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Abstract: This research investigates the role of new hybrid energy system applications for developing
a new plant refurbishment strategy to deploy small scale smart energy systems. This work deals
with a dynamic simulation of trans-critical carbon dioxide heat pump application for boosting low
temperature distribution networks to share heat for dwellings. Heat pumps provide high temperature
heat to use the traditional emission systems. The new plant layout consists of an air source heat
pump, four trans-critical carbon dioxide heat pumps (CO2-HPs), photovoltaic arrays, and a combined
heat and power (CHP) for both domestic hot water production and electricity to partially drive
the heat pumps. Furthermore, electric storage devices adoption has been evaluated. That layout
has been compared to the traditional one based on separated generation systems using several
energy performance indicators. Additionally, a sensitivity analysis on the primary energy saving,
primary fossil energy consumptions, renewable energy fraction and renewable heat, with changes
in building power to heat ratios, has been carried out. Obtained results highlighted that using the
hybrid system with storage device it is possible to get a saving of 50% approximately. Consequently,
CO2-HPs and hybrid systems adoption could be a viable option to achieve Near Zero Energy Building
(NZEB) qualification.

Keywords: CO2 heat pump; heat sharing; energy efficiency

1. Introduction

Nowadays, the environmental externalities of the energy systems and the conscious use of energy
resources constitutes an important political debate issue, thanks also to the European Union directives.
In particular, atmospheric pollution, greenhouse gas (GHG) emissions, related climatic variations
and increasingly frequency of environmental disasters are making necessary new preventive and
recovery measures. Considering that the building sector is responsible for a large part of the global
energy consumption and the CO2 emissions, building envelope adaptation actions allow reducinng the
energy demand of existing buildings by improving their energy performance [1]. In this framework,
increasing the energy efficiency of existing buildings is a great challenge to face, investigating the best
measures to match the restrictive regulations targets and the architectural limitations [2]. Indeed, some
studies are ongoing to find innovative plant engineering solutions at a technological level, based on the
study of efficient materials [3] and the newest energy generation systems [4–7]. According to several
studies, the payback period of this kind of interventions is up to 25–30 years [8,9]. The renewable
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energy integration is not always possible because of landscaping or urban constraints [10,11] even if
the plant is technically feasible. For this reason, an alternative solution could be the implementation of
new heating and electricity facilities [12]. This research aims to mediate between the potential role of
hybrid energy systems and the heating share concept [13,14] providing electricity and heat to overcome
such limitations. In addition, focusing the research attention only to the energy generation efficiency,
the possibility to design a new plant refurbishment strategy has been investigated in order to promote
the use of small-scale smart energy systems. As a consequence, that approach can positively contribute
to achieve the NZEB qualification due to the CO2 emissions reduction [15–17] over the consumption
process. For that reason, the adoption of a hybrid energy system capable of combining fossil fuel
with renewable energy sources [18–20] can be considered as a valuable solution for primary energy
savings in existing buildings. It is noteworthy how hybrid systems based on CHP and heat pumps
have recently been considered in the literature, as a potential option for balancing the renewable
source intermittency, especially in all those locations where large district heating networks have
been developed [21]. Having accounted for those technologies, the authors propose the synergy
between the high temperature and low temperature heating production devices along with electric
renewables. In so doing, a foreseeable modification in the common operation of trans-critical CO2

heat pumps has been conceptualized so as to boost the low temperature distribution network for
dwellings. That heat pumps typology has widely investigated by several authors especially in the field
of refrigeration [22–30]. Typical applications consist of contemporary generation of heat and cool or
for air conditioning. Indeed, some authors have proposed modifying some operating parameters in
order to increase the evaporating temperature in the trans-critical cycles [31]

In the end, this project shows how it is possible to share the heat for a small group of buildings
through the use of an innovative hybrid energy system. Moreover, it has been compared with the
traditional energy production system, pinpointing advantages and disadvantages.

2. Methods

Although solar panels, cogenerators (CHP) and heat pumps are considered some of the most
efficient energy solutions [32], the widest adopted appliances for heating purpose, in natural gas
based-countries, such as Italy, are NG boilers. The typical separated generation system has been
compared with the novel option based on the plant hybridization for generating electricity and high
temperature heat anyhow (i.e., for water supply temperature equals to 65 ◦C or 70 ◦C). Specifically,
it is important to highlight that the dwellings are not provided with fan coils or radiant floors
to manage thermal loads over the winter and the summer time; indeed, the aim of the paper is
to investigate on the feasible innovative solutions to upgrade existing buildings using the high
temperature emission systems.

