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Abstract: Korea imports all of its crude oil, and is the world’s fifth largest oil importing country.
We analyze the effects of oil prices, interest rates, consumer price indexes (CPIs), and industrial
production indexes (IPIs) on the regime shift behavior of the Korean exchange rates against the
USA from January 1991 to March 2019. We use the Markov regime switching model (MRSM) to
detect the regime shift behavior of the movements of Korean exchange rates. In order to select the
optimal MRSM, we fit a total of 30 models considering four explanatory variables. The selected
model based on Akaike information criteria (AIC) and maximum log likelihood (MLL) includes the
log-differentials of oil prices, the log-differentials of CPIs compared to those of the US, and its own
auto-regressive terms. Based on the selected MRSM model, throughout all markets, we find evidence
to support the existence of two distinct regimes: a stable regime with low-volatility, and an unstable
regime with high-volatility. The regime with high-volatility includes the Asian financial crisis of 1997
and the global financial crisis of 2008–2009 in the Korean exchange rates market. In the regime with
low-volatility, the Korean exchange rates are not significantly influenced by any of the explanatory
variables, except for its own auto-regressive terms. In the regime with high-volatility, the Korean
exchange rates are significantly influenced by the CPIs and oil prices. The transition probability
from the regime with low-volatility to the regime with high-volatility is about ten times that of the
opposite case.
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1. Introduction

Oil prices have fluctuated over the last 30 years. Oil prices per barrel have risen to over $140 and
dropped to below $20. Although energy dependence on oil has declined in the past, oil is still one of
the most important sources of energy. Thus, rising oil prices have a huge impact on the economies of
countries, which is especially true in those countries that mostly export or import oil. The greater the
energy dependence on oil, the greater the impact oil has on the economy. In particular, Korea imports
all of its oil and is the one of the world’s top 10 oil importers. As a result, oil price fluctuations have a
large impact on the trade balance and also on the supply and demand of dollars in the foreign exchange
market. This seems to have further led to fluctuations in exchange rates. Thus, analyzing how oil prices
affect the exchange rates has been one of the major concerns of economists. Previous studies which
have analyzed the relationship between oil prices and exchange rates are Amano and Van Norden [1],
Amano and Van Norden [2], Chaudhuri and Daniel [3], Chen and Chen [4], Lizardo and Mollick [5],
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Basher et al. [6], Aloui et al. [7], Chen et al. [8], Volkov and Yuhn [9], Chen et al. [10], Basher et al. [11],
Yang et al. [12], and so on (see Table 1).

Most of these studies not only analyzed the direct relationship between oil prices and the exchange
rates, but also analyzed the relationships with other macroeconomic variables, using the macroeconomic
model. Most of the analyses focused on developed countries, including the US, and oil-exporting
countries, such as Brazil, Canada, Mexico, Norway, Russia, and the United Kingdom. Basher et al. [11]
and Yang et al. [12] included Korea in their analyses; however, there have been no studies that have
analyzed only Korea in-depth.

The methodologies used by most of the studies vary from the error correction model (ECM),
the vector error correction model (VECM), structural vector auto-regression (SVAR), generalized
auto-regressive conditional heteroscedasticity (GARCH), and generalized auto-regressive conditional
heteroscedasticity M (GARCH-M). Recently, methodologies such as the Markov regime switching
model (Basher et al., [11]) and wavelet coherence analyses (Yang et al., [12]) have been introduced.
The methodologies introduced so far are presented in Table 1.

Table 1. Previous studies on the dynamics of oil prices and exchange rates.

Authors Countries Periods Methods Main Results

Amano and
Van Norden [1]

Germany, Japan,
USA 1973.01–1993.06 Cointegration, granger

causality, FMOLS

Oil shocks could be the most important
factor determining real exchange rates

in the long run

Amano and
Van Norden [2] USA 1972.02–1993.01 ECM (error correction

model), Granger causality
Oil prices may have been the dominant

source of persistent real shocks

Chaudhuri and
Daniel [3] 16 OECD countries 1973.01–1996.02 ECM (error correction

model), Granger causality

US dollar real exchange rates are due to
the non-stationarity in the real price

of oil.

Chen and Chen [4] G7 countries 1972.01–2005.10 Panel cointegration,
FMOLS, DOLS, and PMG

The real oil prices may have been the
dominant source of real exchange

rate movements

Lizardo and
Mollick [5] USA 1970s–2008 VECM Oil price is significant in the

movements of the exchange rate

Basher et al. [6] Emerging
economics 1988.01–2008.12 Structural VAR A positive oil price shock leads to an

immediate drop in the exchange rate

Aloui et al. [7]
European union,

Canada, UK,
Swiss, Japan

2000–2011 copula-GARCH

Evidence of significant and symmetric
dependence for almost all the

oil-exchange rate pairs. Increases in
crude oil prices were found to coincide

with a depreciation of the dollar

Chen et al. [8] USA 1992.08–2011.12
(weekly)

GARCH,
CARR,

CARR-MIDAS

Crude oil returns are more negatively
associated with US dollar returns when
the US dollar depreciates, as compared

to when it appreciates

Volkov and
Yuhn [9]

