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Abstract: This paper presents a framework to identify critical nodes of a gas pipeline network.
This framework calculates a set of metrics typical of the social network analysis considering the
topological characteristics of the network. Such metrics are utilized as inputs and outputs of
a (Data Envelopment Analysis) DEA model to generate a cross-efficiency index that identifies
the most important nodes in the network. The framework was implemented to assess the US
interstate gas network between 2013 and 2017 from both the demand and supply-side perspectives.
Results emerging from the US gas network case suggest that different analysis perspectives should
necessarily be considered to have a more in-depth and comprehensive view of the network capacity
and performance.

Keywords: prioritization; social network analysis; data envelopment analysis; game cross-efficiency;
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1. Introduction

In 2018, the United Stated of America utilized about 30 trillion cubic feet (Tcf) of natural gas,
which is close to 30% of the total primary energy consumption. The largest part of natural gas is
consumed in the electric power and manufacturing industries (69% of total consumption, equal
to 20.67 Tfc) [1]. Whereas natural gas is used throughout the USA, the largest consumption of
it is concentrated in five states: Texas (14.3%), California (7.8%), Louisiana (5.9%), Florida (5.1%),
and Pennsylvania (4.7%) [1]. With the transition of the electric power industry from coal to gas, the USA
natural gas consumption will further increase in the next decades.

From 2007 to 2014, each year gas production increased by roughly 2.5 billion cubic feet per day.
According to estimates provided by the US Energy Information Administration (EIA), the domestic
natural gas production will grow to more than 40 Tcf in 2040 to satisfy demand [2].

The interstate pipeline system supplies most of the natural gas markets in the USA. Ensuring
gas supply stability is a major responsibility of pipeline operators. Pipeline regulators require the
pipeline operators to prevent, manage, and mitigate conditions that might affect the proper operation
of the pipeline system. The analysis of several energy networks has showed that some parts of such
networks have great relevance compared to the rest of the network, as their removal significantly affect
the network performance by significantly disrupting the operation of the system [3]. Disruptions can
propagate downstream through the natural gas transmission chain, thus leading to negative supply
shocks in the market. Prioritization methods allowing the identification of the most critical parts of
the pipeline are thus necessary to effectively manage the gas transmission pipeline. Identifying the
critical parts of the pipeline network in advance may help the operators to increase the infrastructure
robustness by adopting risk mitigation strategies. Indeed, disruption of the gas supply would have a
very substantial impact on the economics and wellbeing of US citizens.
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As conventional reliability modeling is unable to deal with the complex and dynamic characteristics
of large gas pipeline systems, in the last years, scholars have proposed several techniques and
methodological approaches based on the implementation of the network theory to assess the
performance of gas infrastructure networks in terms of vulnerability, resilience, and security. Such
approaches include methods based on the implementation of network theory, allowing study of the
network topological properties [4], material flows [5], and functional properties of the system [6];
and hybrid or systemic methods that integrate different methodologies, i.e., stochastic analysis of
processes, graph theory, and thermal-hydraulic simulation to account for the complexity, uncertainty,
and physical constraints of gas networks [7].

This paper proposes a framework based on the integration of social network analysis (SNA) and
data envelopment analysis (DEA) to identify critical nodes of the gas pipeline network useful to the
implementation of risk mitigation strategies, thus increasing the overall robustness level of the pipeline
system or prioritizing maintenance and improvement activities. In this framework, the critical nodes of
the pipeline system whose potential failure would have the most severe consequences to the gas supply
are identified, considering their importance to the gas network infrastructure. SNA centrality metrics
are calculated to classify nodes of the gas infrastructure network according to their relevance, both
from a supply and demand perspective, while cross-efficiency DEA is used to generate two rankings
of nodes, one for each perspective. Finally, the two rankings are merged using a procedure based
on the Shannon’s-entropy index. The framework is applied to assess the US natural gas interstate
network. The proposed framework has several strengths in comparison with approaches adopted to
investigate gas network criticalities. Particularly, a number of metrics that assess several dimensions of
the gas network topological structure can easily be combined to provide a comprehensive performance
index using DEA. At the same time, this framework integrates the points of view of a multiplicity of
stakeholders, merging multiple performance indexes that consider the same number of evaluation
perspectives. Finally, its flexibility allows the inclusion of further performance metrics obtained from
the implementation of models that, for instance, consider the gas thermodynamic properties and
physical features.

The paper is organized as follows. In the next section, recent contributions from the literature are
reviewed. The SNA metrics and the cross-efficiency DEA method are illustrated in Section 3. Section 4
presents the results relative to the implementation of the framework for the assessment of the US gas
interstate pipeline network during the period 2013–2017. Conclusions are discussed in the last section.

2. Literature

Ouyang [8] carried out an in-depth review of modeling and simulation approaches used to
assess the vulnerability of critical infrastructure systems. These approaches include (see also [9,10]):
Computational and optimization approaches, i.e., object-oriented programming, and agent-based
modeling; simulation approaches, such as system dynamics-based modeling; network-based
approaches; economic based approaches; and other approaches (for instance, approaches based
on the implementation of petri-nets, dynamic control system theory, Bayesian networks). In the stream
of the computational approach, Behrooz et al. [11] used an optimization model to deal with the problem
of demand uncertainty in the daily planning of natural gas transmission. Fu et al. [12] employed a
first order optimization model to assess gas supply reliability by estimating the failure probability of a
pipeline network considering uncertainty and the impact of intermittent renewable energy sources and
stochastic energy loads on the operations. Correa-Posada et al. [13] formulated a security-constrained
unit commitment model that includes dynamic gas constraints in power and gas networks to assess
the reliability of the coupled system without compromising flexibility. The scholars implemented
a Benders decomposition and linear programming to solve the model. Rehak et al. [14] proposed
a statistical method to measure the resilience of critical infrastructure elements that is based on an
assessment of their robustness, ability to recover functionality after disruptive events, and capacity to
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adapt to previous disruptive events. This method jointly evaluates the technical and organizational
dimensions of resilience and finds major points of weaknesses to improve the resilience level.