A group of four buildings, where the power plant is a combination of an air source heat pump
(35 kWt), a micro CHP (6 kWe–10 kWt), four trans-critical CO2 electric heat pumps (CO2-HPs of
12.5 kWt) and PV arrays (7 kWp), has been analyzed as a reference building layout. The usable surface
is about 170 m2 for each building arranged on two floors. The distribution network has been designed
in a central position in order to reduce the heat losses and improve its performance. In addition,
two buildings have been equipped with photovoltaic panels integrated on the roof. The traditional heat
pump has been installed to provide and distribute low temperature hot water, about 35 ◦C, by means
of the hydraulic water loop representing the shared cold heat sink for the CO2-HPs. Notwithstanding,
the air source heat pump could be replaced with a ground source one, a sea water heat pump or other
low temperature heat pumps to produce low temperature heat, depending on the location as well as
the local sources availability. That ensures the interconnection of the four buildings by a hydraulic
loop in a small-scale heating network. Consequently, are CO2-HPs driven by shared heat sink while
the electricity is generated by PV arrays and CHP. As a result, the CHP can provide domestic hot water
(DHW) 24 h a day. Yang et al. [33] successfully implemented a trans-critical CO2 heat pump model
showing how to improve the system performance decreasing the distribution network temperature
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within pipes and increasing the mass flow rate of cooling water, reducing at the same time the optimal
heat rejections pressure and obtaining the maximum COP. The current research mainly focuses on the
implementation of a smart energy system based on the employment of trans-critical CO2 heat pumps,
as reported in the Figure 1.
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Figure 1. Flowchart for the hybrid energy system model.

The first part of the research has been focused on the review of scientific literature of the research
topic. Smart energy systems are integrated with more sectors (electricity, heating, cooling, industry,
buildings and transportation), allowing the identification of more suitable solutions to make possible
the transformation into renewable and sustainable energy systems [34].

2.1. Description of the Case Study

The case study consists in a residential complex of four buildings arranged in a single lot, each
of them at the same distance. The energy generation system is placed centrally providing the equal
distributions of the fluid so as to minimize the head losses. The plan of the examined lot is reported in
Figure 2.
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Figure 2. Plan of the examined four residential dwellings.

Each building consists of two levels (ground floor and basement) and is characterized by a usable
area of 170 m2. The basement includes one guest room, one bathroom, the hall and an outdoor garage.
The internal staircase leads to the upper floor where the master bedrooms, the kitchen and a bathroom
are located. Figure 3 respectively show the ground floor and the basement layout of each building,
while geometrical data are reported in Table 1.
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Figure 3. Level of examined buildings: (a) ground floor plan and (b) basement plan of each
residential dwelling.

Table 1. Geometrical data of the dwellings’ inner spaces.

Level Spaces Description A [m2] H [m] Vn [m3]

Ground Floor 1 living room 36.26 3.30 119.66
Ground Floor 2 Bedroom 1 14.69 3.30 48.48
Ground Floor 3 Bedroom 2 12.83 3.30 42.34
Ground Floor 4 Bedroom 3 11.13 3.30 36.73
Ground Floor 5 WC 1 4.14 3.30 13.66
Ground Floor 6 Kitchen 9.53 3.30 31.45
Ground Floor Total 88.58 292.31

Basement 7 Hall 41.72 2.50 104.30
Basement 8 Garage 24.08 2.50 60.20
Basement 9 guest room 4 13.65 2.50 34.13
Basement 10 WC 2 8.30 2.50 20.75
Basement Total 87.75 219.37

Dwellings’ total 176.33 511.68

Building thermal loads have been calculated according to the procedures of the Italian law 10/91
by the certified software of the Italian Thermo-technical Committee (CTI), an entity federated with
UNI. It has the purpose of unifying activities and procedures in the different thermo-technical sectors
according to the current regulatory framework. These calculation tools have to ensure that the values of
energy performance index have a maximum deviation of 5% compared to the established parameters.
Table 2 summarizes the geometrical data for the energy analysis of the dwellings ground floor and
basement, respectively.

Table 2. Ground floor and basement geometrical data.

Geometrical Data Ground Floor Basement

External surface area (S)—m2 238.63 193.33
Gross volume heated (V)—m3 369.86 288.05

ratio of form to volume (S/V)—m2/m3 0.65 0.67
Net heated surface—m2 88.58 87.75
Net volume heated—m3 292.31 219.37
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2.2. Matlab Simulink Analysis

All the hybrid system components have been implemented and simulated by MATLAB
SIMULINK (version R2018) and each energy scenario has been analysed on the basis of four different
energy indicators: Primary energy consumption (PEC), primary energy saving (PES), renewable energy
fraction (fRES) and renewable heat delivered to the end-user. Finally, a sensitivity analysis varying
the building’s power to heat ratio (see Equation (20)) values, from 0.1 up to 0.8, has been performed.
Assembling each simplified mathematical model related to the energy generators (i.e., the traditional
heat pump, the trans-critical CO2 electric heat pump, CHP and PV array) along with the resulting
building energy needs, the hybrid system energy performance have been determined and discussed.
The sensitivity analysis allowed to assess how the energy performance indicators are affected by the
boundary conditions changes when those ones ranges in ±15%.

