Study on the Combustion Process of Premixed Methane Flames with CO2 Dilution at Elevated Pressures
Abstract
:1. Introduction
- -
- a decrease in flame temperature;
- -
- a reduction of thermal NOx emissions;
- -
- relatively slower heat release;
- -
- suppression of combustion oscillations.
2. Experimental Study
2.1. Test Rig
2.2. Measurements
3. Numerical Modeling
4. Experimental Results and Discussion
4.1. Emission of Pollutant Compounds
4.2. Flame Structure
5. Conclusions
- Experimental and numerical results showed that dilution of the methane/air mixture by carbon dioxide decreased the emission of nitrogen oxides at atmospheric and elevated pressures. The emissions drop by up to 45% in atmospheric conditions and 30% at elevated pressure. In the pressurized system, the composition of NOx was changing while the NO2/NOx ratio increased.
- Introduction of CO2 changed the flame structure, causing elongation of the reaction zone and increasing the flame volume, especially in lean mixture conditions. It provided a more distributed heat release, resulting in an increased flame stability.
- The combustion setup in the pilot mode combustion increased flame stability, but also increased NOx and CO emission. The effect of PMC on pollutant emission increased with an increasing share of the secondary fuel, but was mitigated by an increase in the CO2 dilution rate.
- The presented model of numerical calculation of NOx emission ensured good quantitative and qualitative agreement with experimental data, indicating that it can be used as a tool for predicting NOx emission in other combustion systems.
Funding
Conflicts of Interest
Nomenclature
CCS | carbon capture and storage |
EGR | external gas recirculation |
ERZ | external recirculation zone |
F1 | primary fuel |
F2 | secondary fuel delivered in PMC |
ICCD | intensified digital camera |
NG | natural gas |
OH | hydroxyl radicals |
PLIF | planar laser induced fluorescence |
PMC | pilot mode combustion |
RE | renewable energy sources |
TIT | turbine inlet temperature |
Qload | heat delivered to combustion chamber |
Qloss | heat loos from combustion chamber |
SL | laminar flame speed |
TA | adiabatic flame temperature |
Tsub | substrates temperature |
XMP | flame front position |
ub | bulk velocity |
ϕ | equivalence ratio |
References
- UN. Convention on Climate Change: Climate Agreement of Paris; United Nations: New York, NY, USA, 2015; pp. 1–27. [Google Scholar]
- Luo, X.; Wang, J.; Dooner, M.; Clarke, J. Overview of current development in electrical energy storage technologies and the application potential in power system operation. Appl. Energy 2015, 137, 511–536. [Google Scholar] [CrossRef] [Green Version]
- Saboori, H.; Hemmati, R.; Ghiasi, S.M.S.; Dehghan, S. Energy storage planning in electric power distribution networks—A state-of-the-art review. Renew. Sustain. Energy Rev. 2017, 79, 1108–1121. [Google Scholar] [CrossRef]
- Bounaceur, R.; Lape, N.; Roizard, D.; Vallieres, C.; Favre, E. Membrane processes for post-combustion carbon dioxide capture: A parametric study. Energy 2006, 31, 2220–2234. [Google Scholar] [CrossRef]
- Best, T.; Finney, K.N.; Ingham, D.B.; Pourkashanian, M. Impact of CO2-enriched combustion air on micro-gas turbine performance for carbon capture. Energy 2016, 115, 1138–1147. [Google Scholar] [CrossRef]
- Ali, U.; Hughes, K.J.; Ingham, D.B.; Ma, L.; Pourkashanian, M. Effect of the CO2 enhancement on the performance of a micro gas turbine with a pilot-scale CO2 capture plant. Chem. Eng. Res. Des. 2017, 117, 11–23. [Google Scholar] [CrossRef]
- Baker, R.W.; Freeman, B.; Kniep, J.; Wei, X.; Merkel, T. CO2 capture from natural gas power plants using selective exhaust gas recycle membrane designs. Int. J. Greenh. Gas Control 2017, 66, 35–47. [Google Scholar] [CrossRef]
- ElKady, A.M.; Evulet, A.; Brand, A.; Ursin, T.P.; Lynghjem, A. Application of Exhaust Gas Recirculation in a DLN F-Class Combustion System for Postcombustion Carbon Capture. J. Eng. Gas Turbines Power 2009, 131, 034505. [Google Scholar] [CrossRef]
