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Abstract: High penetration of large capacity wind turbines into power grid has led to serious concern
about its influence on the dynamic behaviors of the power system. Unbalanced grid voltage causing
DC-voltage fluctuations and DC-link capacitor large harmonic current which results in degrading
reliability and lifespan of capacitor used in voltage source converter. Furthermore, due to magnetic
saturation in the generator and non-linear loads distorted active and reactive power delivered to
the grid, violating grid code. This paper provides a detailed investigation of dynamic behavior and
transient characteristics of Doubly Fed Induction Generator (DFIG) during grid faults and voltage
sags. It also presents novel grid side controllers, Adaptive Proportional Integral Controller (API)
and Proportional Resonant with Resonant Harmonic Compensator (PR+RHC) which eliminate the
negative impact of unbalanced grid voltage on the DC-capacitor as well as achieving harmonic
filtering by compensating harmonics which improve power quality. Proposed algorithm focuses
on mitigation of harmonic currents and voltage fluctuation in DC-capacitor making capacitor more
reliable under transient grid conditions as well as distorted active and reactive power delivered to the
electric grid. MATLAB/Simulink simulation of 2 MW DFIG model with 1150 V DC-linked voltage
has been considered for validating the effectiveness of proposed control algorithms. The proposed
controllers performance authenticates robust, ripples free, and fault-tolerant capability. In addition,
performance indices and Total Harmonic Distortions (THD) are also calculated to verify the robustness
of the designed controller.

Keywords: Wind Turbine (WT); Doubly Fed Induction Generator (DFIG); unbalanced grid voltage;
DC-linked voltage control; Proportional Resonant with Resonant Harmonic Compensator (PR+HC)
controller; Adaptive Proportional Integral (API) control; power control

1. Introduction

Extinction and environmental concerns regarding the use of fossil fuels for power generation have
shifted the attention of scientists towards Renewable Energy (RE). Among all RE resources, wind power
generation has recorded significant growth in the last decade. With energy saving ambitions, by 2030
wind power will be able to supply 29.1% of the electricity needed worldwide and 34.5% by 2050 [1,2].
Energy quality is a significant feature in grid-connected converters, and wind power generators have a
high influence on the stability and security of the power grid. To meet the required results, WT systems
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must be continuously developed and their performance improved. In recent years, DFIG based WT
have become a well-known and widely installed due to their high efficiency, variable speed operation
(±33% around the synchronous speed), four quadrant active and reactive power capability, less power
losses, small converter rating (around 30% of generator rating), reduced mechanical stress and hence
minimized pulsating power and torque [3–6].

Since the DFIG stator and the grid are connected directly, during unbalanced grid voltage
conditions a negative sequence is added to stator flux, resulting in a flow of large negative sequential
currents in the rotor and stator causing second-order harmonic fluctuating power and electromagnetic
torque [7,8]. From both the Rotor Side Converter (RSC) and Grid Side Converter (GSC), active power
fluctuations flow through DC-linked capacitors as shown in Figure 1. resulting in voltage ripples in
the DC-link capacitor as well as significant second-order harmonic currents in the DC-capacitor [9],
which affect the DC-capacitor causing high power losses and increased operational temperature which
may evaporate the electrolyte faster making their lifespan shorter. In addition, fluctuations in torque
can cause wear and tear of mechanical parts such as the shaft and gear box [10]. Further, a comparison
of the high and low frequency ripple currents shows that ripple currents with low frequency are
more detrimental [11,12]. Hence, voltage ripples and converter DC-linked capacitor with large low
frequency currents under unbalanced conditions are the most serious issues of DFIG [8,9]. Under the
unbalanced condition the DC-voltage control in GSC differs slightly from the GSC for the DFIG,
because the DC-voltage ripples are not only caused by the unbalanced grid voltage, but also by RSC
fluctuating active power. These two disturbances i.e., active power fluctuation of RSC and unbalanced
grid voltage, should be rejected by GSC to ensure a constant DC-voltage.
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Numerous control strategies have been presented to decrease the voltage ripple for GSC controllers
under unbalanced voltage conditions. To regulate negative sequence current and positive currents at
the same time dual current control methods were designed [9,13–15]. Grid voltage and the desired
power ensure the calculation of negative and positive reference currents. By setting of the references
multiple control targets are available, like constant DC voltage, constant electromagnetic power,
constant stator power and balanced stator currents [14,15]. The GSC fluctuating active power output
must be equal to that of RSC under unbalanced conditions. Then the GSC reference current depends on
the RSC fluctuating active power [9,14]. Consequently, implementation of dual current control method
is not applicable in modular structural wind power converters. Another method to reduce voltage
ripples during unbalance grid voltage conditions is feed-forward control which comprising RSC
DC-current feed-forward control [16–19] and grid voltage feedforward control [20,21]. Feed-forward
control for RSC DC-current reduces the impact of fluctuating RSC active power while feed-forward
control for grid voltage reduces the impact on DC-capacitor due to unbalanced grid voltages.
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The feed-forward technique control performance may be degraded by the control delay, which results
in an addition of high-frequency noise to the feed-forward term. Moreover, additional hardware of the
load current detection may require detecting the DC current of the RSC [17,18]. An alternate approach
is used to get rid of additional detection circuits, whereby the RSC real-time active power is calculated
by GSC based on rotor voltage reference and rotor current [16,19] which require integration of both
the RSC controller and GSC controller into a single controller. This integration results in loss of the
modular structure of DFIG converters. For high maintenance and reliability, DFIG converter exhibits
modularity which is not achieved in this technique Automatic generation control employed with
inertia support for load frequency control was analyzed in an interconnected multigeneration wind
power system [22]. For mitigation of subsynchronous resonance, a non-linear damping controller
was designed using a partial feed-back linearization technique in series compensated DFIG-based
wind farms [23]. To mitigate subsynchronous resonance (SSR) oscillations, doubly fed induction
generator (DFIG) supplemental control is used [24], in which a supplemental signal is introduced into
the control loop of the DFIG voltage source converter. Furthermore, two-degree-of -freedom along
with a damping control loop is used [25] to mitigate SSR which is caused by induction generator effects
and thus enhance the system stability. In [26] two SSR oscillation mitigating strategies were compared,
which generate supplementary damping control signal; integrated on the rotor side converter and grid
side converter. A hybrid scheme for enhancing fault ride through capability of DFIG under symmetric
and asymmetric faults was presented [27], comprising an energy storage system, break chopper and
switch type fault current limiter.