2.3. Mathematical modelling

The innovative plant layout associated to the hybrid energy system consists of four trans-critical
CO2 electric heat pumps (CO2-HP), to produce high temperature hot water to feed traditional building
heating systems: Thus, an air source heat pump for low temperature water production has been
connected in order to keep under control the water temperature difference flowing through the
CO2-HPs cold heat sinks; lastly a micro CHP has been integrated so as to provide domestic hot water
and electricity for the HPs driving along with PV arrays, as shown in Figure 4.
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Thanks to the physical properties of carbon dioxide, the CO2 HPs coefficient of performance
can achieve v high values owing to its good heat transmission properties and the possibility to use
small compressors [35]. In any case, the global warming footprint of the heat pump, depending on
refrigerant leakage to the environment, and the footprint of electric power or steam used for the
compressor are not considered in the present analysis. This is due to the fact that the project aim is to
evaluate the achievable energy saving hailing from the adoption of such a hybridised power plant.

Having said this, it is worth noticing that there are three main factors requiring special attention
when CO2 is used as a working fluid [36–38]: the first concerns the high operating pressure, exceeding
73.75 bar; the second is the low critical temperature, since the carbon dioxide reaches its critical point
at a temperature of 31 ◦C; lastly, it should be considered that the refrigerants could leak and need
refilling, in this case using CO2 quite often derived from fossil sources.
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Furthermore, compared to other refrigerants, carbon dioxide requires a carefully designed system
to cope with its peculiar temperature and pressure characteristics. The costs of production and
distribution of CO2 systems are relatively low compared to other refrigerants, since its use is not subject
to patents and consequently is not limited; moreover, it is a non-toxic and non-flammable substance,
that makes its use safe. CO2 cycles must be carefully studied because, given its characteristics, it is
not assimilated to traditional cycles. Although the above cited experiments are useful and provide
valuable data, evaluation times and instrumentation costs present an ever-present obstacle to research.
Therefore, more immediate approaches based on numerical simulations have been used [36,37]. Using
thermodynamic analyses and the study of the transport characteristics of the refrigerant and the
secondary fluid, it was possible to mathematically model the trans-critical carbon dioxide heat pump.
The CO2 HP simplified model has been built within the MATLAB (R2018) environment implementing
the energy balance equation related to the following five components: the vapour compressor, the gas
cooler, the evaporator, the expansion valve and the internal heat exchanger. As can be seen both in the
pressure-enthalpy diagram (Figure 5) and in Table 3, the design pressure reaches 150 bar inside the gas
cooler and the 70 bar inside the evaporator, with a calculated compression ratio (p2/p1) equal to 2.143.
The gas temperature drops down from 134.2 ◦C to 60.85 ◦C in the gas cooler, then from 60.85 to 33. 67
in the internal heat exchanger, and it reaches a value of 28.67 ◦C in the evaporator.
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F: Inlet compressor).
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Table 3. Transcritical CO2 heat pump parameters.

Component CO2 Parameter Water Parameter

Gas cooler T = 134.2 [◦C] P = 15 [MPa] 55 ◦C Inlet 65 ◦C Outlet
Internal heat

exchanger
T = 33.67 [◦C]
T = 28.67 [◦C]

P = 15 [MPa]
P = 7 [MPa] - -

Evaporator T = 28.67 [◦C] P = 7 [MPa] 40 ◦C Inlet 35 ◦C Outlet

Compressor T = 51 [◦C] P = 7 [MPa]
P = 15 [MPa] - -

The efficiency of the heat pumps is measured by the coefficient of performance (COP) given
by the ratio between the useful energy (heat transferred to the environment to be heated) and the
electricity consumed. The COP of the CO2-HPs is around 3.6 and is influenced by various operating
variables, such as the chilled water outlet temperature or the carbon dioxide outlet temperature from
the gas cooler.