- Lipardi, A.C.A.; Versailles, P.; Watson, G.M.G.; Bourque, G.; Bergthorson, J.M. Experimental and numerical study on NOxformation in CH4–air mixtures diluted with exhaust gas components. Combust. Flame 2017, 179, 325–337. [Google Scholar] [CrossRef]
- Lee, K.; Kim, H.; Park, P.; Yang, S.; Ko, Y. CO2 radiation heat loss effects on NOx emissions and combustion instabilities in lean premixed flames. Fuel 2013, 106, 682–689. [Google Scholar] [CrossRef]
- Lafay, Y.; Taupin, B.; Martins, G.; Cabot, G.; Renou, B.; Boukhalfa, A. Experimental study of biogas combustion using a gas turbine configuration. Exp. Fluids 2007, 43, 395–410. [Google Scholar] [CrossRef] [Green Version]
- De Persis, S.; Cabot, G.; Pillier, L.; Gökalp, I.; Boukhalfa, A.M. Study of lean premixed methane combustion with CO2 dilution under gas turbine conditions. Energy Fuels 2013, 27, 1093–1103. [Google Scholar] [CrossRef]
- Giorgetti, S.; Bricteux, L.; Parente, A.; Blondeau, J.; Contino, F.; De Paepe, W. Carbon capture on micro gas turbine cycles: Assessment of the performance on dry and wet operations. Appl. Energy 2017, 207, 243–253. [Google Scholar] [CrossRef]
- Kun-Balog, A.; Sztankó, K.; Józsa, V. Pollutant emission of gaseous and liquid aqueous bioethanol combustion in swirl burners. Energy Convers. Manag. 2017, 149, 896–903. [Google Scholar] [CrossRef]
- Dolton, G.L. Pannonian Basin Province, Central Europe (Province 4808)—Petroleum Geology, Total Petroleum Systems, and Petroleum Resource Assessment. USGS Bull. 2006, 2204-B, 1–47. [Google Scholar]
- Daniele, S.; Jansohn, P.; Boulouchos, K. Flame Front Characteristic and Turbulent Flame Speed of Lean Premixed Syngas Combustion at Gas Turbine Relevant Conditions. In Proceedings of the ASME Turbo Expo 2009: Power for Land, Sea, and Air Volume 2: Combustion, Fuels and Emissions, Orlando, FL, USA, 8–12 June 2009; pp. 393–400. [Google Scholar]
- Griebel, P.; Bombach, R.; Inauen, A.; Schären, R.; Schenker, S.; Siewert, P. Flame Characteristics and Turbulent Flame Speeds of Turbulent, High-Pressure, Lean Premixed Methane/Air Flames. In Proceedings of the ASME Turbo Expo 2005: Power for Land, Sea, and Air Volume 2: Turbo Expo 2005, Reno, NV, USA, 6–9 June 2005; pp. 405–413. [Google Scholar]
- Goodwin, D.G.; Moffat, H.K.; Speth, R.L. Cantera: An Object- Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes. Available online: https://cantera.org/ (accessed on 10 September 2018).
- Siewert, P. Flame Front Characteristics of Turbulent Premixed Lean Methane/Air Flames at High-Pressure and High-Temperature; Swiss Federal Institute of Technology ETH-Zurich: Zurich, Switzerland, 2005. [Google Scholar]
- Ranzi, E.; Frassoldati, A.; Grana, R.; Cuoci, A.; Faravelli, T.; Kelley, A.P.; Law, C.K. Hierarchical and comparative kinetic modeling of laminar flame speeds of hydrocarbon and oxygenated fuels. Prog. Energy Combust. Sci. 2012, 38, 468–501. [Google Scholar] [CrossRef]
- Frassoldati, A.; Cuoci, A.; Faravelli, T.; Niemann, U.; Ranzi, E.; Seiser, R.; Seshadri, K. An experimental and kinetic modeling study of n-propanol and iso-propanol combustion. Combust. Flame 2010, 157, 2–16. [Google Scholar] [CrossRef]
- Sung, C.J.; Law, C.K.; Chen, J.-Y. Augmented Reduced Mechanisms for NO Emission in Methane Oxidation. Combust. Flame 2001, 125, 906–919. [Google Scholar] [CrossRef]
- Tian, Z.; Li, Y.; Zhang, L.; Glarborg, P.; Qi, F. An experimental and kinetic modeling study of premixed NH3/CH4/O2/Ar flames at low pressure. Combust. Flame 2009, 156, 1413–1426. [Google Scholar] [CrossRef]
- Warnatz, J.; Maas, U.; Dibble, R.W. Combustion: Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation; Springer: Berlin/Heidelberg, Germany, 2006; ISBN 9783540453635. [Google Scholar]
- Miller, J.A.; Bowman, C.T. Mechanism and modeling of nitrogen chemistry in combustion. Prog. Energy Combust. Sci. 1989, 15, 287–338. [Google Scholar] [CrossRef]