Other scholars implemented simulation models. Monforti and Szikszai [15] proposed a specific
model to evaluate the robustness of the EU transnational gas transmission infrastructure under different
operating conditions., i.e., high demand, supply shortage, and regular supply. This model implements
a Monte Carlo simulation and considers the whole set of dispatching choices of national transmission
system operators (TSOs). Chaudry et al. [16] assessed the reliability of the (Great Britain) GB gas
and electricity infrastructure networks in the winter period employing a sequential Monte Carlo
simulation model that minimizes gas supply and storage operation costs and electricity generation
costs and computes a set of reliability indexes, such as load probability and not supplied electricity.
Nan and Sansavini [17] proposed a quantitative method based on simulation and the development
of quantitative time-dependent metrics of resilience to assess the dynamic behavior of infrastructure
systems. The scholars considered three resilience capabilities, i.e., absorptive, adaptive, and restorative.
The method was used to assess the Swiss electric power supply system. In the perspective of the
network-based approach, Voropai et al. [18] used the “Oil and Gas” software developed at Energy
Systems Institute SB RAS to implement a methodology to detect bottlenecks in gas transportation
networks when there are emergency situations and the gas deficit has negative consequence for users.
The proposed methodology is based on a representation of the gas infrastructure as a graph and the
calculation of the maximum resource flow, which implies the minimum cost. Ouyang [19] adopted
a network-based approach to identify critical locations in infrastructure systems and model their
vulnerability. Particularly, the study proposed an algorithm to identify critical locations when a spatially
localized attack occurs in an infrastructure system. Shaikh et al. [20] employed the ecological network
analysis method to abstract the direct and indirect interactive flows of the natural gas supply system in
China from the global gas system and assess the stability of its gas supply security. Cetinay et al. [21]
evaluated the vulnerability of a power grid, employing a weighted graph and calculating the centrality
metrics of nodes. The scholars hypothesized several node-attack modes and investigated their impact
on the structural and operational performance of the power grid. Beyza et al. [22] employed graph
indexes and power-flow techniques to analyze electricity and gas interconnected systems. Deliberate
attacks on highly connected nodes and random faults strategies were used to simulate failure effects,
changing the structure of the network by eliminating critical nodes each time. Graph theory and SNA
approaches have also been applied to assess the joint vulnerability of power and gas infrastructure
networks [23]. Beyza et al. [23] proposed a simulation framework to assess the vulnerability of coupled
gas and electricity networks when two different kind of attack strategies were applied to the system,
i.e., a disruption to nodes having several links and a disruption to nodes that are critical in terms of flow.
The framework assessed the coupled system vulnerability after disruption, measuring the unmet load
analyzing power low and using the geodesic vulnerability index to calculate its topological damage.

Some scholars have also proposed mixed approaches that combine different methodologies,
techniques, and perspectives. Zio [24] argues that an integrated framework that takes into account
topological, functional, static, and dynamic characteristics of critical infrastructure systems is necessary
to deal with their intrinsic complexity and uncertainty. The author discusses in depth the vulnerability,
risk, and resilience concepts. Han and Zio [25] developed a framework to identify the most critical
elements of a gas transmission network across several countries in the European Union from three
different perspectives, i.e., supply service, controllability, and topology, and assessed the impact of
failure. Simulation was used to perform analysis, and failure scenarios were generated using the
ProGasNetwork software. Their study showed that considering several perspectives at the same time
provides more robust results. Alipour et al. [26] investigated the vulnerability characteristics of a
high-voltage power grid in Iran by combining the assessment of its reliability features and its topological
characteristics evaluated in terms of some centrality indexes (degree, betweenness, information, and
closeness). Finally, they used the Borda Count method as an aggregation method to generate a ranking
of highly vulnerable nodes. Praks et al. [27] developed a probabilistic model to study the supply
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security of a gas network system. Their model utilizes graph theory and implement Monte Carlo
simulation. The scholars identifies the weakest links and nodes of an EU gas transmission network
to perform vulnerability and bottleneck analysis. Su et al. [28] provided a systematic framework to
assess the vulnerability of a natural gas infrastructure network. This framework performs vulnerability
assessment in terms of global vulnerability analysis, demand robustness, and critical pipeline analysis.
Particularly, hazards and threats in gas sources are considered in the global vulnerability assessment,
the infrastructure system capacity to withstand strains imposed on the network structure is taken
in account to assess demand robustness, and pipeline criticalities are assessed by considering direct
attacks and using a physical flow-based approach. Although these mixed approaches that assess energy
networks from different perspectives add useful knowledge to the pipeline vulnerability analysis,
often they are unable to provide a comprehensive view of the criticalities of the infrastructure network
because they often generate several conflicting performance indexes.

Both optimization- and simulation-based approaches require a more detailed model of the
gas network and the collection of a huge amount of time-dependent data, and, at the same time,
imply great computational burden. When it is difficult to collect such detailed data, also because
the pipeline operators are reluctant to provide sensitive information, these approaches cannot be
easily implemented. On the contrary, the adoption of a network-based approach requires only the
knowledge of the topological structure of the infrastructure system. Results from the implementation
of network-based approaches can be of great use for a preliminary analysis of the pipeline network,
supporting network design upgrading, operation, and criticality assessment, and thus enabling the
identification of parts of the network that need greater attention.