The main contributions of this paper may be summarized as follows:

(1) A simplified and comprehensive study about dynamics characteristics and modelling of DFIG
based grid connected wind turbine system is presented.

(2) Active and reactive power stability and elimination of voltage fluctuation and harmonic current
of DC-capacitor using API and PR+RHC as a grid side control algorithm are discussed.

(3) A comprehensive performance analysis under normal condition and various faults, i.e.: Under
Voltage, Over Voltage, Single Phase, and Double Phase faults conditions to validate the active
power, reactive power, and DC-link voltage performance of the proposed API and PR+RHC
controllers is performed.

(4) A comparative assessment of designed controllers such as API and PR+RHC with a
conventionally tuned PI controller is also carried out.

(5) A FFT analysis of a PI controller, and the proposed API and PR+RHC controller by calculating
the total harmonics distortion of grid current to validate the robustness of proposed PR controller
is presented.

(6) The performance of various controllers (PI, API & PR+RHC) was evaluated by calculating three
control parameters i-e. Integral Absolute Error (IAE), Integral Square Error (ISE) and Integral
Time-weighted Absolute Error (ITAE) which precisely compare their performances.

The remaining paper is organized as follows: in Section 2, detailed modeling of DFIG is discussed.
The proposed WTs model is explained in Section 3. The proposed API and PR+RHC controllers are
designed in Section 4. Results and discussion are presented in Section 5. The paper is concluded in
Section 6.

2. Modeling of DFIG

The configuration of a DFIG-based wind turbine is illustrated in Figure 1. The stator and grid
voltage are directly linked to each other while the rotor and back-to-back converter are interfaced,
comprising a GSC common DC-link and a RSC [28]. The generator output power is controlled by the
RSC while GSC ensures the stability of the DC-link voltage irrespective of the direction and magnitude
of the rotor power [29]. At the wind turbine the terminal grid active power PO is equal to the sum of
the stator active power Ps and the grid active power Pg. The current and power reference directions
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are shown in Figure 1. The equivalent circuit of DFIG is shown in a dq-synchronous reference frame
in Figure 2.Energies 2019, 12, x FOR PEER REVIEW 4 of 23 
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The DFIG mathematical model is analyzed in the dq reference frame and is defined by Equations (1)
to (6) [30,31]:

vsd = rsisd +
dψsd

dt −ωeψsq

vsq = rsisq +
dψsq

dt + ωeψsd

}
(1)

v′rd = r′ri′rd +
dψ′rd

dt −ωslψ
′
rq

v′rq = r′ri′rq +
dψ′rq

dt −ωslψ
′
rd

 (2)

ωsl = ωe −ω′r (3)

ψsd = Lsisd + Lmi′rd
ψsq = Lsisq + Lmi′rq

}
(4)