2.4. Trans-Critical CO2 HP Energy Balance

The initial temperature difference has been assumed and in Figure 6 the general scheme of the
considered system is reported.
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2.4.1. Gas Cooler

Designing a gas cooler is quite hard due to its differences with the traditional condenser.
The maximum working pressure is 150 bar and the working temperature is limited to 134.2 ◦C. Another
problem that can be found in a CO2 system is the high influence of the outlet temperature of the gas
cooler on the system efficiency (COP). Indeed, as that temperature increases, the discharging pressure
has to be enhanced according to Sarkar et al. [39]. Yet, that enhancement penalise strongly the HP
coefficient of performance due to the higher mechanical power required by compressor. To overcome
that drawback the evaporating temperature has been increased in order to recover low temperature
thermal cascade:

Tout + DTdes = Tin,gc (1)

Tin + DTdes = Tout,gc (2)

hin,gc − hout,gc = Dhgc (3)

Build.Load
∆hgc

=
.

mCO2 (4)
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2.4.2. Compressor

The natural CO2 refrigerant provides two features: the high working pressure and differential
pressure; these pressure levels are four up to 10 times higher than HFC refrigerants. Two factors have
been considered when developing CO2 compressors: the high efficiency and the resistance to high
working pressure, because of the pressure difference that goes from 70 to 150 bar in the trans-critical
CO2 system examined. The thermodynamic equations are shown below:

hout,comp − hin,com = Dhcom (5)

∆hcom

ηis
= ∆hcom,real = W (6)

PCO2 = W· .
mCO2 (7)

Pel,com =
PCO2

ηel/mec
(8)

2.4.3. Evaporator

Energy balance equations for the evaporator and the internal heat exchanger read as follows:

Qev = Dhev × .
mCO2 (9)

.
mw =

Qev
CpH2O (Tin,w − Tout,w)

(10)

Lh + Dhsub = Dhev (11)

2.4.4. Internal Heat Exchanger

h(Treg) − h(Tev) = Dhreg (12)

QIHEX = Dhreg × .
mCO2 (13)

Dhreg + hout,IHEX = hout,gc (14)

Tev,CO2 + DTcold,reg = Tout,IHEX (15)

2.5. CHP and Boiler Models

Internal combustion engine has been considered as the reference technology for CHP applications.
The energy model of that component is based on the fundamental relations of the first law of
thermodynamics. Specifically, once the CHP electric size, the electric efficiency, as well as the heat
recovery efficiency of the engine, have been fixed, it is possible to calculate thermal output and fuel
consumptions. Additionally, using a MATLAB look-up table tool, the electric efficiency curve typical
for small CHPs has been implemented. In such a way, it is possible to evaluate all the energy outputs
when the CHP runs in partial load conditions. Having said, the CHP control strategy for the DHW
production is the so-called thermal tracking. In detail, keeping under control the hot water temperature,
the control unit decreases the engine rotational speed up to the shootdown. In this way, both electrical
and thermal power can be modulated. To do so, a linear controller has been implemented in MATLAB.
Similarly, the same approach has been used for the conventional boiler. Indeed, the efficiency curve
has been created by the look-up table tool and the same strategy has been applied for the reference
scenario. As regard the CHP electrical and heat recovery efficiencies values, they have been assumed
equal to 0.29 and 0.51, respectively, at rated power output. On the other hand, the conventional boiler
thermal efficiency has been fixed as 0.85.
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2.6. Balance Equations

As aforementioned, the new plant design allows the four building HPs to share a cold heat sink
(35–40 ◦C) where the low-grade heat is produced by the traditional HP characterised by a SCOP
(Seasonal COP) equal to 3.5. In so doing, CO2-HPs are driven by the shared heat sink and the
electricity is powered by PV arrays and CHP. Specifically, the two southern buildings are equipped
with photovoltaic panels for an overall peak power of 7 kW and the CHP is able to supply DHW with
the employment of a hot thermal storage. The following balance equations have been considered to
analyse the first system:

2.6.1. Electric Balance

Eel,Build + Eel,HP = Eel,CHP + Eel,PV + Eel,Grid + Eel,Excess (16)

2.6.2. Heat Balance

EH,Build + EDHW = EH,HPCO2 + EDHW,CHP (17)

Referring to Equation (16), the electrical energy Eel,HP includes the energy needs for driving both
the air source and transcritical carbon dioxide heat pumps. According to the NZEB concept, all the
hybrid systems components should be studied on the basis of four principles such as: primary energy
consumption (PEC), primary energy saving (PES), renewable energy fraction (fRES) and renewable
heat delivered to end-users. Since the PTHR is a key role parameter in terms of defining the most
effective sizing process, the sensitivity analysis was realized by varying that value in a wide range
(0.1–0.8). The PES is the result of the difference between the PEC by the reference system and the
energy consumed by the hybrid system. These values are estimated as it follows:

PEC = Efuel,CHP + Efuel,Grid (18)

fRES =
EPV + EHP

EH,Build + Eel,HP + EDHW
(19)

PTHR =
Eel,Build

EH,Build + EDHW,Build
(20)

The research analyses in addition a traditional system that employs a boiler for the heat and
domestic hot water production. The related equations are shown below.