3. Method

In this paper, network theory was used to investigate the US interstate natural gas network
to identify critical nodes. The conceptualization of the US interstate gas infrastructure as graphs
and networks offers the opportunity to conduct a systematic investigation and assessment of its
performance. The SNA has been successfully applied to understand and explain the nature of complex
network systems, focusing on their component parts and the relationships among these parts using
concepts, visualization methods, and tools provided by the theory of graphs [29]. Although SNA was
developed to investigate social interactions among people, it has also been used to perform analysis in
non-social structures [30,31]. SNA concepts and metrics have been employed in various fields, such as
the World Wide Web [32,33]; product development [34,35]; spread of epidemic disease [36]; physics [37];
diffusion of new ideas, knowledge, and inventions [38–40]; air traffic routes among airports [41–43];
logistics and transportation [44]; and electric power grids [45–47]. Particularly, complex network
theory has been utilized to assess the vulnerability of the European power transmission grid with
respect to extreme space weather [48].

From the SNA perspective, relationships between entities are viewed from the perspective of
graph theory in mathematics, consisting of nodes and ties or edges. The information in a binary graph
associated to a network can be organized as a square symmetric matrix known as the adjacency matrix,
in which the value of entry xi j is 1 if node i is connected to node j; otherwise, it is 0. Vice versa, the
entry, x ji, indicates the existence of a connecting tie from node j to node i if its value is 1. In this matrix,
the rows and columns represent the nodes of the graph while the cells represent the pairs of nodes
or dyads. In a valued (or weighted) graph, the entry, wi j, provides a measure of the strength of the
tie from node i to node j, whereas the entry, w ji, gives the strength of the tie from node j to node i. In
non-social valued networks, the strength of ties reflects the function that is performed by such ties [30].
For instance, in this paper, the nodes of the network correspond to the individual states in the USA,
and ties between nodes indicate the existence of an exchange of natural gas between states, while the
value of these ties gives a measure of the size of gas flows between states. Measurements relative
to nodes and ties can be used to compute several indexes that provide important information about
the US natural gas interstate infrastructure performance and capacity. By implementing DEA, the
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measurements of these indexes can finally be merged, providing a single score useful to rank the gas
network nodes.

3.1. SNA Metrics

The representation of information about a social network in the form of an adjacency matrix allows
the calculation of different types of metrics that summarize the network structure and identify patterns.
SNA metrics provide both local measures that allow analysis of the network structure with respect to
either individual units or dyads, and global measures that allow an examination of the characteristics
of the network as a whole. Assuming that the interstate gas system can be represented as a direct
graph and a weighted network, some centrality indexes can be computed. Centrality measures are
widely used in network analysis as they provide a quantitative indication of the structural importance
of a given node in relation to other nodes of the network.

A key property of the individual node is its degree, which is represented by the total number
of ties the node has to other nodes [49]. In the gas pipeline network, nodes having higher degree
scores are more active than those having lower scores in the transmission of gas. Degree centrality
assigns an importance score based purely on the number of ties held by each node or their values and
provides information about every connected node. In a direct network, two different degree metrics
that provide local measurements can be easily calculated, distinguishing between nodes that are a
target from nodes that behave as a source [50,51]:

• In-degree. This metric is measured by the sum of the number of ties incoming to a node.
• Out-degree. This metric is measured by the sum of the number of ties outgoing from a node.In a

direct weighted network, two further degree metrics can be measured:
• Emission degree. This index is calculated by the sum of all values corresponding to the ties that

point from the current node to other nodes.
• Reception degree. This index can be calculated by summing all values corresponding to ties that

point to the current node from other nodes.

These centrality local metrics do not take in account the global structure of the network because
their scores are determined by the number of neighbors of the current node. Henceforth, they are
ineffective in providing information about the node capability to control or influence the network.
Indeed, some nodes may have a greater influence on the flow of the system than other nodes in a
network. To this aim, betweenness metrics are useful to identify nodes that act as “bridges” between
network nodes [51,52]:

• Betweenness centrality. This index counts the number of times a node lies on the shortest path (or
geodesic path) between other nodes. The normalized flow betweenness centrality of a node is
calculated by dividing its flow betweenness by the total flow through all pairs of nodes where it is
not a source or target. In particular, the flow betweenness centrality index measures the centrality
of a node as a function of the flow through it rather than with respect to the shortest paths [52,53].
Thus, the flow betweenness gives an indication of the contribution of a node to all possible
maximum flows, as a global measure. Differently from the basic betweenness centrality index, the
flow betweenness centrality measurement allows the relevance of important interactions between
nodes in networks having a greater substructure to be captured, where interactions between some
groups of nodes have an important weight.

• Sociometric status. This index measures the connectivity of a node (considering both the inputs
and outputs) relative to the total number of nodes in the network [54,55]. It is computed by the
sum of input and output ties. The sociometric status gives an indication of the relative relevance
an individual node has in the transport of natural gas to other nodes in the network.

Assuming that i is the index of the current node, g is the number of nodes in the network, xi j and
x ji are the adjacency matrix elements of the binary graph, wi j and w ji are the adjacency matrix elements
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of the weighted network graph, and Di j and D jk are the geodesic distances from a node i to a node j
and from a node j to a node k, respectively, these indexes can be calculated as follows (see Table 1).

Table 1. SNA indexes.