ψ′rd = L′ri′rd + Lmisd
ψ′rq = L′ri′rq + Lmisq

}
(5)

Ls = Lsl + Lm

L′r = L′rl + Lm

}
(6)

where Vsd, Vsq and V′rd, V′rq are the stator and rotor voltages in the dq reference frame, rs and r′r are the
stator and rotor per phase electrical resistances, isd, isq and i′rd, i′rq are stator and rotor currents in the
d-q reference frame, ψsd, ψsq and ψ′rd, ψ′rq are stator and rotor fluxes in the dq reference frame, Ls, L′r and
Lm are stator, rotor and magnetizing per phase inductances, Lsl and L′rl are stator and rotor leakage
inductance, ωe and ω′r are the synchronous and rotor speeds.

The magnetic flux in the stator in d and q axis is determined by Equation (7) and it is assumed
that all magnetic fluxes are aligned with the d axis:

ψsq = 0 and dψsq
dt = 0

ψs = ψsd = Lmims and dψsq
dt = 0

}
(7)
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The DFIG stator active and reactive power are computed for rotor side after simplification as:

Ps = −
3
2

Lm

Ls
vsi′rq (8)

Qs =
3
2

Lm

Ls
vs

(
vs

(ωeL)m
− i′rd

)
(9)

From Equations (8) and (9), one observes that the active and reactive powers can be controlled
by the quadrature components of rotor current, considering the constant voltage. The converter
controls the active and reactive powers of the DFIG stator, where 1 − L2

m/LsL′r and ims is the
magnetizing current.

The GSC block diagram uses current loops to id and iq, having i∗d as reference from the DC-link.
Since i∗q = 0, the converter operates at a unity power factor. The reference signal generator produces
the current reference (i∗d , i∗q ), from Equations (10) and (11):

Pre f =
3
2
[vdi∗d ] (10)

Qre f =
3
2
[
vqi∗d

]
(11)

3. Proposed Model

An overview of the control structure of a wind turbine system (WTS) [4,32,33] is shown in Figure 3.
For maximum power extraction, the generator is controlled by a power converter, thereafter electrical
parameters are generated based on generator and control algorithm while the generator torque ωm is
obtained from the turbine model [30].
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The electric and control models are classified into grid side and generator side as shown in
Figure 3. The generator side control deals with two parameters, generator current and the duty cycle.
DC-linked voltage alone with these two parameters is used to model generator side converters using
the following Equations (12) and (13):

Vsdq = Ddq ×VDC (12)
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Idc = Dd × Isd × Dq × Isq (13)

where D is the duty ratio, VDC is the DC-link voltage, IDC is the current flow into DC link, Is is the
stator current Vs is the stator voltage.

Based on the vector control of generator the control algorithm implemented here is for maximum
power extraction. The control structure works in the following sequence: first in the reference
current generation phase, the rotor’s rotational speed is measured which is used to generate the
reference torque from the maximum power/torque curve based on the turbine design and characteristic.
Using this reference torque, a reference current signal is generated for the generator-side converter in
the dq frame. In the current control loop phase, an error signal is generated by comparing the generated
reference current and the measured current in the dq reference frame, which then generate a voltage
reference for the converter by feeding through Proportional Integral (PI) controllers. In the modulation
phase, the resulting reference voltages should be converted into a duty ratio for the generator side
converter, and finally this will result in a PWM switching signal for the converter as shown in Figure 4.
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The converter model on the grid-side is elaborated by three differential Equations (14)–(16),
which use the voltage of the grid and the resistance and inductance of the grid-side filter as input:

L f
digd

dt
+ R f igd = ωL f igq + Vconvd −Vgridd

(14)

L f
digq

dt
+ R f igq = −ωL f igd + Vconvq −Vgridq (15)

CDC
dVDC

dt
= iDC − k

(
igd Dd + igq Dq

)
(16)

where the k value is dependent on the transformation technique used to convert abc values to dq
values. The k value must be 1 is when using a normalized Clarke transformation and in case of a
non-normalized transformation k = 3/2. Further, VDC is the DC-link voltage, ig is the grid current, R f
is the filter resister, D is the duty cycle, CDC is the DC-linked capacitor, L f is inductance of filter and
Vgrid is the voltage of grid.

In the dq reference frame the grid-side converter is controlled with the grid voltage. The reactive
power which is transferred to the grid is controlled by igq . Similarly, by maintaining the DC-linked
voltage real power transferred to the grid is regulated by igd current. Both the generator-side as well as
the grid-side controller have the same limiting algorithms and modulation techniques.