Russia, Brazil,
Mexico, Canada,

Norway
1998.02–2012.08 GARCH-M,

VECM
Oil price is significant on exchange rates

in Russia, Brazil, and Mexico

Chen et al. [10] 16 OECD countries 1990.01–2014.12 Structural VAR
Oil price shocks can explain about
10–20% of long-term variations in

exchange rates

Basher et al. [11] 9 countries 1 Varies by each
country 2 Markov switching model

The significant exchange rate
appreciation pressures in oil exporting

economies after oil demand shock

Yang et al. [12] 10 countries 3 1999.01–2014.12 A wavelet
coherence analysis

The degree of co-movement between
the crude oil price and the exchange

rates deviates over time
1 Analysis is conducted for a group of oil exporting countries (Brazil, Canada, Mexico, Norway, Russia, and the
United Kingdom) and oil importing countries (India, Japan, South Korea). 2 For Canada, Norway, India, Japan,
and the United Kingdom, models are estimated over the period February 1976 to February 2014. For the other
countries the estimation period is: Brazil (February 1995 to February 2014), Mexico (December 1993 to February
2014), Russia (February 1998 to February 2014), and South Korea (May 1981 to February 2014). 3 Brazil, Canada,
Mexico, and Russia are treated as oil-exporting countries, and the EU, India, Japan, and South Korea are treated as
oil-importing countries.
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This study analyzes how oil prices affect the Korean exchange rates in both stable and unstable
regimes using the Markov regime switching model (MRSM), taking into account other factors
such as interest rates, economic growth, and price level. This study differs from previous studies
in several aspects. First, most studies on the relationship between oil prices and exchange rates
except Basher et al. [11] have used econometric methodologies such as ECM, VECM, SVAR, GARCH,
and GARCH-M. Often a pooled series consists of a few subgroups or regimes with different variances
corresponding to different economic situations. The impact of oil prices on the exchange rates is
expected to vary depending on regimes. Therefore, this study looks for underlying regimes using the
Markov regime switching model (MSRM), fits a separate model in each regime, and then examines
the effect of oil prices along with major macroeconomic explanatory variables on the exchange rates.
Since the regimes are expected to explain many errors, the model in each regime tends to be simple.

Second, not only oil prices but also macroeconomic factors such as price levels, income, and interest
rates are the major factors that influence the exchange rates. Except for Volkov and Yuhn [9] and
Basher et al. [11], most studies have analyzed only the direct relationship between oil prices and
exchange rates. This study analyzes the effects of oil prices on exchange rates in each regime under
the correlation with these macro-economic variables. In addition to discovering regimes, this MRSM
analysis tests the significance of oil prices and various macroeconomic variables in each regime.
Since regimes stand for different economic situations, the significance of variables also changes
depending on regimes.

Third, this study is limited to Korea. Crude oil is entirely imported in Korea and Korea was
one of the world’s top 10 oil importers. The 10 countries that imported the highest dollar value
worth of crude oil during 2018 are 1. China: US$239.2 billion (20.2% of total crude oil imports),
2. United States: $163.1 billion (13.8%), 3. India: $114.5 billion (9.7%), 4. Japan: $80.6 billion (6.8%),
5. South Korea: $80.4 billion (6.8%), 6. Netherlands: $48.8 billion (4.1%), 7. Germany: $45.1 billion
(3.8%), 8. Spain: $34.2 billion (2.9%), 9. Italy: $32.6 billion (2.8%) and 10. France: $28.5 billion (2.4%)
(http://www.worldstopexports.com/crude-oil-imports-by-country/). In 2018, Korea was the world’s
fifth largest oil importer. According to Korean Customs Service statistics, crude oil imports in 2018
were worth 80,393 million dollars. This amount of imported crude oil accounted for 15% of Korea’s
total imports in 2018. Reflecting this economic situation in Korea, this analysis provides unique results
for Korea.

Fourth, this study analyzes the effects of movement of explanatory variables on the movement of
exchange rates, while most of previous studies have analyzed the direct relationship between exchange
rates and explanatory macroeconomic variables. Throughout this paper, we use the US data as the
basis for comparison.

Therefore, we use the MRSMs, developed by Hamilton [13]. This methodology is further
developed into Markov switching auto-regressive conditional heteroscedasticity (MS-ARCH, Cai [14]),
Markov switching generalized auto-regressive conditional heteroscedasticity (MS-GARCH, Gray [15]),
and Markov switching exponential generalized auto-regressive conditional heteroscedasticity
(MS-EGARCH, Henry [16]), among others. The MSRM used in this study was also used in Kim et al. [17]
and Kim et al. [18].

We examine the regime shift behavior of exchange rates associated with oil prices, interest rates,
consumer price indices, and industrial production indices in the Korean foreign exchange market.
For this, we apply the two-regime MRSM (Hamilton, [13]) using monthly data from January 1991 to
March 2019.

The remainder of this paper is organized as follows. In Section 2, the data and the MSRM are
explained in detail. In Section 3, the model selection is performed and empirical estimation results are
presented based on the selected MRSM, and Section 4 discusses the statistical validity of our model
and assumptions. Finally, the conclusions drawn from this study are presented in Section 5.

http://www.worldstopexports.com/crude-oil-imports-by-country/
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2. Data and Methods

All monthly data, except for the oil prices, used in this paper are from the OECD (Organization
for Economic Cooperation and development) data set (OECD.stat) from January 1991 to March 2019.
The monthly Korean exchange rates are expressed as the won value needed to purchase one US dollar.
The monthly short-run interest rates measured in % are from the monthly monetary and financial
statistics data set of the OECD. The monthly consumer price indices (with the index of 2015 being 100)
are from the consumer price indices (CPIs) complete database of the OECD, and the monthly industrial
production indices (with the index of 2015 being 100) are from the production and sales data set of the
OECD. The monthly oil prices which are the CIF (Cost Insurance and Freight) oil importing prices of
Asia measured in US dollars are from KESIS (Korea Energy Statistics Information System) of the Korea
Energy Economics Institute.

The primary purpose of this study is to analyze how the movement of oil prices affects the
movement of the Korean exchange rates in each regime in terms of regime shift behavior. Our research
is based on the monetary model of exchange rates determination which has lead emergence of
the dominant exchange rates model in early 1970s and henceforward remained as an important
exchange rate paradigm (Frenkel [19], Mussa [20–22], Bilson [23]). Following the monetary model,
the exchange rates are determined by the relative supply and demand of money between two given
countries. The money demand is determined by price level, income, interest rates, and other factors
including oil prices. Meese and Rogoff [24,25] conducted the seminal work using monetary models
to forecast exchange rates. They regressed the log of exchange rates on various combinations of
relative macroeconomic variables which were typically included in the monetary model of exchange
rates determination.