Index Equation Index Equation

In-degree 1
g

g∑
j=1

x ji Out-degree 1
g

g∑
j=1

xi j

Reception degree
g∑

j=1
w ji Emission degree

g∑
j=1

wi j

Flow betweenness centrality

g∑
j<k

w jk(i)

g∑
j<k

w jk

Sociometric status
∑
j
(D ji + Di j)

3.2. DEA Cross-Efficiency

The SNA indexes can be used to identify important nodes in the US interstate natural gas network.
To this aim, DEA allows them to be combined to generate a unique efficiency score, which provides a
ranking of the nodes. Nodes evaluated as being more efficient are considered relevant nodes of the
gas infrastructure that critically affect gas supply or gas demand. Particularly, nodes that transfer
large amounts of gas to several other nodes have great relevance in the network from a supply-side
perspective, whereas nodes that receive large amounts of gas from a small number or just from one
single source node have great relevance from a demand-side perspective.

DEA is a robust non-parametric linear programming-based method, which is commonly used to
perform benchmarking studies and efficiency analyses [56]. DEA calculates the relative efficiency of a
sample of decision-making units, denominated as DMUs, which are assimilated to production entities
that transform a set of inputs into another set of outputs. The efficiency of each DMU is measured as the
ratio of weighted outputs to weighted inputs, and 100% efficient DMUs are identified from this sample
and combined to generate an efficient frontier, thus providing a benchmark that is used to compute the
relative efficiency of inefficient DMUs [57]. The goal of the DEA linear programming model is to find
the output and input weights maximizing the DMU efficiencies. The literature has emphasized its
strengths in comparison to other methods, i.e., there is no need to specify the relationship between
inputs and outputs and to introduce subjective judgements in the analysis [58]. In the proposed
framework, each node of the gas network is conceptualized as a DMU, whereas SNA metrics are
utilized as the inputs and outputs in the DEA model. Thus, DEA is effectively employed to combine
several performance parameters of the gas pipeline network nodes, even conflicting, and to obtain a
single index to compare them.

Assume there are n gas network nodes that should be assessed (hereafter, DMUs). Every DMU
j (j = 1, . . . ,n) produces s different outputs yrj (r = 1, . . . ,s) by consuming m different inputs xij
(i = 1, . . . ,m). For DMU j, ωrj and µi j are the weights of outputs yrj and inputs xij, respectively. Both
output and input variables are measured by SNA metrics relative to the gas network. Under the
assumption of constant returns to scale and an output orientation of the production function that
transforms inputs into outputs, the DEA linear programming model that calculates the efficiency of
the generic DMU j can be formulated as follows:

min
m∑

i=1
µi jxi j

s.t.
s∑

r=1
ωrjyrj = 1

m∑
i=1

µi jxil −
s∑

r=1
ωrjyrl ≥ 0 l = 1, . . . , n

ωrj ≥ 0,µi j ≥ 0, r = 1, . . . , s and i = 1, . . . , m

(1)
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The basic DEA model has a weak discriminating capability and is ineffective in generating
rankings across DMUs because more than one of them might be scored as 100% efficient. A more useful
DEA-based approach to rank DMUs is offered by the calculation of the DMU cross-efficiency [59]. The
cross-efficiency DEA method has been extensively utilized to generate rankings among units because
it has a stronger discriminating power than conventional DEA [59–61]. In the proposed framework,
two cross-efficiency DEA models are implemented to generate separate rankings of the same interstate
natural gas network nodes employing different sets of SNA metrics either as inputs or outputs.

Assume there are n gas network nodes that should be assessed (hereafter, DMUs). Every DMU
j (j = 1, . . . ,n) produces s different outputs yrj (r = 1, . . . ,s) by consuming m different inputs xij
(i = 1, . . . ,m). Both output and input variables are measured by SNA metrics relative to the gas network.
In the multiplier formulation, assuming a game-theoretic perspective, the cross-efficiency, αkj, of each
DMU j relative to DMU k can be defined as [62]:

αkj=

m∑
i=1

µk
i jxi j

s∑
r=1

ωk
rj yrj

k = 1, . . . , n (2)

From the game-theoretic perspective, the efficiency of every DMU j is maximized under the
assumption that the efficiency measurements of any other DMU k (k = 1, . . . ,n and k , j) do not decrease.
This secondary goal is introduced to reduce the arbitrariness in the search of optimal weights and,
finally, in the DMU ranking. Thus, the DMU cross-efficiency score is the pay-off of a non-cooperative
game. To calculate the cross-efficiency score of DMU k related to DMU j, input and output weights that
maximize the DMU k efficiency with the constraint that DMU j efficiency does not deteriorate have to
be found [62]. The following model can be used to calculate the cross-efficiency score of every DMU j
from the output orientation perspective [63]:

min
m∑

i=1
µk

i jxi j

s.t.
s∑

r=1
ωk

rjyrj = 1
m∑

i=1
µk

i jxil −
s∑

r=1
ωk

rjyrl ≥ 0 l = 1, . . . , n
m∑

i=1
µk

i jxik − αk ×
s∑

r=1
ωk

rjyrk ≤ 0 l = 1, . . . , n

ωk
rj ≥ 0,µk

i j ≥ 0, r = 1, . . . , s and i = 1, . . . , m

αk ≥ 1 is a parameter

(3)

In Equation (3), a larger αk score indicates a worse performance and 1
αk

provides a measurement
for the DMU k cross-efficiency. For every DMU j, Equation (3) is solved n times. Liang et al. [62]
suggested an iterative algorithm to determine the best average output-oriented game cross-efficiency
for DMU j.

4. Illustrative Case

The US natural gas industry is supported by a wide and intricate infrastructure, including a
network of about 491,000 km of interconnected pipelines, which are operated by 210 independent
companies. The largest part of the gas transmission network (roughly 70%) is classified as interstate
pipeline. This interstate natural gas network serves 11 major routes, from the production areas to
the consumption areas, as follows: Five routes of transport gas from the production areas of the
southwest (Texas, Louisiana, Gulf Coast), four routes transmitting gas to the USA from Canada, and
two routes in the Rocky Mountains area. Several hubs are placed along these routes to support
exchanges, transfer, temporary storage, distribution, and price setting. An extended description of the
interstate USA gas network can be found in the (Energy Information Administration) EIA website [64].
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The supply of natural gas in the two-thirds of the US states totally depends on the interstate pipeline
transmission network.