4. Controller Design

4.1. API Controller

Control of traditional processes always depends on creating a mathematical model of the required
system. An expert system was established to mimic the behavior of a skilled human operator for those
processes too complex to be mathematically modeled in real time. Fuzzy logic controller (FLC) engines
use as expert system paradigm for automatic process control. In addition, intuition and heuristics
knowledge are also included into the system. This feature ranked FLC high in application where the
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existing models are ill defined, complex and not adequately reliable. FLC can mainly be classified into
four main parts: fuzzifier, rules, inference engine and de-fuzzifier [34] as illustrated in Figure 5:
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4.2. Fuzzy PI Controller

The PI controller comprising constant integral and proportional gain ki and kp, respectively.
Control scheme performance is enhanced by adaption of gain with respect to error. This distinguish
feature of adaption can be achieved by applying fuzzy rules as illustrated in Table 1:

Table 1. Fuzzy rules.

Absolute Error |e(t)| Proportional Gain (kp) Integral Gain (ki)

Zero large small
Small large zero
Large large large

Gaussian Member function (GMF) is applied here in the rules that needs two parameters i.e.,
center ci and σi standard variance or deviation as:

µ(x) = exp

(
−1

2

(
xi−ci

σi

)2
)

(17)

Mathematical description of PI controller is illustrated as:

v∗dc/i∗sd/i∗sq(PI) = kpe(t) + ki

∫
e(t)dt (18)

where v∗dc/i∗sd/i∗sq is output of the controller, ki and kp is integral and proportional gain respectively
and e(t) is input of controller, furthermore PI controller gains are constant in the preceding equation
that requires adaptation with respect to electrical fault perturbation, parameter uncertainties, load
variation and load disturbances.

v∗dc/i∗sd/i∗sq(Fuzzy) = F1k1e(t) + F2k2

∫
e(t)dt (19)

where kp and ki results in fuzzy controller’s output F1 and F2 respectively, and k1 and k2 are learning
rates constant for kp and ki respectively as mentioned in Figure 6.
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Figure 6. Adaptive PI controller.

A comparison of FLC-based adaptive PI control with PI conventionally tuned control as
benchmark is provided in [35]. The gain for integral and proportional constant are calculated for the
operating conditions by linearizing the system for numerous control loops.

4.3. Proportional Resonant Controller with Hormonic Compensator (PR+HC)

A PR controller has distinguished integration features. Due to the action of integration of
frequencies near and around the resonance frequency; phase shift and static error do not occur in a
PR controller. Although high order filters are used to obtain optimized current waves at the grid side
during unbalanced grid conditions, in practical applications the current wave is not exactly the normal
one, but has time varying elements of grid voltage with small deviations which result in poor THD of
the feed-in current, but it is demanded in most grid standards [36,37] that the grid connected devices
should be operated within certain frequencies range. To meet grid standards by improving the current
quality a harmonic compensator is employed along with the PR controller as shown in Figure 7.
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The PR controller consists of two parts i.e., proportional and resonant part, expressed by
Equation (20) below:

GPR(s) = Kp + Ki

(
S

S2 + ω2

)
(20)

Here, ω is a resonant frequency. Due to the high gain at narrow band at the resonant frequency,
PR can eliminate steady-state error. Ki is the time constant integral which is related to band width, and
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Kp is proportional gain determines the phase of band width and gain of margin [38]. The harmonic
compensator is parallelized with the PR controller for the sake of quality of grid current [39]. Harmonic
compensators can be mathematically expressed as:

GHC(s) = ∑h=3,5,7,... Gh
HC (s) (21)

Here, Gh
HC(s) is resonant controller with hth order, where “h” is harmonic order.

However, particularly

Gh
HC(s) =

kh
i s

s2 + (hω)2 (22)

where, kh
i is the gain of particular order resonant controller.

5. Results and Discussion

To verify the proposed control strategies, a MATLAB/Simulink-based simulation have been
carried out. The nominal parameters of the 2 MW system are listed in Table A1 (Appendix A). Control
strategies (PI, API and PR+RHC) were simulated and compared under different conditions, i.e., rated,
single-phase fault, two-phase fault, under-voltage, and over-voltage fault. The faults are applied for
200 ms which occurs from 1 s and cleared at 1.2 s, whereas the grid-side voltage was dropped and
raised to 50% of its normal values in the under- and over-voltage cases, respectively. The performance
of PI controller and proposed PR control strategy is evaluated by considering the following parameters:
DC-linked voltage Vdc, stator voltage Vs, active current component Id, reactive current component
Iq, grid current Ig, rotor current Ir, rotor real power Pr, rotor voltage Vr, electro-magnetic torque Tem,
stator real power Ps, stator reactive power Ps_react. Finally, THD and control performance measures are
calculated to examine the controller’s performance.