Recently, Volkov and Yuhn [9] identified some relevant factors that affect the exchange rates between
the United States and the corresponding countries on the basis of the monetary model of exchange rates
determination. The fundamental factors include interest rates differentials, income (or production)
differentials, and inflation rates differentials between two countries. They excluded the money supply
variable from the exchange rates determination model to avoid any possible multicollinearity between
the money supply and the determining variables of the exchange rates. Since they use monthly data for
the analysis of exchange rates movements, and since monthly GDP figures are not available, industrial
production is used as a proxy for income.

We consider some relevant variables that affect the exchange rates between Korea and the USA
as in Volkov and Yuhn [9]. Oil prices are added to the fundamental factors including interest rates
differentials, production differentials, and inflation rates differentials between the two countries.
Here, industrial production index (IPI) and consumer price index (CPI) are set as indices representing
production and inflation, respectively.

The two-regime Markov switching model by Hamilton [1] is an adequate approach to analyze the
impact of these factors (oil prices, interest rates differentials, CPIs differentials, and IPIs differentials)
on the movements of Korean exchange rates. In terms of methodology, the auto-regressive terms are
considered as in the Hamilton models [1]. The MRSM following Hamilton [1] assumes that there are
two regimes with different volatilities, and that the processes switch between the two regimes according
to the transition probabilities of the Markov process. Regime 1 consists of low-volatility periods and
regime 2 consists of high-volatility periods. Regime 2 is used to identify unstable economic situations.

In this paper, we assume that the logarithms of exchange rates follow a normal distribution as
the logarithms of return rates in equity markets follow a Brownian motion (Osborne, [26]). Often in
economic data, the log-transformation reinforces the normality assumption and using differentials
reinforces stationarity of the process. At time t, let LEt be the logarithm of the monthly changes in
exchange rates compared to the ones from the previous month as follows (Ayodeji [27]):

LEt = log
(

Exchange Ratet

Exchange Ratet−1

)
, (1)
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LEt lies in one of the two regimes St, where St is 1 or 2. LEt is ∆ log(Exchange Ratet) in the
interval [t− 1, t), which is the change of log(Exchange Ratet). If we consider the time change as
∆t = t − (t− 1) = 1, then LEt is the change rate in [t− 1, t). Assuming that the series is an infinite
continuous process, LEt is an approximate derivative of log(Exchange Ratet) at (t− 1). That is,
LEt is the slope of the tangent line to log(Exchange Ratet) which means instantaneous change rate of
log(Exchange Ratet) at (t− 1). Now let us call LEt log-differential of exchange rates. Since regime shift
behaviors of (Exchange Ratet) and LEt should match, we investigate regimes of exchange rates using
LEt. Note that LEt stands for changes of exchange rates.

Similarly, we transform the four explanatory variables. First, RINTt, RCPIt, and RIPIt are the
ratios of short-run interest rates, the ratio of consumer price indices and ratio of industrial production
indices between Korea and the USA, respectively. Then, the log-differentials of these ratios of
macroeconomic variables are obtained as LOILt, LRINTt, LRCPIt, and LRIPIt. The relative differences
of these fundamental variables between the two countries are expected to affect US exchange rates in
Korea, as confirmed by Volkov and Yuhn [9]. However, this study regards the variable ratio between
the two countries, instead of their direct differences like the study of Volkov and Yuhn [9], because the
Korean exchange rates are expressed as ratios with the US dollars as its denominator. The similar form
of log-differentials of variables provides the same intrinsic explanation as before.

LOILt = log
(

Oil Pricet

Oil Pricet−1

)
, (2)

LRINTt = log
(

RINTt

RINTt−1

)
, where RINTt =

Interest rate o f Korea at t
Interest rate o f USA at t

, (3)

LRCPIt = log
(

RCPIt

RCPIt−1

)
, where RCPIt =

Consumer price index o f Korea at t
Consumer price index o f USA at t

, (4)

LRIPIt = log
(

RIPIt

RIPIt−1

)
,where RIPIt =

Industrial production index o f Korea at t
Industrial production index o f USA at t

, (5)

Note that there are two ratios in Equations (3)–(5). First, the ratio between Korea and the USA is
evaluated. Secondly, the ratio between time t and time (t− 1) is evaluated. Finally, log-transformation
is applied. The LR in front of the variable name stands for log-transformation of the ratio of the ratio.
Therefore, we indirectly observe changes in movements of exchange rates through its log-differentials.
In each regime, the standard deviation is that of the log-differentials of exchange rates.

The MRSM with the four explanatory variables we consider can be written as follows:

LEt
∣∣∣st = β0st + β1st LEt−1 + β2stLOILt + β3st LRINTt + β4st LRCPIt + β5st LRIPIt + εt

∣∣∣st, (6)

where εt|st ∼ N
(
0, σ2

st

)
. Our model assumes that the exchange rates switch between the two regimes

based on the Markov transition probabilities which are denoted by

pi j = Pr[st+1 = j
∣∣∣st = i], i = 1, 2, j = 1, 2, (7)

where, pi j is the transition probability from state i to state j, pi1 + pi2 = 1, for i = 1, 2. The oil prices, the
interest rates, the CPIs and the IPIs do not switch. We assume that σ2

1 < σ
2
2. The parameter space Θ is

as follows
Θ =

{
β0st , β1st , β2st , β3st , β4st , β5st σ

2
st , p12, , p21

}
, st = 1 or 2. (8)

The filtered probabilities of st are defined as P(st = i
∣∣∣Zt; Θ) for i = 1, 2, where Zt stands for all

observations up to time t. In our empirical studies, the process at time t is said to be in regime 1
(with low-volatility) if its estimated filtered probability of regime 1 is greater than that of regime 2.
Otherwise, the process at time t is said to be in regime 2 (Sanchez-Espigares and Jose [28], Kuan [29]).
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For model selection, we first fit the full model. Secondly, based on stepwise selection method,
we select the most appropriate model using Akaike information criterion (AIC) criterion. Third, the
Wilks test is performed based on the maximum log-likelihood (MLL) to select the final model based on
Maximum Likelihood Estimator (MLE). If the sample size is large, the (−2MLL) difference between the
general model and restricted model is asymptotically a chi-squared distribution, with the degrees of
freedom as the dimension difference of the two parameter spaces when the restricted model is correct.