As the map in Figure 1 shows, the interstate pipeline network supplies natural gas to almost every
major US metropolitan area. The 31 states emphasized in grey color receive more than 85% of the
natural gas they consume from the interstate infrastructure.
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Figure 1. The interstate US pipeline natural gas network (Source: Energy Information Administration,
Office of Oil and Gas, Natural Gas Division, Gas Transportation Information System, http://www.eia.
doe.gov/pub/oil_gas/natural_gas/analysis_publications/ngpipeline/dependstates_map.html).

4.1. Data and Variables

Annual data relative to the flow of natural gas from state to state along the US interstate gas
pipelines were retrieved from the EIA database for the period 2013–2017 [65]. These data were used to
assemble the adjacency matrix relative to the gas network for every year. The following SNA centrality
metrics were calculated for every matrix: In-degree, out-degree, emission degree, reception degree,
flow betweenness, and sociometric status. Because of the high correlation between the emission degree
and the sociometric status, the latter was omitted from the analysis. The basic network statistics are
provided in Table 2. Figure 2 shows the representation of the interstate US natural gas infrastructure as
a graph. Table 3 displays the mean and maximum values relative to SNA indexes from 2013 to 2017.
As the data show, both the mean and maximum values increased from 2013 to 2017 for all indexes.

Table 2. Basic network statistics for the interstate US gas transmission infrastructure.

Statistics
Year

2017 2016 2015 2014 2013

Number of nodes 59 59 59 59 59
Number of edges 195 194 193 189 191

Table 3. Mean and maximum values of SNA indexes.

Index
2017 2016 2015 2014 2013

Mean Max Mean Max Mean Max Mean Max Mean Max

Emission degree 440.28 1896.64 418.17 1746.64 404.97 1719.06 381.97 1716.02 381.94 1603.75
Reception degree 440.28 2176.57 418.17 1955.53 404.97 1891.80 381.97 1820.33 381.94 1793.66

Out-degree 0.06 0.10 0.06 0.10 0.06 0.10 0.05 0.10 0.05 0.10
In-degree 0.06 0.10 0.06 0.10 0.06 0.10 0.05 0.10 0.05 0.10

Flow betweenness 174.65 887.98 175.55 871.38 176.83 872.24 184.86 811.52 178.59 835.76

http://www.eia.doe.gov/pub/oil_gas/natural_gas/analysis_publications/ngpipeline/dependstates_map.html
http://www.eia.doe.gov/pub/oil_gas/natural_gas/analysis_publications/ngpipeline/dependstates_map.html
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4.2. Cross-Efficiency DEA Model Specification

Two cross-efficiency DEA model specifications were used to aggregate SNA indexes and rank
network nodes, the first one evaluating each node from the supply-side perspective and the second
one evaluating it from the demand-side perspective. Two different sets of SNA indexes were chosen
as input and output variables for every model to perform DEA. Table 4 shows the input and output
variables for both models. The demand-side DEA model utilizes the in-degree and the reception
degree indexes as the only input and output, respectively. It was assumed that a node is more critical
than others in the network if it receives a higher amount of gas. However, given the same amount of
gas received by nodes, if one of them receives gas from several nodes, the latter is less critical than the
others. Indeed, it is assumed that redundancy decreases local vulnerability from the demand-side
perspective. In the supply-side DEA model, three outputs from the set of SNA indexes are used, e.g.,
emission degree, out-degree, and flow betweenness. From the supply-side, it is assumed that the
greater the number of nodes to which a node supplies gas and the greater the amount of gas it supplies
is, the more critical that node is in the network. Furthermore, the more the node contributes to the
volume of gas transmitted in the network, the more critical it is. For all DMUs, a constant factor having
a measurement equal to one was included in the model specification as an input.

Table 4. Input and output variables.

Perspective Emission
Degree

Reception
Degree Out-Degree In-Degree Flow

Betweenness

Demand-side - Output - Input -
Supply-side Output - Output - Output

In both DEA models, constant returns to scale and output orientation were used to solve
Equation (2). The two indexes were aggregated to have an overall cross-efficiency measurement
using the Shannon’s entropy index to generate weights applying the procedure suggested in the
literature [66–68].

4.3. Results

In this section, results from the implementation of the SNA-DEA prioritization method for the US
interstate gas industry are presented. Higher cross-efficiency scores indicate more critical nodes in
the network.
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Figure 3 illustrates changes in the cross-efficiency mean values relative to the whole network
from 2013 to 2017. Cross-efficiencies were computed from both perspectives of the supply side and
demand side. The overall cross-efficiency measurement was obtained as the weighted average of the
two previous cross-efficiencies utilizing the set of weights generated through the Shannon’s entropy
index procedure. For the sake of brevity, the list of weights was not included in the paper.
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Figure 3. Cross-efficiency mean values.

From the demand-side perspective, the cross-efficiency mean value was slightly diminished from
2013 to 2017, even though the average reception degree increased by roughly 15%. On the contrary,
from the supply-side perspective, there was a small increase of the cross-efficiency mean score from
2013 to 2017. These findings indicate that the topological characteristics of the US interstate gas network
did not substantially change over time from 2013 to 2017 with respect to major critical nodes.