5.1. Rated Voltage

Conventional (PI) and Proposed (API & PR+RHC) control strategies are analyzed considering
rated voltages. Figure 8a illustrates the DC-linked voltage responses of all control strategies; the
PR+RHC and API controller responses are robust, faster and stabilize quickly, whereas the PI controller
takes 1.3 s to attains stability. The API controller updates its parameters adoptively to minimize errors
abruptly. The PR+RHC, due to the harmonic compensation, effectively tracks the reference, compared
to PI. Figure 8b shows the rated stator voltage waveform for all control schemes. Figure 8c–e shows Id
for PI, API and PR+RHC control schemes, where both the designed controllers currents are efficiently
tracking the reference currents. They have stable, robust, and chatter-free responses. The API and
PR+RHC strategy responses for the rotor current are stable and less oscillatory with respect to the PI
response as presented in Figure 8f. Iq is depicted in Figure 8g and the Ig response is illustrated for all
controllers in Figure 8h. The API and PR+RHC response is faster and globally convergent. In case of Ps

and Pr the API and (PR+RHC) controller responses are stable and robust, which reduces the acoustic
noise, reduces stress on both drive trains and mechanical components which is a desired requirement
as shown in Figure 8i,j. The Tem response is observed in Figure 8k, which shows minimum oscillation
or almost stable responses for the API and PR+RHC control schemes, something that could be harmful
from a mechanical view point. Figure 8l describes the Ps_react response which is quite stable and ripple
less, which is desired in proposed control strategies. The rotor voltage response shows that API and
PR+RHC strategies’ responses are stable and less oscillatory with respect to the PI response as shown
in Figure 8m. The performance indices of all the control schemes are evaluated in Tables 2–4 for Vdc,
Id, Iq, respectively. Three control measuring parameters, i.e., Integral Absolute Error (IAE), Integral
Square Error (ISE) and Integral Time-weighted Absolute Error (ITAE) are calculated for all controllers
which precisely compare their performances. The performance of a controller is based on its minimum
value, where the smaller the value of parameters, the better the controller performance. In all three
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parameters API and PR+RHC controllers’ values are the minimum compared with the PI controller,
which proves the robust performance of the proposed controllers. Finally, the control schemes (PI,
API & PR+RHC) are further investigated using FFT analysis of the grid current, which shows that the
proposed API and PR+RHC strategies’ grid currents are more robust and less harmonic with THD
0.02% and 0.06% respectively, as compared to 0.07% THD of the PI controller as shown in Figure 8n–p.
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Figure 8. Comparison of PI and Proposed API and PR+RHC controllers responses under rated voltage,
considering: (a) Dc-link voltage Vdc; (b) Stator voltage Vs; (c–e) Active component of current Id;
(f) Rotor current Ir; (g) Reactive component Iq; (h) Grid current Ig; (i) Stator active power Ps; (j) Rotor
active power Pr; (k) Electromagnetic torque Tem; (l) Stator reactive power Psreact; (m) Rotor voltage Vr;
(n) PR+RHC controller THD; (o) PI controller THD; (p) API controller THD.

Table 2. Performance evaluation of designed control strategies for Vdc.

Control Strategies Performance Index

IAE ISE ITAE

PI 5.473 55.95 1.991
API 0.1145 0.659 0.0810

PR+RHC 0.46 1.37 0.0325

Notes: IAE: Integral Absolute Error, ISE: Integral Square Error, ITAE: Integral of Time-Weighted Absolute Error.

Table 3. Performance evaluation of designed control strategies for Id.

Control Strategies Performance Index

IAE ISE ITAE

PI 2.50 20.78 0.0749
API 0.96 6.34 0.0224

PR+RHC 0.0117 5.68 0.0094

Notes: IAE: Integral Absolute Error, ISE: Integral Square Error, ITAE: Integral of Time-Weighted Absolute Error.

Table 4. Performance evaluation of designed control strategies for Iq.

Control Strategies Performance Index

IAE ISE ITAE

PI 0.18 1.208 0.0066
API 0.01 0.062 0.0016

PR+RHC 0.017 0.069 0.004

Notes: IAE: Integral Absolute Error, ISE: Integral Square Error, ITAE: Integral of Time-Weighted Absolute Error.