Eel,Build = Eel,Grid (21)

EH,Build = EH,Boiler + EH,BoilerDHW (22)

Once the reference values have been computed, the performance indicators related to the hybrid
system have been calculated and compared. Finally, the base scenarios have been compared each other
when the building PTHR changes so as to perform the sensitivity analysis.

2.7. Network Heat Losses

A fluid flowing through a pipe causes head losses (e.g., pressure drops due to the internal friction
between pipe inner layer and fluid). The head losses are in turn divided into two categories: distributed
and concentrated. The first are distributed everywhere in the pipes, while the concentrated head losses
are located in a defined point and are due to obstacles such as a tap, a branch, an elbow. The equations
used for calculating the networks head losses are listed below:
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Speed [m/s] v = 0.278
4 G
πD2 (23)

Density [kg/m3] r = 1000.18576 + 0.007136t − 0.005718 t2 + 0.00001468 t3 (24)

Viscosity [m2/s] v =
(

1.67952 − 0.042328 × t + 0.000499 × t2 − 0.00000214 × t3) × 106 (25)

Distributed head loss [mmH2O] r = 14.70v0.25 × r × G1.75

D4.75 (26)

Local head loss [mmH2O] z = xr
v2

2·9.81
(27)

G = flow [L/h]

D = diameter [mm]

The x factor depends on the form of the localized loss and can be determined with appropriate
formulas or with laboratory tests. As regards the heat losses along the distribution network, they are
strongly dependent on the average operating temperature, pipe materials as well as on the insulation
materials and their thickness. As it is well known, the lower the operating temperature the lower
the energy losses are. For that reason, the additional aim of this study is to evaluate the potential
benefits associated the novel plant layout adoption. To perform simulations, all of the supply and
return pipes have been assumed as buried (Figure 7). As a consequence, a dedicated calculation model
has been used according to Equations (28)–(34). Since the distribution network is not extensive the
same diameter for both supply and return pipes has been assumed. In the end, the total dispersions of
both plant layouts have been calculated and compared each other.

Rpipe =
1

αi π di
+

1
2 π λt

ln
D
di

+
1

2 π λins
ln

Dins

D
+

1
2 π λp

ln
De

Dins
(28)

Rg =
1

2 π λf
cos h−1 (

2 H
De

+ αeqλf) (29)

R12 =
1

2 π λf
ln [ 1 +

(2 H)2

C2 ] (30)

H = h +
De

2
(31)

where α is a convective heat exchange coefficient, λt is the pipes thermal conductivity, λins is the
insulation thermal conductivity, λp is the waterproof case thermal conductivity, λf ground thermal
conductivity, H is the depth of laying, αeq is the equivalent thermal resistance, C is the distance of
laying. The values of thermal power dissipated per unit of length can therefore be identified as qf
for the supply line and qr for the return line, both expressed in W/m and calculated according to
Equations (32)–(34):

qf =
(T f − Tamb) (R g + Rpipe,r) − (T f − Tamb) R12

(R g + Rpipe,r) (R g + Rpipe,f) − R2
12

(32)

qr =
(T r − Tamb) (R g + Rpipe,f) − (T f − Tamb) R12

(R g + Rpipe,r) (R g + Rpipe,f) − R2
12

(33)

qtot = qf + qr (34)
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Thus, the pipes dimensional parameters for the distribution networks have been outlined in
Table 4.

Table 4. Pipe diameter and insulation.

Diameter DN Pipes D × S Insulation D (mm) Insulation (kg/m)

32 42.4 × 2.6 110 4.56
40 48.3 × 2.6 110 5.08
50 60.3 × 2.9 125 6.30

The feeding pump mechanical power to offset the pressure drops has been calculated on the basis
of the head losses related to the maximum water mass flow rate. That condition typically occurs when
the building thermal loads are the highest. The plant partial load operation is ensured by the use
of an electronic pump with variable rotational speed characterised by a flow rate equal to 12 m3/h
and the hydraulic head of 11 m. The DAB EVOPLUS SMALL-B 120/220.32 M [40] datasheet and the
characteristic curve have been assumed as references for calculations