Figures 4–8 show the outcome of a more in-depth analysis of the cross-efficiency measurements.
For every year, the cross-efficiency scores relative to all nodes are reported. Table A1 in the Appendix A
presents all cross-efficiency measurements. From the demand-side perspective, only one node—NO21
(Louisiana State)—achieves a 100% cross-efficiency score, ranking the state of Louisiana in first place
as the most critical node in the network. The cross-efficiency score of the node NO29 (Mississippi
State) is between 0.758 and 0.776. This node ranks in second place. As already mentioned, there
was a little change over the years, and only for a few nodes of the network were there appreciable
cross-efficiency variations. That is the case of South Carolina state (node NO49), whose cross-efficiency
score decreased from 0.524 to 0.259. When network nodes are assessed from the supply-side perspective,
the cross-efficiency analysis identifies a larger number of critical nodes. In 2017, four nodes—NO7,
NO20, NO45, and NO51 (Colorado, Kentucky, Pennsylvania, Tennessee)—achieve a cross-efficiency
value between 0.999 and 1. These nodes are the most critical ones from the supply perspective.
However, there is a great number of nodes achieving remarkable cross-efficiency measurements, such
as the states of Arkansas (0.831), Illinois (0.831), Maryland (0.830), Minnesota (0.832), Nebraska (0.830),
New York (0.867), Ohio (0.830), Oklahoma (0.833), South Dakota (0.828), Texas (0.888), West Virginia
(0.830), and Wyoming (0.832). As in the demand-side perspective, there has not been a significant
change in the cross-efficiency scores of individual nodes during the time period under investigation,
except for a restricted number of nodes, such as Georgia (NO12) and Mississippi (NO29), whose
cross-efficiencies passed from 0.497 to 0.664 and from 0.593 to 0.726 in 2013 and in 2017, respectively.
Generally, cross-efficiency measurements tend to be very similar from year to year as interstate gas
flows remained almost unchanged from 2013 to 2017.
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Figures 9–11 display the ranking of network nodes using a histogram graph. On the vertical axis
of the graph, cross-efficiency scores are reported. The bars are placed on the graph in rank order. Thus,
bars at the left side have the highest cross-efficiency score. The graphical analysis was restricted to
year 2017 only. The results clearly show that the influence of a node is not equal from the two different
perspectives that were adopted to assess the network. Indeed, the ranking of network nodes in Figure 9
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significantly differs from the ranking in Figure 10. That supports the idea that it is necessary to collect
information and assess the gas network from different perspectives to gain an in-depth understanding
of its capacity and performance, and finally identify critical nodes. Additionally, the different rankings
provided by the two assessment perspectives suggest that the supply-side perspective appears more
critical than the demand-side one.
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5. Conclusions

In this paper, a prioritization framework to uncover the critical nodes of gas pipeline networks
was proposed. This method considers the topological characteristics of the network and calculates a set
of metrics typical of the social network analysis. Finally, these metrics were used as input and output
variables of a data envelopment analysis model to measure a cross-efficiency index, which identified
the most influencing nodes in the network. Cross-efficiency DEA allows nodes in the network to be
easily ranked. The framework was implemented to study the US interstate gas network between 2013
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and 2017 from the demand- and supply-side perspectives. A comprehensive score to prioritize the
infrastructure nodes was obtained using the Shannon’s entropy index. The aggregating procedure
based on the Shannon’s entropy index allowed the node rankings obtained to be merged assuming
different perspectives, providing a Pareto optimal solution that was better than averaging individual
ranking scores [67].

The findings of this study confirm that it is necessary to consider different perspectives in the analysis
of gas networks. Indeed, adopting the two assessment perspectives’ different nodes of the US interstate
gas pipelines network emerged as being important and critical. That means that the elements of the
network that have relevance for ensuring supply stability in transmitting gas from a node to other nodes
do not always have relevance as the elements that are necessary for assuring local gas availability.

As the main purpose of this paper was to illustrate the evaluation framework, the presentation of
results relative to the investigation of the US gas infrastructure criticalities was restricted only to five
years for the sake of brevity and to avoid making the analysis cumbersome. On the other hand, a full
study covering the time period from 2007 to 2017 revealed that there have not been significant changes.

Of course, although the information provided by such a framework is important for the preliminary
assessment of gas pipeline networks and the identification of critical nodes, a more comprehensive
assessment of the gas network capacity and performance should employ complementary methods,
including further information, such as the number of gas pipeline operators, their operational integrity, and
ability to recover rapidly after supply interruption; the impact of any prolonged infrastructure downtime;
the storage facility capacity; local gas demand; and infrastructure reliability level, in the analysis.

The proposed framework can be easily applied to the assessment of other pipeline industries or
similar infrastructure systems if the characteristics of the network are taken into account. Information
provided by the implementation of this method can be important for the operation and improvement
of the network (i.e., maintenance, new branch construction), design, and planning. The same method
can be extended to the assessment of the edges of the network (e.g., the pipelines).

In this paper, the framework only considered the basic structural characteristics of the US interstate
natural gas infrastructure as a graph, focusing on the connectivity properties of the network. The
assessment of the critical nodes of the network assumed that its vulnerability is correlated to some
structural features of the network. Of course, this view is reductive as the hydro-thermal characteristics
of natural gas that impose constraints on pipeline operation were not considered in the analysis.
Natural gas transportation infrastructure is sensitive to gas quality, thermodynamic properties, and
physical features (e.g., its low volumetric energy density, minimum delivery pressures at offtake points,
maximum operating pipeline pressures, maximum available compression power, etc.), and storage
difficulties make it difficult to alleviate supply shocks. However, the proposed framework is scalable
and flexible, and it can be expanded and improved in many directions in the future. Particularly, it
can integrate data from fluid dynamics models, providing a more accurate model of the natural gas
system. For instance, in order to take into account constraints related to the capacity of nodes that
supply gas and transmission links, the max-flow betweenness centrality index might be included in
Equations (2) and (3) rather than the flow betweenness index, as in Fang and Zio [69]. Quality metrics
of the gas flow stream can also be included as further outputs in Equation (3). Additionally, several
time-dependent scenarios can be constructed to follow the evolution of the gas network over time, thus
detecting which nodes and links change, when these changes occur, and evaluating the impact this
might have on the topological structure while performing the analysis within a discrete time domain.
The SNA literature provides suggestions on how to measure network centrality indexes accounting for
the influence of time [70,71].