5.2. Under-Voltage

The grid voltage is dropped to 50% of its rated value for 200 ms from 1 s to 1.2 s during the
under-voltage case, as illustrated in Figure 9b. The proposed controller Vdc response, shown in
Figure 9a, is less oscillatory, fast, and robust for the API and PR+RHC algorithms, as compared to PI’s
response which is unstable and out of limits. Figure 9c–e clearly shows that Id completely traces the
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reference value which indicates the robustness of the proposed (API & PR+RHC) strategies. The API
controller updates its parameters using fuzzy rules to track the reference abruptly and the PR+RHC,
due to its harmonic compensation, effectively minimizes the error, in comparison to the PI controller.
The proposed controller responses in the case of Ir is shown in Figure 9f. Figure 9g depicts Iq having
smooth response for the proposed controllers which gain stability soon after voltage the reaches a
normal value. Figure 9h illustrates the Ig response for the API & (PR+RHC) controllers with respect
to the PI controller which ensures grid stability. The Pr and Ps responses are described in Figure 9i,j
which show that the API & (PR+RHC) controller responses are less oscillatory, and more stable as
compared to the PI controller which reduces mechanical stress y as well as stress on drives.
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Figure 9. Comparison of PI and Proposed API and PR+RHC controller responses under undervoltage
fault considering: (a) Dc-link voltage Vdc; (b) Stator voltage Vs; (c–e) Active component of current Id;
(f) Rotor current Ir; (g) Reactive component Iq; (h) Grid current Ig; (i) Rotor active power Pr; (j) Stator
active power Ps; (k) Electromagnetic torque Tem; (l) Stator reactive power Psreact; (m)Rotor voltage Vr;
(n) PR+RHC controller THD; (o) PI controller THD; (p) API controller THD.

The Psreact, Tem and Vr responses for both the proposed and conventional strategy are shown in in
Figure 9k–m. Finally, the robustness of the proposed controllers over the PI conventional controller was
proved by harmonic spectrum analysis of Ig, The THD value for the PI controller was 90.22% which is
reduced to 61.20% and 66.16% in the case of the API and PR+RHC, respectively, and demonstrated in
Figure 9n–p. The performance indices of all the control schemes are evaluated in Tables 5–7 for Vdc,
Id, and Iq, respectively. In the case of the API & PR+RHC controllers, all three parameter values are
the minimum compared with the PI controller, which proves the better performance of the proposed
controllers in under-voltage conditions.

Table 5. Performance evaluation of the designed control strategies for Vdc.

Control Strategies Performance Index

IAE ISE ITAE

PI 99.7 6240 211.8
API 16.2 120.8 37.46

PR+RHC 13.36 98.36 29.90

Table 6. Performance evaluation of the designed control strategies for Id.

Control Strategies Performance Index

IAE ISE ITAE

PI 18.74 583.4 53.43
API 3.015 142.1 5.431

PR+RHC 4.59 154.26 6.55
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Table 7. Performance evaluation of the designed control strategies for Iq.

Control Strategies Performance Index

IAE ISE ITAE

PI 1.601 0.8957 4.672
API 0.0019 0.0021 0.0024

PR+RHC 0.026 0.102 0.069

5.3. Over-Voltage

In over-voltage conditions the grid voltage is increased 50% of its rated value for 200 ms from 1 s to
1.2 s as shown in Figure 10b. The Vdc of the proposed controllers is robust, faster, and stable soon after
the grid voltage recovers as shown in Figure 10a. Id for the PI, API and PR+RHC control controllers
are clearly depicted in Figure 10c–e which prove that the proposed controllers are exactly following
the reference value. Due to adaptiveness of the API and harmonic compensation of PR+RHC, both
controllers are less sensitive to faults and the response is faster. Ir are also depicted in Figure 10f for all
controllers. In case, the Ig responses in the API and PR+RHC controllers are fast and attain stability
quickly after 1.2 s as shown in Figure 10g. Similarly Iq, the API and PR+RHC controller responses are
fast and achieve stability soon after 1.2 s, while the PI controller responds after 1.5 s as elaborated in
Figure 10h. The proposed controllers’ responses in the case of Pr and Ps is less oscillatory and stable,
which ensures stable performance is shown in Figure 10i,j. The proposed controllers’ performances in
the case of Psreact, Tem and Vr are also dominant and less harmonic as shown in Figure 10k–m. Finally,
THD of Ig is calculated, which is 1046.10% using the PI controller while it reduces to 446.52% and
684.51% in the case of the API and PR+RHC controllers which makes the proposed controllers more
reliable and efficient in over-voltage conditions as shown in Figure 10n–p. The performance indices
of all the control schemes are evaluated in Tables 8–10 for Vdc, Id, and Iq, respectively. In the case of
the API and PR+RHC controllers, all three parameters values are minimum compared with the PI
controller, which validates the better performance of the proposed controllers.
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Figure 10. Comparison of PI and Proposed API and PR+RHC controller responses under overvoltage
fault, considering: (a) Dc-link voltage Vdc; (b) Stator voltage Vs; (c–e) Active component of current Id;
(f) Rotor current Ir; (g) Reactive current component Iq; (h) Grid current Ig; (i) Rotor active power Pr;
(j) Stator active power Ps; (k) Electromagnetic torque Tem; (l) Stator reactive power Psreact; (m) Rotor
voltage Vr; (n) PR+RHC controller THD; (o) PI controller THD; (p) API controller.