The restricted model is assumed under the null hypothesis and the general model is used under
the alternative hypothesis. If MLLr and MLLg are the MLL of the restricted model and the MLL of
the more general model, respectively, and di is the number of parameters to be estimated in model i,
then the difference in MLL asymptotically follows a chi-squared distribution for a large sample:

∆(−2MLL) = (−2MLLr) −
(
−2MLLg

)
→ χ2

(
dg − dr

)
, (9)

If the difference in MLL between any two selected models is significant, then the general model is
selected. In addition to the MLL, we use the AIC which considers a penalty to increment of dimension
of the model.

AIC = −2MLL + 2npar (10)

where npar is the number of parameters to be estimated in the model. “The model with smaller AIC
is better.” (Akaike [30]; Akaike [31]; Pinheiro and Bates, [32]; Rice [33]). The AIC is now one of the
most popular model selection criteria in machine learning. Starting from the full model in Equation (6),
the variables will be first selected based on AIC, and then significance of each variable in the selected
model is tested based on ∆(−2MLL) in Equation (9). We use the msmFit function (Sanchez-Espigares
and Jose, [28]) and the stepAIC function (Venables and Ripley, [34]) in R 3.3.1. Throughout the paper,
p-values less than 0.10 are considered to be statistically significant.

3. Results

The plots of Figure 1 show time series from January 1991 to March 2019 in the Korean exchange
rates market: (1) LE (exchange rates), (2) LOIL (oil prices) (3) LRINT (interest rates between Korea
and the USA.), (4) LRCPI (CPIs between Korea and USA), and (5) LRIPI (IPIs between Korea and the
USA.). Co-movements of high peaks and low valleys are observed in these processes during the Asian
financial crisis of 1997 and the global financial crisis of 2008–2009.

With exchange rates as the response variable, we fit the following thirty two-regime switching
models, as shown in Table A1 in Appendix A: (1) eight models with one explanatory variable (from 1 (1)
to 1 (4p)); (2) twelve models with two explanatory variables (from 2 (1) to 2 (6p)); (3) eight models
with three explanatory variables (from 3 (1) to 3 (4p)); and (4) two models with all four explanatory
variables (from 4 (1) and 4 (1p)). For each model, p stands for the model with the auto-regressive terms
of the exchange rates.

We consider the two model selection criteria: MLL and AIC. We first fit the full model in
Equation (6). Then, the model with smallest AIC is selected based on the stepwise selection method.
In order to reach the final model, significance of each variable in the selected model is further tested
one-by-one based on ∆(−2MLL) in Equation (9) and the backward selection method. Note that the
degrees of freedom is 2 since we test one variable at a time which corresponds to the two coefficients,
one for the low-volatility period and the other for the high-volatility period. At the significance level
0.1, if ∆(−2MLL) > χ2

0.10(2) = 4.61, the variable is said to be significant and remain in the model.
Otherwise, it is removed.

For the use of MLL in model selection for MRSM, Hardy [17] mentioned that “even where models
are not embedded, the likelihood ratio test can be used for model selection, although the χ2 distribution
is in this case only an approximation”.
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Figure 1. The log differences of exchange rates, oil prices, interest rates, consumer price indexes (𝐶𝑃𝐼s), 
and industrial production indexes (𝐼𝑃𝐼s) compared to those of the USA from January 1991 to March 
2019 in the Korean financial market. 

Starting from the full model with all the explanatory variables in this study, the following model 
3(1p) was selected based on 𝐴𝐼𝐶.  

3(1p) 𝐿𝐸௧|𝑠௧ = 𝛽௦ + 𝛽ଵ௦𝐿𝐸௧ିଵ + 𝛽ଶ௦𝐿𝑂𝐼𝐿௧ + 𝛽ଷ௦𝐿𝑅𝐼𝑁𝑇௧ + 𝛽ସ௦𝐿𝑅𝐶𝑃𝐼௧ + 𝜀௧|𝑠௧ (11) 

We further applied a backward selection method with criteria MLL and examined whether each 
of the three explanatory variables 𝐿𝑂𝐼𝐿, 𝐿𝑅𝐼𝑁𝑇, and 𝐿𝑅𝐶𝑃𝐼 were significant. To be more specific, the 
following three models were compared with 3(1p):  

2(1p) 𝐿𝐸௧|𝑠௧ = 𝛽௦ + 𝛽ଵ௦𝐿𝐸௧ିଵ + 𝛽ଶ௦𝐿𝑂𝐼𝐿௧ + 𝛽ଷ௦𝐿𝑅𝐼𝑁𝑇௧ + 𝜀௧|𝑠௧ 
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(13) 

The variable 𝐿𝑅𝐶𝑃𝐼 should remain, since ∆(−2𝑀𝐿𝐿) between model 3(1p) and model 2(1p) 
was 2(887.68-881.37) = 12.62, which is greater than 4.61. In other words, the difference between the 
two models was significant, so the model 3(1p) cannot be reduced to 2(1p) and, thus, the variable 𝐿𝑅𝐶𝑃𝐼 could not be removed. The variable 𝐿𝑂𝐼𝐿 should remain, since ∆(−2𝑀𝐿𝐿) between model 
3(1p) and model 2(4p) was 5.54, which is greater than 4.61. The model 3(1p) could not be reduced to 
2(4p) and, thus, the variable 𝐿𝑂𝐼𝐿 was also non-removable. On the other hand, the variable 𝐿𝑅𝐼𝑁𝑇 
should be removed from the model 3(1p), since ∆(−2𝑀𝐿𝐿) between model 3(1p) and model 2(2p) 
was 4.34, which is less than 4.61. Therefore, model 2(2p) was finally selected. 