Funding: This research received no external funding.

Acknowledgments: I thank the anonymous reviewers for their careful reading of my manuscript and their
insightful comments and suggestions.

Conflicts of Interest: The author declares no conflict of interest.



Energies 2019, 12, 4597 14 of 18

Appendix A

Table A1. Cross-efficiency measurements.

Node State
2017 2016 2015 2014 2013

D S OE D S OE D S OE D S OE D S OE

NO1 Alabama 0.595 0.670 0.616 0.631 0.670 0.643 0.644 0.672 0.652 0.860 0.680 0.807 0.815 0.680 0.775
NO2 Alberta 0.000 0.165 0.047 0.000 0.166 0.048 0.000 0.166 0.049 0.000 0.164 0.049 0.000 0.165 0.049
NO3 Arizona 0.289 0.498 0.349 0.322 0.498 0.373 0.333 0.498 0.381 0.347 0.495 0.391 0.352 0.497 0.395
NO4 Arkansas 0.240 0.831 0.409 0.228 0.831 0.404 0.223 0.831 0.401 0.262 0.827 0.430 0.266 0.829 0.433
NO5 British Columbia 0.005 0.332 0.098 0.005 0.332 0.100 0.005 0.332 0.101 0.005 0.330 0.102 0.006 0.331 0.102
NO6 California 0.252 0.500 0.323 0.280 0.499 0.344 0.289 0.499 0.351 0.324 0.497 0.375 0.306 0.497 0.363
NO7 Colorado 0.138 0.997 0.384 0.154 0.997 0.400 0.159 0.997 0.405 0.165 0.992 0.411 0.172 0.995 0.417
NO8 Connecticut 0.096 0.510 0.214 0.104 0.506 0.222 0.096 0.506 0.216 0.100 0.501 0.219 0.101 0.501 0.220
NO9 Delaware 0.039 0.331 0.122 0.043 0.331 0.127 0.045 0.331 0.129 0.041 0.328 0.126 0.028 0.329 0.118

NO10 District of Columbia 0.012 0.001 0.009 0.013 0.001 0.009 0.008 0.001 0.006 0.014 0.001 0.010 0.014 0.001 0.010
NO11 Florida 0.272 0.001 0.195 0.262 0.001 0.186 0.259 0.001 0.183 0.270 0.001 0.190 0.274 0.001 0.193
NO12 Georgia 0.289 0.664 0.396 0.279 0.664 0.391 0.288 0.664 0.398 0.282 0.495 0.345 0.286 0.497 0.349
NO13 Gulf of Mexico 0.534 0.672 0.574 0.595 0.675 0.618 0.615 0.676 0.633 0.640 0.680 0.652 0.650 0.691 0.662
NO14 Gulf of Mexico Deepwater 0.000 0.168 0.048 0.000 0.169 0.049 0.000 0.169 0.050 0.000 0.170 0.051 0.000 0.173 0.051
NO15 Idaho 0.088 0.663 0.253 0.098 0.663 0.263 0.101 0.663 0.266 0.105 0.659 0.270 0.107 0.661 0.271
NO16 Illinois 0.320 0.831 0.466 0.356 0.666 0.447 0.377 0.665 0.461 0.341 0.662 0.436 0.346 0.666 0.441
NO17 Indiana 0.425 0.666 0.494 0.459 0.666 0.520 0.434 0.666 0.502 0.405 0.662 0.481 0.411 0.664 0.486
NO18 Iowa 0.146 0.498 0.247 0.162 0.498 0.261 0.168 0.498 0.265 0.175 0.496 0.270 0.177 0.498 0.272
NO19 Kansas 0.278 0.666 0.389 0.309 0.665 0.413 0.320 0.665 0.421 0.333 0.662 0.431 0.347 0.663 0.441
NO20 Kentucky 0.393 0.999 0.567 0.505 0.999 0.650 0.483 0.999 0.634 0.412 0.997 0.586 0.418 0.998 0.590
NO21 Louisiana 1.000 0.545 0.870 1.000 0.547 0.868 1.000 0.549 0.868 1.000 0.571 0.873 1.000 0.584 0.877
NO22 Maine 0.048 0.333 0.129 0.053 0.332 0.135 0.055 0.332 0.136 0.058 0.331 0.139 0.058 0.331 0.139
NO23 Manitoba 0.063 0.166 0.093 0.071 0.166 0.098 0.073 0.166 0.100 0.076 0.165 0.102 0.077 0.166 0.103
NO24 Maryland 0.185 0.830 0.369 0.189 0.830 0.376 0.187 0.830 0.376 0.183 0.826 0.374 0.186 0.827 0.376
NO25 Massachusetts 0.065 0.522 0.196 0.072 0.517 0.202 0.066 0.517 0.198 0.069 0.524 0.204 0.070 0.519 0.203
NO26 Mexico 0.322 0.342 0.328 0.256 0.339 0.280 0.245 0.339 0.272 0.250 0.337 0.276 0.163 0.338 0.215
NO27 Michigan 0.245 0.664 0.365 0.273 0.664 0.387 0.282 0.664 0.394 0.294 0.660 0.403 0.299 0.662 0.407
NO28 Minnesota 0.169 0.832 0.359 0.188 0.831 0.376 0.195 0.832 0.382 0.203 0.827 0.388 0.206 0.830 0.391
NO29 Mississippi 0.772 0.726 0.759 0.776 0.717 0.759 0.771 0.715 0.755 0.770 0.584 0.715 0.758 0.593 0.709
NO30 Missouri 0.202 0.497 0.287 0.225 0.498 0.305 0.192 0.498 0.281 0.199 0.495 0.287 0.202 0.497 0.290
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Table A1. Cont.