Table 8. Performance evaluation of the designed control strategies for Vdc.

Control Strategies Performance Index

IAE ISE ITAE

PI 55.17 23.86 70.02
API 10.49 4.09 15.63

PR+RHC 14.49 6.89 9.02
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Table 9. Performance evaluation of the designed control strategies for Id.

Control Strategies Performance Index

IAE ISE ITAE

PI 5.6 35.26 7.65
API 2.6 16.32 3.27

PR+RHC 3.1 15.36 4.09

Table 10. Performance evaluation of the designed control strategies for Iq.

Control Strategies Performance Index

IAE ISE ITAE

PI 73.01 63.86 88.97
API 36.73 20.71 55.23
PR 35.29 19.06 49.74

5.4. Single Phase Fault

A single-phase fault is applied to evaluate the performance of the proposed controllers. The fault
is applied for 200 ms from 1 s to 1.2 s as depicted in Figure 11b. The Vdc responses of the API and
PR+RHC controllers are robust and attain stability soon after the fault is cleared, while the PI controller
response is oscillatory and delayed in accomplishing stability after the fault is cleared as illustrated
in Figure 11a. The Id responses for the PI, API and PR+RHC controllers are shown in Figure 11c–e.
The API controller updates its parameters using fuzzy rules to track the reference abruptly and the
PR+RHC controller, due to its harmonic compensation, effectively minimizes the error, in comparison
to the PI controller. Ir values for the conventional and proposed controllers are illustrated in Figure 11f.
The Iq and Ig responses of the proposed controllers are more stable and less oscillatory as shown
in Figure 11g,h. The responses of Ps and Pr powers, Tem, Psreact, and Vr are shown in Figure 11i–m.
Analyzing the controllers on the basis of the grid current Ig THD values, it clearly shows that the
proposed API controller with 55.43% THD and PR+RHC with 60.91% THD show less harmonics
with respect to the 76.35% THD of the PI controller with increased harmonics which shows that the
proposed controllers’ responses in case of a single-phase fault are robust and stable as compared to
the PI controller as shown in Figure 11n–p. The performance indices of all the control schemes are
evaluated in Tables 11–13 for Vdc, Id, and Iq, respectively. In the case of proposed API and PR+RHC
controllers, all three parameter values are minimum compared with the PI controller, which guarantees
the better performance of the proposed controllers under single-phase fault conditions.
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Figure 11. Comparison of PI and Proposed API and PR+RHC controller responses under Single-phase
fault, considering: (a) Dc-link voltage Vdc, (b), Stator voltage Vs, (c–e) Active component of current Id,
(f) Rotor current Ir, (g) Reactive component Iq, (h) Grid current Ig, (i) Stator active power Ps, (j) Rotor
active power Pr, (k) Electromagnetic torque Tem, (l) Stator reactive power Psreact, (m) Rotor voltage Vr,
(n) PR+RHC controller THD, (o) PI controller THD, (p) API controller.

Table 11. Performance evaluation of the designed control strategies for Vdc.

Control Strategies Performance Index

IAE ISE ITAE

PI 366.1 63.23 754.1
API 80.64 32.36 170.7

PR+RHC 84.64 39.36 111.7
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Table 12. Performance evaluation of the designed control strategies for Id.

Control Strategies Performance Index

IAE ISE ITAE

PI 190.4 5.323 35.5
API 0.20 1.916 0.25

PR+RHC 1.06 3.09 2.36

Table 13. Performance evaluation of the designed control strategies for Iq.