We, again, examined whether it was possible to further reduce the selected model 2(2p). The ∆(−2𝑀𝐿𝐿) values of models 1(1p), 1(3p), and 2(2) were calculated, but all values were greater than 
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Starting from the full model with all the explanatory variables in this study, the following model
3(1p) was selected based on AIC.

3(1p) LEt
∣∣∣st = β0st + β1st LEt−1 + β2st LOILt + β3st LRINTt + β4stLRCPIt + εt

∣∣∣st (11)

We further applied a backward selection method with criteria MLL and examined whether each
of the three explanatory variables LOIL, LRINT, and LRCPI were significant. To be more specific,
the following three models were compared with 3(1p):

2(1p) LEt
∣∣∣st = β0st + β1st LEt−1 + β2st LOILt + β3st LRINTt + εt

∣∣∣st

2(2p) LEt
∣∣∣st = β0st + β1stLEt−1 + β2st LOILt + β4st LRCPIt + εt

∣∣∣st

2(4p) LEt
∣∣∣st = β0st + β1stLEt−1 + β3st LRINTt + β4st LRCPIt + εt

∣∣∣st

(12)

Their corresponding parameter spaces in Equation (8) are as follows:

3(1p) Θ3(1p) =
{
β0st , β1st , β2st , β3st , β4st , σ

2
st , p12, , p21

}
, st = 1 or 2.

2(1p) Θ2(1p) =
{
β0st , β1st , β2st , β3st , σ

2
st , p12, , p21

}
, st = 1 or 2.

2(2p) Θ2(2p) =
{
β0st , β1st , β2st , β4st , σ

2
st , p12, , p21

}
, st = 1 or 2.

2(4p) Θ2(4p) =
{
β0st , β1st , β3st , β4st , σ

2
st , p12, , p21

}
, st = 1 or 2.

(13)

The variable LRCPI should remain, since ∆(−2MLL) between model 3(1p) and model 2(1p) was
2(887.68–881.37) = 12.62, which is greater than 4.61. In other words, the difference between the two
models was significant, so the model 3(1p) cannot be reduced to 2(1p) and, thus, the variable LRCPI
could not be removed. The variable LOIL should remain, since ∆(−2MLL) between model 3(1p) and
model 2(4p) was 5.54, which is greater than 4.61. The model 3(1p) could not be reduced to 2(4p)
and, thus, the variable LOIL was also non-removable. On the other hand, the variable LRINT should
be removed from the model 3(1p), since ∆(−2MLL) between model 3(1p) and model 2(2p) was 4.34,
which is less than 4.61. Therefore, model 2(2p) was finally selected.
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We, again, examined whether it was possible to further reduce the selected model 2(2p).
The ∆(−2MLL) values of models 1(1p), 1(3p), and 2(2) were calculated, but all values were greater than
4.61. It means that all variables were significant and, thus, the model 2(2p) could not be reduced any
further. Therefore, model 2(2p) was chosen as the final best model (Table 2).

Table 2. Model selection criteria for the Markov regime switching models (MRSM) for LE.