- Hunderup, J.W.; Roby, R.J. An experimental investigation of the conversion of NO to NO2 at high pressure. In Proceedings of the ASME 1995 International Gas Turbine and Aeroengine Congress and Exposition, Houston, TX, USA, 5–8 June 1995; Volume 3. [Google Scholar]
- Directive, C. Directive 2010/75/EU of the European Parliament and of the Council of 24 November 2010 on industrial emissions (integrated pollution prevention and control) (Recast) (Text with EEA relevance). Off. J. Eur. Union L 2010, 334, 17–119. [Google Scholar]
Analyzer Name (Method) | Used Range | Accuracy |
---|---|---|
Oxymat 5E O2 (paramagnetic) | 0–25% | 1% of FS |
Ultramat 6 CO2 (infrared, IR) | 0–25% | 1% of FS |
Ultramat 6 CO (infrared, IR) | 0–11% | 1% of FS |
CLD 700EL ht NOx (chemiluminescence) | 0–0.01% | 1% of FS |
FS—full-scale operating range |
No | Fuel Name | Fuel Composition | Low Heating Value (LHV) | |
---|---|---|---|---|
CH4 | CO2 | |||
(vol %) | (vol %) | (MJ/m3) | ||
1 | M100 | 100 | 0 | 35.8 |
2 | M85 | 85 | 15 | 30.4 |
3 | M70 | 70 | 30 | 25.1 |
Fuel | M100 | M85 | M70 |
---|---|---|---|
Primary air/fuel mixture temperature (K) | 633 | 628 | 631 |
Primary air/fuel mixture bulk velocity (m/s) | 40 | 40.5 | 40 |
Equivalence ratio | 0.42–0.84 | 0.41–0.84 | 0.44–0.86 |
Combustion pressure (MPa) | 0.1; 0.25; 0.5 | 0.1; 0.25; 0.5 | 0.1 |
Share of secondary fuel F2 (vol %) | 0; 10; 20 | 0; 10; 20 | 0; 10; 20 |
Average temperature of combustion chamber (K) | 1620 | 1580 | 1611 |
Parameter | Value |
---|---|
Fuel | M100, M85, M70 |
Air/fuel mixture temperature (K) | 630 |
Air/fuel mixture bulk velocity (m/s) | 40 |
Investigated models | 1D FreeFlame, BurnerFlame |
Domain size (m) | 0.5 |
Equivalence ratio | 0.4–0.9 |
Combustion pressure (MPa) | 0.1; 0.25; 0.5; 1.0 |
Kinetic reaction mechanism | SanDiego, Creck, GRI-Mech3.0, Tian |
Fuel | M100 | M85 | M70 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Adiabatic flame temperature, TA (K) | ||||||||||||
Pressure (MPa) | 0.1 | 0.25 | 0.5 | 1.0 | 0.1 | 0.25 | 0.5 | 1.0 | 0.1 | 0.25 | 0.5 | 1.0 |
ϕ = 0.91 | 2354 | 2379 | 2394 | 2408 | 2326 | 2349 | 2363 | 2375 | 2287 | 2307 | 2320 | 2332 |
ϕ = 0.77 | 2136 | 2219 | 2225 | 2229 | 2185 | 2193 | 2198 | 2202 | 2150 | 2158 | 2162 | 2166 |
ϕ = 0.67 | 1999 | 2068 | 2070 | 2071 | 2044 | 2046 | 2047 | 2049 | 2015 | 2017 | 2018 | 2019 |
ϕ = 0.59 | 1937 | 1938 | 1939 | 1940 | 1920 | 1920 | 1921 | 1921 | 1895 | 1895 | 1896 | 1896 |
ϕ = 0.50 | 1781 | 1781 | 1781 | 1782 | 1768 | 1767 | 1767 | 1768 | 1748 | 1748 | 1748 | 1748 |
Fuel | M100 | M85 | M70 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Laminar flame speed SL (m/s) | ||||||||||||
Pressure (MPa) | 0.1 | 0.25 | 0.5 | 1.0 | 0.1 | 0.25 | 0.5 | 1.0 | 0.1 | 0.25 | 0.5 | 1.0 |
ϕ = 0.91 | 1.55 | 1.18 | 0.95 | 0.66 | 1.43 | 1.07 | 0.82 | 0.59 | 1.28 | 0.95 | 0.71 | 0.51 |
ϕ = 0.77 | 1.34 | 1.00 | 0.83 | 0.54 | 1.25 | 0.92 | 0.69 | 0.50 | 1.13 | 0.83 | 0.62 | 0.44 |
ϕ = 0.67 | 1.10 | 0.79 | 0.67 | 0.41 | 1.03 | 0.74 | 0.54 | 0.37 | 0.94 | 0.67 | 0.48 | 0.33 |
ϕ = 0.59 | 0.87 | 0.60 | 0.51 | 0.28 | 0.82 | 0.56 | 0.39 | 0.26 | 0.75 | 0.51 | 0.36 | 0.23 |
ϕ = 0.50 | 0.58 | 0.37 | 0.32 | 0.15 | 0.55 | 0.35 | 0.23 | 0.14 | 0.51 | 0.32 | 0.21 | 0.13 |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ślefarski, R. Study on the Combustion Process of Premixed Methane Flames with CO2 Dilution at Elevated Pressures. Energies 2019, 12, 348. https://doi.org/10.3390/en12030348
Ślefarski R. Study on the Combustion Process of Premixed Methane Flames with CO2 Dilution at Elevated Pressures. Energies. 2019; 12(3):348. https://doi.org/10.3390/en12030348
Chicago/Turabian StyleŚlefarski, Rafał. 2019. "Study on the Combustion Process of Premixed Methane Flames with CO2 Dilution at Elevated Pressures" Energies 12, no. 3: 348. https://doi.org/10.3390/en12030348
APA StyleŚlefarski, R. (2019). Study on the Combustion Process of Premixed Methane Flames with CO2 Dilution at Elevated Pressures. Energies, 12(3), 348. https://doi.org/10.3390/en12030348