62–90 | C7 | Wacke | 439.00 | 5269 | 5326 | 2.75 | 2.77 | 14.49 | 2.2 |
GNSS-A-DiNSAR Vertical Velocity Comparison | |||
---|---|---|---|
Site Name | VH GNSS mm/Year | σ VH mm/Year | VH SAR mm/Year |
Sant’Antioco | 1.1 | ±0.2 | ■ ~0.5 ÷ 1.5 |
Iglesias | 1.4 | ±0.3 | ■ ~1 ÷ 2 |
Cagliari | −1.2 | ±0.2 | ■ ~−1 ÷ −2 |
Ca02 | −0.6 | ±0.3 | ■ ~0 ÷ −1 |
Ca04 | 0.6 | ±0.3 | ■ ~0 ÷ 1 |
Arbus | 1.9 | ±0.2 | ■ ~2 ÷ 3 |
Teulada | 1.2 | ±0.3 | ■ ~1 ÷ 2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fais, S.; Casula, G.; Cuccuru, F.; Ligas, P.; Bianchi, M.G.; Plaisant, A.; Pettinau, A. A Contribution to the Geological Characterization of a Potential Caprock-Reservoir System in the Sulcis Coal Basin (South-Western Sardinia). Energies 2019, 12, 4524. https://doi.org/10.3390/en12234524
Fais S, Casula G, Cuccuru F, Ligas P, Bianchi MG, Plaisant A, Pettinau A. A Contribution to the Geological Characterization of a Potential Caprock-Reservoir System in the Sulcis Coal Basin (South-Western Sardinia). Energies. 2019; 12(23):4524. https://doi.org/10.3390/en12234524
Chicago/Turabian StyleFais, Silvana, Giuseppe Casula, Francesco Cuccuru, Paola Ligas, Maria Giovanna Bianchi, Alberto Plaisant, and Alberto Pettinau. 2019. "A Contribution to the Geological Characterization of a Potential Caprock-Reservoir System in the Sulcis Coal Basin (South-Western Sardinia)" Energies 12, no. 23: 4524. https://doi.org/10.3390/en12234524
APA StyleFais, S., Casula, G., Cuccuru, F., Ligas, P., Bianchi, M. G., Plaisant, A., & Pettinau, A. (2019). A Contribution to the Geological Characterization of a Potential Caprock-Reservoir System in the Sulcis Coal Basin (South-Western Sardinia). Energies, 12(23), 4524. https://doi.org/10.3390/en12234524