Variable Model No p Criteria Regime (H) Regime (L) Best

AIC MLL R2 sd R2 sd

LOIL
1(1) 0 −1725.19 866.59 0.010 0.089 0.020 0.015

1(1p) 1 −1746.94 879.47 0.264 0.076 0.101 0.015

LRINT
1(2) 0 −1724.43 866.21 0.029 0.084 0.016 0.015

1(2p) 1 −1747.89 879.95 0.242 0.075 0.109 0.015

LRCPI
1(3) 0 −1739.26 873.63 0.436 0.062 0.004 0.015

1(3p) 1 −1753.23 882.61 0.445 0.066 0.094 0.015

LRIPI
1(4) 0 −1721.82 864.91 0.031 0.086 0.005 0.015

1(4p) 1 −1745.15 878.57 0.250 0.077 0.095 0.015

LOIL, LRINT 2(1) 0 −1725.28 868.64 0.035 0.082 0.037 0.015

2(1p) 1 −1746.73 881.37 0.261 0.075 0.116 0.015

LOIL, LRCPI 2(2) 0 −1743.42 877.71 0.490 0.058 0.023 0.015

2(2p) 1 −1755.02 885.51 0.503 0.061 0.103 0.015 MLL

LOIL, LRIPI 2(3) 0 −1723.34 867.67 0.029 0.087 0.025 0.015

2(3p) 1 −1744.54 880.27 0.264 0.076 0.104 0.015

LRINT, LRCPI 2(4) 0 −1740.35 876.17 0.445 0.061 0.021 0.015

2(4p) 1 −1753.83 884.91 0.441 0.064 0.111 0.015

LRINT, LRIPI 2(5) 0 −1722.76 867.38 0.042 0.083 0.023 0.015

2(5p) 1 −1745.84 880.92 0.244 0.074 0.114 0.015

LRCPI, LRIPI 2(6) 0 −1737.69 874.84 0.452 0.061 0.009 0.015

2(6p) 1 −1751.60 883.80 0.462 0.064 0.097 0.015

LOIL, LRINT LRCPI 3(1) 0 −1744.77 880.38 0.491 0.056 0.045 0.014

3(1p) 1 −1755.36 887.68 0.500 0.060 0.118 0.015 AIC

LOIL, LRINT LRIPI 3(2) 0 −1723.76 869.88 0.043 0.081 0.045 0.015

3(2p) 1 −1744.60 882.30 0.259 0.074 0.121 0.015

LOIL, LRCPI, LRIPI 3(3) 0 −1741.31 878.65 0.487 0.058 0.029 0.015

3(3p) 1 −1752.67 886.33 0.502 0.061 0.106 0.015

LRINT, LRCPI, LRIPI 3(4) 0 −1738.86 877.43 0.455 0.060 0.027 0.015

3(4p) 1 −1752.56 886.28 0.449 0.062 0.117 0.014

LOIL LRINT,
LRCPI, LRIPI

4(1) 0 −1743.02 881.51 0.491 0.056 0.052 0.014

4(1p) 1 −1753.40 888.71 0.495 0.059 0.123 0.014

Note: R2 is the coefficient of determination. sd is standard deviation. The response variable is exchange rates.
Regime 1 consists of low-volatility periods and regime 2 consists of high-volatility periods. ∆(−2MLL) is the
difference of (−2MLL) when the variable is removed from the model with the smallest AIC, according to the
backward selection method. ‘p’ in the model names means that the model includes auto-regressive terms, AR(1).

Each time point is grouped into one of the two regimes depending on its estimated filtered
probability. At each time point t, the two filtered probabilities sum to 1. Figure 2a shows estimated
probabilities of regimes. The upper plot presents the estimated probabilities of being in the regime 1
with low-volatility. The lower plot presents the estimated probabilities of being in the regime 2 with
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high-volatility, which consists of two periods. The first period lasted for 15 months from October
1997 to January 1999. The second period showed up for 11 months, once in April 2008 and then from
August 2008 to May 2009.

Figure 2b,c shows volatilities of the raw data with grey area indicating regime 1 and regime 2,
respectively, which are estimated based on the MRSM. Estimated high-volatility periods match the
peaks around the Asian financial crisis in 1997 and the global financial crisis in 2008. Korean exchange
rates markets suffered great instability during both periods.
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Figure 2. (a) The filtered probabilities of being in regime 1 and regime 2, estimated from the MRSM for
the exchange rates along with both oil prices and CPIs. The upper plot corresponds to the regime 1
with low-volatility, and the lower plot corresponds to the regime 2 with high-volatility. (b) Volatility
plot of regime 1. (c) Volatility plot of regime 2.

We also examine how the explanatory variables influence the exchange rates in each regime,
based on the selected best model 2(2p). Table 3 presents the parameter estimates for both regimes.
The volatility of regime 2 with high-volatility (σ2 = 0.0610) was about four times that of regime
1 with low-volatility (σ1 = 0.0148). In regime 1 with low-volatility, Korean exchange rates were
not significantly influenced by any of the explanatory variables, but had positive dependence on
their auto-regressive term (p < 0.001). In regime 2 with high-volatility, the variable LOIL positively
influenced the exchange rates (p < 0.05) and the variable LRCPI positively influenced the exchange
rates to a much greater extent (p < 0.001). This shows that the exchange rates increase as oil prices or
CPIs increase when the exchange rates markets are highly volatile. We observe that, in a highly volatile
market, the exchange rates are significantly influenced by CPIs and oil prices but have no significant
relationship with their auto-regressive terms. In a low-volatility market, only the auto-regressive terms
are significant.
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Table 3. Parameter estimates of the selected Markov two-regime switching model.

Regime Parameters Estimates Standard Error

Regime 1 with low-volatility

Intercept (β01) −0.0001 0.0004

LEt−1 (β11) 0.2740 0.0563 ***

LOILt (β21) −0.0230 0.0148

LRCPIt (β41) 0.1058 0.2242

Residual standard error 0.0148

Multiple R2 0.1028

Regime 2 with high-volatility

Intercept (β02) 0.0005 0.0108

LEt−1 (β12) −0.0462 0.2092

LOILt (β22) 0.2181 0.1084 *

LRCPIt (β42) 9.4279 2.2969 ***

Residual standard error 0.0610
Multiple R2 0.5025

Transition probabilities p12 0.0811

p21 0.0081

Note: The response variable is exchange rate. The explanatory variables are oil prices and CPI. β01 and β02 are
intercepts for regime 1 (low-volatility) and regime 2 (high-volatility). β11 and β12 are the coefficients of oil prices,
β21 and β22 are the coefficients of CPI’s, βp1 and βp2 are the coefficients of (t-1) exchange rates, and σ1 and σ2 are the
standard deviations of the two regimes. ***: significant at the 0.001 level. *: significant at the 0.05 level.

The each transition probabilities are p11 = 0.9189, p12 = 0.0811, p21 = 0.0081, and p22 = 0.9919.
The transition probability from the regime with low-volatility to the regime with high-volatility is
about ten times that of the opposite case. The regime with low-volatility can much more easily transit
to the regime with high-volatility when the explanatory variables change. This indicates that the
Korean exchange rates market is, thus, vulnerable to external shocks.

Let us take a look at how much log-differentials of each explanatory variable can explain among
the whole volatility of log-differentials of the exchange rates using the simple regression. The coefficient
of determination R2 in Table 2 shows the proportion of explained volatility compared to the total
volatility of log-differentials of the exchange rates. In the regime with high-volatility of the model 1(3),
we can see that the CPIs alone explains 43.6% of the exchange rates (R2 = 0.436).

We extend this to the models with two explanatory variables. In the regime with high-volatility
with model 2(2), the CPIs and oil prices together explain 49.0% of the exchange rates, a 5.4% increase in
R2. In addition, if the exchange rates auto-regressive term is added, as in model 2(2p), the R2 value
increases to 50.3%, an additional increase of 1.3%. All the coefficients of determination in the regime
with low-volatility were quite small. Our model explains regimes with high-volatility much better
than regimes with low-volatility. One interesting point is that the volatilities estimated in regimes with
low-volatility, for all 30 of the models, were around 0.015.