3. Results and Discussion

A parametric study has been carried out to investigate the response of the trans-critical CO2 cycle
during different operating conditions and how the hybrid system is influenced by it, if compared to a
NZEB building’s perspective. In this section the main findings derived from calculations have been
presented and discussed. Considering the hybrid system, the total thermal energy has been estimated
by the sum of four CO2 heat pumps, a CHP and a traditional HP energy. The total system efficiency
associated to the fossil fuel use is 0.8466, considering the electricity bought from the national grid and
the electricity sold due to the employment of PV panels and micro CHP. The electrical demand and the
electricity excess profiles are reported in Figure 8. According to the electric energy balance Equation
(16), the electricity excess is reported with negative values in Figure 9 since that energy has discharged
into the grid. Basically, all of electric consumptions have been considered positive values, while are
negative the unbalanced electric power which is released out of the energy system. Furthermore, when
net metering option is implemented, that energy could be managed to reduce the levelized cost of
electricity by selling it to local utilities. Alternatively, by installing batteries bank it could be stored for
a time-shifted use.



Energies 2019, 12, 484 12 of 20

Energies 2018, 11, x FOR PEER REVIEW  11 of 20 

 

q  = 
(౨ - ౣౘ ) (ୖౝ + ୖ౦౦,) - ( - ౣౘ ) ୖభమ 

(ୖౝ + ୖ౦౦,౨) (ୖౝ + ୖ౦౦,) - ୖమభమ  (33) 

q ୲୭୲= q  +  q ୰ (34) 

Thus, the pipes dimensional parameters for the distribution networks have been outlined in 
Table 4. 

Table 4. Pipe diameter and insulation. 

Diameter DN Pipes D × S Insulation D (mm) Insulation (kg/m) 
32 42.4 × 2.6 110 4.56 
40 48.3 × 2.6 110 5.08 
50 60.3 × 2.9 125 6.30 

The feeding pump mechanical power to offset the pressure drops has been calculated on the 
basis of the head losses related to the maximum water mass flow rate. That condition typically 
occurs when the building thermal loads are the highest. The plant partial load operation is ensured 
by the use of an electronic pump with variable rotational speed characterised by a flow rate equal to 
12 m3/h and the hydraulic head of 11 m. The DAB EVOPLUS SMALL-B 120/220.32 M [40] 
datasheet and the characteristic curve have been assumed as references for calculations 

3. Results and Discussion 

A parametric study has been carried out to investigate the response of the trans-critical CO2 
cycle during different operating conditions and how the hybrid system is influenced by it, if 
compared to a NZEB building’s perspective. In this section the main findings derived from 
calculations have been presented and discussed. Considering the hybrid system, the total thermal 
energy has been estimated by the sum of four CO2 heat pumps, a CHP and a traditional HP energy. 
The total system efficiency associated to the fossil fuel use is 0.8466, considering the electricity 
bought from the national grid and the electricity sold due to the employment of PV panels and 
micro CHP. The electrical demand and the electricity excess profiles are reported in Figure 8. 
According to the electric energy balance Equation (16), the electricity excess is reported with 
negative values in Figure 9 since that energy has discharged into the grid. Basically, all of electric 
consumptions have been considered positive values, while are negative the unbalanced electric 
power which is released out of the energy system. Furthermore, when net metering option is 
implemented, that energy could be managed to reduce the levelized cost of electricity by selling it 
to local utilities. Alternatively, by installing batteries bank it could be stored for a time-shifted use. 

 
Figure 8. Electrical demand and electricity excess (in red the amount of energy purchased in one year 
and in green the energy produced). 

The PV panels power output profile as well as and the overall buildings electric load are 
superimposed on the same chart as shown in Figure 9. 

Figure 8. Electrical demand and electricity excess (in red the amount of energy purchased in one year
and in green the energy produced).Energies 2018, 11, x FOR PEER REVIEW  12 of 20 

 

 
Figure 9. Electric load vs PV electricity production. 

The whole energy of the hybrid system, sorted by typology, is summarized in Figure 10a, 
while Figure 10b shows the electric, heat and DHW demand of the traditional energy system. 

 
  

(a) (b) 

Figure 10. Total energy produced in the hybrid energy system (a) and in the traditional energy 
system (b). 

The global efficiency has been estimated considering the performance indicators as detailed 
before. Comparing the energy scenarios, it emerges how the hybridisation lead to better 
performance resulting in the First Law Efficiency, based on the fossil fuel use, equal to 0.5528 and 
0.8395 for traditional energy system and the hybrid one, respectively. The further energy 
performance indicators have been summarised in Tables 5 and 6. 

Table 5. Comparison between hybrid and traditional systems. 

Energy Performance Indicators Hybrid System Traditional System 
heating efficiency 2.31 0.67 

DHW efficiency 0.52 0.80 

RES fraction on electricity 0.10 - 

renewable heat fraction 0.42 - 

Table 6. Heat Transcritical hybrid and traditional systems performance indicators. 