Control Strategies Performance Index

IAE ISE ITAE

PI 45.59 456 73.66
API 11.58 154 15.51

PR+RHC 15..69 93 29.6

5.5. Two-Phase Faults

A two-phase fault is applied to evaluate the performance of the control strategies. The fault is
applied for 200 ms from 1 s and cleared at 1.2 s, as shown in Figure 12b. The Vdc responses of the API
and PR+RHC controllers are more stable, quickly tracking the reference value after the fault is cleared,
as compared to the unstable response of the PI controller as presented in Figure 12a. A comparison
of the Id of all controllers (Figure 12c–e) indicates that the API and PR+RHC controllers clearly track
the reference value while PI goes unstable as it proceeds after 1.2 s. The API controller employs fuzzy
rules adoptively with robust response and the PR+RHC due to its harmonic compensation effectively
minimizes the error, in comparison to the PI controller. Figure 12f describes the Ir responses for all
the controllers. Similarly, the Iq and Ig responses are more stable and robust in the API and PR+RHC
controllers’ case as elaborated in Figure 12g,h. The responses of other parameters of WTs i.e., Ps, Pr,
Tem, Psreact and Vr are shown in Figure 12i–m. The grid current Ig THDs of all controllers are presented
in Figure 12n–p.
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Figure 12. Comparison of PI and Proposed API and PR+RHC controller responses under two-phase
fault, considering: (a) Dc-link voltage Vdc, (b) Stator voltage Vs, (c–e) Active component of current Id,
(f) Rotor current Ir, (g) Reactive component Iq, (h) Grid current Ig, (i) Rotor active power Pr, (j) Stator
active power Ps, (k) Electromagnetic torque Tem, (l) Stator reactive power Psreact, (m) Rotor voltage Vr,
(n) PR+RHC controller THD, (o) PI controller THD and (p)API controller.
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The API and PR+RHC controllers have THDs of 79.03% and 85.64% while the PI controller
has 102.06% THD which demonstrates the effectiveness and dominance of the proposed (API
& PR+RHC) controllers over PI. The performance indices of all the control schemes (PI, API &
PR+RHC) are evaluated in Tables 14–16 for Vdc, Id, and Iq, respectively. In the case of the proposed
(API & PR+RHC) controllers, all three parameter values are minimum compared with the PI
controller, which authenticates the better performance of the proposed controllers under two-phase
fault conditions.

Table 14. Performance evaluation of the designed control strategies for Vdc.

Control Strategies Performance Index

IAE ISE ITAE

PI 96.39 12.36 96.4
API 24.4 2.36 35.32

PR+RHC 29.31 3.59 39.85

Table 15. Performance evaluation of the designed control strategies for Id.

Control Strategies Performance Index

IAE ISE ITAE

PI 65.75 37.77 51.23
API 9.32 13.26 17.34

PR+RHC 14.60 19.32 24.09

Table 16. Performance evaluation of the designed control strategies for Iq.

Control Strategies Performance Index

IAE ISE ITAE

PI 59.32 16.96 86.36
API 15.30 6.32 19.32

PR+RHC 20.96 9.96 24.49

6. Conclusions

Dynamic behaviors and critical issues like the stability of DC-link capacitor voltage and
grid injected active and reactive power in DFIG-based WTs under voltage sags and grid faults
were investigated and robust and novel Adaptive Proportional Integral (API) and Proportional
Resonant with Resonant Harmonic Compensator (PR+RHC) controllers were proposed. The proposed
DC-voltage control method is implemented independent of rotor side control which mitigates voltage
harmonics in DC-capacitors and stabilizes active and reactive power which results in enhanced
reliability of DC-link capacitor, WT stability, and makes control systems adoptable for large scale
DFIG converters.

The performance of the PI control scheme shows sensitivity, large oscillations, and slow
convergence to normal and abnormal conditions as verified from our simulation results,
Total Harmonic Distortion (THD) analysis, and performance indices tables (Integral Absolute Error
(IAE), Integral Square Error (ISE) and Integral Time-weighted Absolute Error (ITAE). However,
comparatively the proposed controllers, i.e., API and PR+RHC, provide a better dynamic response,
less sensitivity, fast convergence, less oscillation, robust, ripple-free and fault tolerant performance
under normal and abnormal conditions.
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Appendix A

Table A1. Model nominal parameters.

Generator Parameters Values Back-to-Back Converter Data

Rated grid Power 2MW Parallel converters 2
Polar pairs 2 Rated active power 400 kW
Gear ratio 95 DC-link voltage 1150 V

Rated shaft speed 1800 rpm Switching frequency 2 kHz
Stator leakage inductance 0.038 mH Grid-side converter
Magnetizing inductance 2.91 mH Rated output voltage 704 V

Rotor Leakage inductance 0.034 mH Filter inductance 0.5 mH
Stator/rotor turns ratio 0.369 Generator-side converter

Rated output voltage 560 V

Table A2. Control schemes constants.

Control Schemes Parameters Vdc Id Iq

PI
kp 2.5 1.09 1.09
ki 10 17.25 17.25

API
kp 25 250 250
kh 27500 200 200

PR+RHC

kp 0.001 28 28
ki 0.01 1.5 1.5

k3
i 3rd 2 1.2 1.2

k5
i 5th 8 10 10

k7
i 7th 10 90 90
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