4. Discussion

Let us compare the results with others which used the regime switching model. The previous
regime switching model for oil prices and exchange rates of Korea includes Basher et al. [11]. In their
findings, oil shocks had a statistically significant impact on exchange rates of Korea in the high-volatility
regime, which is the same as ours. Their model assumed that exchange rates could be influenced not
only by oil prices, but also by oil supply and global economic demand. Our model differs from theirs
in that exchange rates are affected by price level, income, and interest rates as well as oil prices which
are based on the monetary model of exchange rates determination. Nonetheless, the same conclusion
was drawn that exchange rates are affected by oil prices in a high-volatility regime.
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In Table 4, the auto-regression model without regime switching is also fitted for comparison. R2 in
the model is 0.247, which is much less than 0.503 in the high-volatility regime. LRCPI is significant (p <

0.01) but oil prices are not (p > 0.1). In the absence of regime switching, only LRCPI and auto-regressive
terms affect the Korean exchange rates. In other words, oil prices do not appear to affect the exchange
rates, which is different from the results with MRSM. In the presence of Markov regime switching, oil
prices significantly affect the exchange rates in the unstable regime. Thus, in models without Markov
regime switching, the behavior in the stable regime overwhelms the behavior in the unstable regime.
Korea has experienced two major economic crises, the Asian financial crisis and the global financial
crisis, which are precisely detected by the MRSM. Therefore, it can be seen from this study that stable
management of oil prices is essential for stabilizing exchange rates in these economic crises.

Table 4. Parameter estimates without the regime switching model.

Parameters Estimates Standard Error

Intercept (β01) −0.0003 0.0015
LEt−1(β11) 0.3969 0.0535 ***
LOILt (β21) 0.0225 0.0226

LRCPIt (β41) 0.3442 0.3649 ***
Residual standard error 0.0266

Multiple R2 0.2475

Note: ***: significant at the 0.001 level.

A long period time series data in this research often contains more than two different trends
throughout the whole time period. We fit the two-regime MRSM, which estimates separate
auto-regression models with AR (1) in each regime and the volatility state at each time point can switch
between the two regimes according to the behavior of a Markov process.

Now, we check the assumptions of the errors, normality, and stationarity. The normality can
be observed in the four residual plots in Figure 3. Plot (a) represents pooled residuals, where two
distinctive high-volatile periods are observed, one around 1997–1998 and the other around 2008–2009.
Plot (b) shows the normal quantile-quantile (QQ) plot of pooled residuals with p = 0.7998 from the
Shapiro test. Separate QQ plots in the two regimes, plots (c) and (d), reveal more distinctive normality
based on the Shapiro test (p = 0.0708 for regime 1 and p = 0.6241 for regime 2). The residuals in each
regime show clear normal distribution, while pooled residuals seem to have outliers at both tails.
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Figure 3. These figures show the following four plots of residuals: (a) pooled residuals over time order;
(b) normal quantile-quantile (QQ) plot of pooled residuals; (c) normal QQ plot of residuals in regime 1
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The stationarity can be observed by the autocorrelation function (ACF) and the partial
autocorrelation function (PACF) of the residuals in Figure 4. Both ACFs and PACFs go to 0 as
lag increases, which means stationarity of the residuals. Based on the Dickey–Fuller unit root test,
the series LEt is stationary (p = 0.0100), but the raw Exchange Ratet before the transformation is not
stationary (p = 0.4369). The adequacy of the selected model 2(2p) is confirmed by the normality based
on QQ-plots and the Shapiro tests, and by the stationarity based on the Dickey–Fuller unit root test.
All these goodness-of-fit results ensure relevance of selected explanatory variables in the model.
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The parameter estimates for the MRSM were consistent in this study, even though they were known
to be slightly inconsistent in each run as pointed out in the studies of Campbell [35], Kim, et al. [36],
and Yuan [37]: “The unfiltered two-state Markov-switching model suffers estimation instability while
the filtered model turns out to be temporally consistent” or “the Maximum Likelihood Estimator is
inconsistent for regime-switching models in general”.

5. Conclusions

We analyzed the effects of oil prices, interest rates, CPIs, and IPIs on the regime shift behavior of
the Korean exchange rates (against the USA.). This was the first attempt to study these issues, as far as
we know. As a result of the MRSM, we detected regime shift behavior in the exchange rates, along with
oil prices and major macroeconomic explanatory variables.
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For this, we first set up a total of 30 models in consideration of the four variables to select the
optimal MRSM, based on the AIC and MLL. Finally, we selected the model that includes oil price,
the difference of CPIs between the two countries (Korea and the USA), and the autoregressive term of
the exchange rates.

Under the selected MRSM model, we found evidence to support the existence of two distinct
regimes for all markets, one regime (1) with low-volatility and another regime (2) with high-volatility.
The stable periods of regime 1 are much longer than the unstable periods of regime 2. The most
unstable periods lasted for about two to three years. Regime 2, with high-volatility, occurred during
the Asian financial crisis of 1997 and the global financial crisis of 2008–2009 in the Korean exchange
rates market.

During the stable periods in the regime 1 with low-volatility, the Korean exchange rates were not
significantly influenced by any of the explanatory variables, but had positive dependence on their
auto-regressive terms at the 1% significance level. This implies that movements of changes of exchange
rates are explained by their own previous movements, not by external variables during the stable
periods. In the regime 2 with high-volatility, Korean exchange rates were significantly influenced by
CPIs and oil prices, while their auto-regressive terms had no significant effect on the exchange rates.
In other words, Korean exchange rates are more affected by external shocks than by their previous
exchange rates during high volatile periods. As far as the exchange rates are concerned in the Korean
market, IPIs and interest rates are not significant.