Performance Indicator Hybrid System Traditional System 

PEC [kWh] 140,583 177,647 

PES [kWh] 37,060  

fRES 0.27 - 

System efficiency 0.84 0.55 

Figure 9. Electric load vs PV electricity production.

The PV panels power output profile as well as and the overall buildings electric load are
superimposed on the same chart as shown in Figure 9.

The whole energy of the hybrid system, sorted by typology, is summarized in Figure 10a, while
Figure 10b shows the electric, heat and DHW demand of the traditional energy system.
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Figure 10. Total energy produced in the hybrid energy system (a) and in the traditional energy system (b).

The global efficiency has been estimated considering the performance indicators as detailed before.
Comparing the energy scenarios, it emerges how the hybridisation lead to better performance resulting
in the First Law Efficiency, based on the fossil fuel use, equal to 0.5528 and 0.8395 for traditional
energy system and the hybrid one, respectively. The further energy performance indicators have been
summarised in Tables 5 and 6.
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Table 5. Comparison between hybrid and traditional systems.

Energy Performance Indicators Hybrid System Traditional System

heating efficiency 2.31 0.67
DHW efficiency 0.52 0.80

RES fraction on electricity 0.10 -
renewable heat fraction 0.42 -

Table 6. Heat Transcritical hybrid and traditional systems performance indicators.

Performance Indicator Hybrid System Traditional System

PEC [kWh] 140,583 177,647
PES [kWh] 37,060

fRES 0.27 -
System efficiency 0.84 0.55

The simulation outcomes confirmed that the efficiency is higher in the hybrid system,
demonstrating that NZEB target is more difficult to achieve with fossil fuels. Indeed, electricity
employment is eased with the hybrid system rather than fossil fuels (e.g., heat pumps against fossil
fuels boilers); in addition, renewable energy ratio is not close to zero because it includes off-site energy
produced by renewable sources [41]. In detail, the heating efficiency is calculated as the ratio between
the total heat produced and the primary fossil energy. For that reason, the heating efficiency is higher
than 1.

Finally, the sensitivity analysis has been carried out changing both electric and thermal loads of
−15% and +15%, so as to modify the building PTHR, as reported in Figures 11 and 12, together with
the evaluated performance indicators.

Here below, the main outcomes associated to both cases are summarised:

• In the first case, due to the higher electricity demand, the PEC increases; the additional electric
energy has to be purchased from the national grid. On the contrary, in the second case, when the
Thermal load enhances, the PEC tends to shrink.

• When the building PTHR is higher the Renewable fraction fRES goes down almost linearly due
to the fact that the overall required energy is larger; notwithstanding, the renewable electricity
production remains constant and its fraction on final electricity consumption lessens accordingly.

• The PES tends to slightly increase as the building PTHR grows up, owing to the electricity
excess reduction.
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The following two graphs depict the sensitivity analysis of the electricity excess with varying
the building PTHR, distinguishing also the renewable and fossil amounts. It is worth of noticing
that the larger the electrical load, implying a higher PTHR value, the lower the electricity excess is;
conversely, when the electrical load decreases more energy is available to be either converted in heat
by the HPs or to be stored within dedicated devices (see Figure 13a). The same approach has been used
in order to evaluate how the renewable energy can contribute to the electricity excess, by chancing
the thermal load as shown in Figure 13b. Additionally, Figures 14 and 15 show sensitivity analysis of
performance indicators with changes in thermal and electric loads respectively when a batteries bank is
connected. In particular, Figures 14 and 16, provide the sensitivity analysis results related to the hybrid
system performance indicators, once it has been equipped with a storage device. For those calculations,
the round-trip efficiency for the storage bank has been assumed equal to 0.8. Consequently, from data
reported in Figure 13 it has been possible to immediately assess the actual storable electricity, which is
able to positively affect the building primary fossil energy consumption as well as the RES fraction.

Comparing the reference hybrid scenarios (i.e., building PTHR equal to 1), the hybrid system with
the integrated electrical storage device shows a further reduction in primary fossil energy consumption
starting from 140,583 kWh to 133,909 kWh. Given that the electricity excess is equal to 3503 kWh,
the usable electricity from batteries is only 2802 kWh, because of the energy losses for charging and
discharging process have been accounted for. As a consequence, it is possible to state that implementing
complex hybrid systems along with storage represents a viable alternative option for lowering the
dwellings primary fossil energy consumption. In such a way, a more effective and rational use of
renewables can be attained, favouring the pathway towards the NZEB qualification associated to the
existing buildings. Referring to Figures 14 and 15 it is noteworthy how the PEC reduction associated
to the storage device application is higher when building PTHR is equal to 0.9. Indeed, in that case
the computed benefit is 8163 kWh, whilst it is equal to 5218 kWh once the building PTHR is 1.09.
Moreover, when the building PTHR changes owing to the thermal load variations the PEC trend line
shifts down and its slope is basically constant.