Node State
2017 2016 2015 2014 2013

D S OE D S OE D S OE D S OE D S OE

NO31 Montana 0.084 0.501 0.203 0.093 0.499 0.212 0.096 0.499 0.215 0.100 0.496 0.218 0.102 0.498 0.219
NO32 Nebraska 0.222 0.830 0.396 0.248 0.830 0.418 0.256 0.830 0.424 0.267 0.825 0.432 0.284 0.827 0.445
NO33 Nevada 0.099 0.333 0.166 0.110 0.332 0.175 0.113 0.333 0.178 0.118 0.167 0.133 0.120 0.332 0.183
NO34 New Brunswick 0.074 0.166 0.100 0.082 0.166 0.107 0.085 0.166 0.109 0.089 0.164 0.111 0.090 0.165 0.112
NO35 New Hampshire 0.039 0.512 0.175 0.044 0.508 0.179 0.045 0.508 0.181 0.047 0.505 0.183 0.048 0.504 0.183
NO36 New Jersey 0.329 0.332 0.330 0.362 0.333 0.354 0.375 0.332 0.362 0.384 0.331 0.368 0.365 0.332 0.355
NO37 New Mexico 0.292 0.498 0.351 0.325 0.498 0.375 0.336 0.498 0.383 0.350 0.496 0.393 0.355 0.497 0.397
NO38 New York 0.310 0.867 0.469 0.339 0.858 0.491 0.342 0.858 0.493 0.352 0.861 0.503 0.354 0.856 0.503
NO39 North Carolina 0.291 0.333 0.303 0.302 0.332 0.311 0.312 0.332 0.318 0.292 0.175 0.257 0.272 0.168 0.241
NO40 North Dakota 0.117 0.499 0.226 0.131 0.498 0.238 0.135 0.499 0.242 0.074 0.495 0.199 0.143 0.497 0.248
NO41 Ohio 0.341 0.830 0.481 0.367 0.830 0.502 0.347 0.830 0.489 0.340 0.828 0.485 0.325 0.828 0.475
NO42 Oklahoma 0.133 0.833 0.333 0.148 0.832 0.347 0.153 0.832 0.352 0.159 0.662 0.308 0.161 0.831 0.360
NO43 Ontario 0.156 0.498 0.254 0.174 0.498 0.269 0.180 0.498 0.273 0.177 0.495 0.272 0.180 0.496 0.274
NO44 Oregon 0.165 0.499 0.260 0.183 0.499 0.275 0.189 0.499 0.280 0.197 0.498 0.286 0.200 0.497 0.288
NO45 Pennsylvania 0.281 0.999 0.486 0.312 1.000 0.513 0.323 1.000 0.521 0.336 0.997 0.533 0.337 0.998 0.533
NO46 Quebec 0.019 0.332 0.109 0.021 0.331 0.112 0.022 0.331 0.113 0.023 0.329 0.114 0.023 0.330 0.114
NO47 Rhode Island 0.069 0.334 0.145 0.077 0.333 0.151 0.062 0.333 0.141 0.064 0.331 0.144 0.065 0.331 0.144
NO48 Saskatchewan 0.007 0.331 0.100 0.008 0.332 0.103 0.008 0.332 0.103 0.009 0.330 0.104 0.009 0.331 0.104
NO49 South Carolina 0.259 0.333 0.280 0.266 0.332 0.285 0.275 0.333 0.292 0.516 0.331 0.461 0.524 0.332 0.467
NO50 South Dakota 0.060 0.828 0.279 0.066 0.828 0.289 0.068 0.828 0.291 0.071 0.822 0.294 0.072 0.825 0.296
NO51 Tennessee 0.424 1.000 0.589 0.432 1.000 0.598 0.390 1.000 0.569 0.373 1.000 0.559 0.359 1.000 0.550
NO52 Texas 0.233 0.888 0.420 0.238 0.879 0.425 0.246 0.879 0.431 0.171 0.892 0.385 0.268 0.896 0.455
NO53 Utah 0.198 0.665 0.332 0.222 0.665 0.352 0.230 0.665 0.357 0.239 0.662 0.365 0.243 0.663 0.368
NO54 Vermont 0.006 0.001 0.004 0.006 0.001 0.005 0.006 0.001 0.005 0.007 0.001 0.005 0.007 0.001 0.005
NO55 Virginia 0.152 0.665 0.299 0.159 0.665 0.306 0.164 0.499 0.262 0.162 0.663 0.310 0.164 0.663 0.312
NO56 Washington 0.156 0.498 0.254 0.174 0.498 0.269 0.180 0.498 0.273 0.187 0.495 0.279 0.190 0.496 0.281
NO57 West Virginia 0.263 0.830 0.425 0.277 0.831 0.438 0.277 0.830 0.439 0.239 0.825 0.413 0.206 0.828 0.390
NO58 Wisconsin 0.275 0.498 0.339 0.307 0.498 0.362 0.317 0.498 0.370 0.330 0.495 0.379 0.335 0.496 0.383
NO59 Wyoming 0.145 0.832 0.342 0.162 0.832 0.357 0.167 0.832 0.362 0.174 0.828 0.368 0.176 0.831 0.371

Note: D = Demand-side; S = Supply-side; OE = Overall efficiency.
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