This result has very important implications about estimating the movements of changes of Korean
exchange rates. Changes in oil prices significantly affect the prediction of Korean exchange rates during
unstable periods. On the other hand, the consumer price level (compared to that of the US) has a much
greater impact on the changes of exchange rates, compared to oil prices, in the Korean market. In other
words, when the consumer price levels in Korea rise higher than those in the US, the movements of
the changes of Korean exchange rates accordingly increase. Thus, maintaining stable consumer price
levels in Korea contributes to the stabilization of Korean exchange rates.

When the major macroeconomic explanatory variables change, the regime with low-volatility
could transit to the regime with high-volatility with 10 times higher transition probability than that of
the opposite direction (i.e., from high to low). Thus, the Korean exchange rates market is vulnerable to
external shock.

This study has the following limitations. Exchange rates are affected by both CPIs and IPIs,
but both CPIs and IPIs can be also affected by exchange rates. However, this study does not consider
this backward possibility. In other words, we only studied one-way analysis of CPIs and IPIs affecting
exchange rates. In the future, this study can be extended to other countries which import and export
oils to a great extent. New explanatory variables can be also added in future researches. Our results will
provide valuable insights for Korean policy makers, about how to prepare for external shock, and also
to Korean foreign exchange dealers, when they make decisions on foreign exchange speculation.
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Appendix A

Table A1. The Markov Regime Switching Models for exchange rates along with oil prices, interest
rates, CPI’s and IPI’s.

Model Number Equation

1(1) LEt
∣∣∣st = β0st + β2st LOILt + εt

∣∣∣st

1(1p) LEt
∣∣∣st = β0st + β1st LEt−1 + β2st LOILt + εt

∣∣∣st

1(2) LEt
∣∣∣st = β0st + β3st LRINTt + εt

∣∣∣st

1(2p) LEt
∣∣∣st = β0st + β1st LEt−1 + β3st LRINTt + εt

∣∣∣st

1(3) LEt
∣∣∣st = β0st + β4st LRCPIt + εt

∣∣∣st

1(3p) LEt
∣∣∣st = β0st + β1st LEt−1 + β4st LRCPIt + εt

∣∣∣st

1(4) LEt
∣∣∣st = β0st + β5st LRIPIt + εt

∣∣∣st

1(4p) LEt
∣∣∣st = β0st + β1st LEt−1 + β5st LRIPIt + εt

∣∣∣st

2(1) LEt
∣∣∣st = β0st + β2st LOILt + β3st LRINTt + εt

∣∣∣st

2(1p) LEt
∣∣∣st = β0st + β1st LEt−1 + β2st LOILt + β3st LRINTt + εt

∣∣∣st

2(2) LEt
∣∣∣st = β0st + β2st LOILt + β4st LRCPIt + εt

∣∣∣st

2(2p) LEt
∣∣∣st = β0st + β1st LEt−1 + β2st LOILt + β4st LRCPIt + εt

∣∣∣st

2(3) LEt
∣∣∣st = β0st + β2st LOILt + β5st LRIPIt + εt

∣∣∣st

2(3p) LEt
∣∣∣st = β0st + β1st LEt−1 + β2st LOILt + β5st LRIPIt + εt

∣∣∣st

2(4) LEt
∣∣∣st = β0st + β3st LRINTt + β4st LRCPIt + εt

∣∣∣st

2(4p) LEt
∣∣∣st = β0st + β1st LEt−1 + β3st LRINTt + β4st LRCPIt + εt

∣∣∣st

2(5) LEt
∣∣∣st = β0st + β3st LRINTt + β5st LRIPIt + εt

∣∣∣st

2(5p) LEt
∣∣∣st = β0st + β1st LEt−1 + β3st LRINTt + β5st LRIPIt + εt

∣∣∣st

2(6) LEt
∣∣∣st = β0st + β4st LRCPIt + β5st LRIPIt + εt

∣∣∣st

2(6p) LEt
∣∣∣st = β0st + β1st LEt−1 + β4st LRCPIt + β5st LRIPIt + εt

∣∣∣st

3(1) LEt
∣∣∣st = β0st + β2st LOILt + β3st LRINTt + β4st LRCPIt + εt

∣∣∣st

3(1p) LEt
∣∣∣st = β0st + β1st LEt−1 + β2st LOILt + β3st LRINTt + β4st LRCPIt + εt

∣∣∣st

3(2) LEt
∣∣∣st = β0st + β2st LOILt + β3st LRINTt + β5st LRIPIt + εt

∣∣∣st

3(2p) LEt
∣∣∣st = β0st + β1st LEt−1 + β2st LOILt + β3st LRINTt + β5st LRIPIt + εt

∣∣∣st

3(3) LEt
∣∣∣st = β0st + β2st LOILt + β4st LRCPIt + β5st LRIPIt + εt

∣∣∣st

3(3p) LEt
∣∣∣st = β0st e + β1st LEt−1 + β2st LOILt + β4st LRCPIt + β5st LRIPIt + εt

∣∣∣st

3(4) LEt
∣∣∣st = β0st + β3st LRINTt + β4st LRCPIt + β5st LRIPIt + εt

∣∣∣st

3(4p) LEt
∣∣∣st = β0st + β1st LEt−1 + β3st LRINTt + β4st LRCPIt + β5st LRIPIt + εt

∣∣∣st

4(1) LEt
∣∣∣st = β0st + β2st LOILt + β3st LRINTt + β4st LRCPIt + β5st LRIPIt + εt

∣∣∣st

4(1p) LEt
∣∣∣st = β0st + β1st LEt−1 + β2st LOILt + β3st LRINTt + β4st LRCPIt + β5st LRIPIt + εt

∣∣∣st
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