In the final analysis, the 3 case studies were compared through a histogram, showing the building
primary energy need in the case of the traditional system, the hybrid system and the hybrid system
with storage. The use of a high-performance energy generation system reduces energy requirements by
almost 50%, as shown in Figure 16. Figure 16b represents the primary energy requirement according
to the legislative decree 192/05 implementing the directive 2002/91 of the European Community [42].
The energy certification system provides that the lighting and driving force contribution is not counted
in energy consumption, showing a significantly lower primary fossil energy need. For the purposes of
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energy certification, the values shown in Figure 16b are taken into consideration. In the case of the
hybrid storage system, the primary energy need of the building is equal to 74 kWh/m2y, not yet in
line with what is reported in the NZEB classification terms.
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4. Conclusions

This paper investigated on the possibility to build a new hybrid system based on the trans-critical
carbon dioxide heat pumps integration. Specifically, a shared cold heat sink for those heat pumps
has been conceptualized modifying the common operating parameters of trans-critical CO2 HPs.
Renewable sources together with micro CHP have been coupled to produce on site the electricity for
the HPs driving. Performing dynamic simulations, the energy benefits coming out that innovative
system have been evaluated. The main findings can be outlined as follows:

1. The proposed hybrid system adoption leads to an overall First Law Efficiency equal to 0.84 instead
of 0.55. The achievable renewable fraction is 27% while the primary energy saving corresponds
to 37%, approximately. The large use of renewables (i.e., aerothermal and solar) allows to get a
heating efficiency in terms of primary fossil energy higher than 2;

2. The low temperature distribution network development contributes positively to the system
efficiency due to the thermal losses and head losses reduction. Even if the water flow rate is
high, owing to the HPs operating temperature difference which is limited to 5 ◦C, the electric
consumption for water pumping is lower. Notwithstanding, the piping diameters are greater
than those related to the traditional heating plant.

3. The use of PV and CHP makes the electricity purchase affordable, despite a large amount of
electricity excess is sold to the Grid by the Net metering option. When electric storage devices are
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applied, a better exploitation of renewable energy occurs, increasing the energy classification of
buildings, according to the performance indicators changes;

4. Even if the conversion efficiency for DHW production is low due to the CHP heat recovery
efficiency, the CHP electric power output favours the final reduction in the hybrid system PEC;

5. By comparing the hybrid system with storage device with the traditional one, is it possible to get
a considerable primary fossil energy saving (−50% approximately). Therefore, higher efficiency
has been registered when replacing the most common technologies with the new commercial
ones and along with the heat sharing solutions and electric storage devices. The batteries bank
integration allows to reduce the electricity purchase from the national grid affecting positively
the PEC values;

6. According to the sensitivity analysis, the building PTHR increases and the fRES decreases
consistently. However, the primary fossil energy consumption is higher than the Figures shown
in the first scenario, but the energy saving increases.

7. In order to achieve NZEB qualification, CO2-HPs and hybrid systems adoption are viable
solutions. Our next step would be to improve the hybrid system by taking CO2 potential
at its peak. Furthermore, harmful refrigerants will be limited in the future, so it would be possible
to use transcritical CO2 heat pumps.
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Nomenclature

Cp Specific heat (J/kg K)
D Diameter (mm)
E Energy (kWh)
G Flow (l/h)
h Enthalpy (kJ/kg)
Lh Latent heat
.

m Mass flow rate (kg/s)
P Pressure (bar)
Q Heat load (kW)
r Distributed load loss (mmH2O)
r Density (kg/m3)
T Temperature (◦C)
v Speed (m/s)
W Compressor work
x Localized loss coefficient
η Efficiency
λ Thermal conductivity [W/m2K]
ν Viscosity (m2/s)
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Subscripts
com Compressor
des Design
e Electrical
ev Evaporator
gc Gas cooler
in Inlet
is Isentropic
out Outlet
reg Regeneration
sub Sub cooling
t Thermal
w Water
Abbreviations
CHP Combined heat and power
CO2 Carbon dioxide
COP Coefficient of performance
DHW Domestic hot water
fRES Renewable energy fraction
GHG Greenhouse gas
GWP Global warming potential
HP Heat pump
IHEX Internal heat exchanger
nZEB Nearly zero emission buildings
ODP Ozone Depletion Potential
PEC Primary energy consumption
PES Primary energy saving
PTHR Power to heat ratio
PV Photovoltaic panels
RES Renewable energy sources
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