Turbulence-Model Comparison for Aerodynamic-Performance Prediction of a Typical Vertical-Axis Wind-Turbine Airfoil
Abstract
:1. Introduction
2. Numerical Methodology
2.1. Experimental Reference Case
2.2. Domain Geometry and Proper Mesh-Size Study
- For the outer-layer region ( to ):
- For the inner-layer region ( to ):
2.3. Numerical Solver, Boundary Conditions, and Turbulence Models
- Modified turbulent viscosity:
- Turbulent dissipation rate:
- Specific dissipation rate:
- (1) Strain-based Spalart-Allmaras;
- (2) Realizable with Enhanced Wall Treatment;
- (3) (Standard, Baseline, and Shear-Stress Transport [31]); and
- (4) Linear Pressure-Strain Reynolds Stress model with Enhanced Wall Treatment.
- (1) SAS with Standard and Shear Stress Transport models;
- (2) WMLES Standard and WMLES ;
- (3) LES with the Wall-Adapting Local Eddy-Viscosity (WALE) model; and
- (4) Detached Eddy Simulation with the Shear Stress Transport model.
2.4. Time-Step Selection and Calculation Time
3. Prediction of Aerodynamic Forces on Airfoil
3.1. U-RANS Simulation Results
3.2. Results from the SRS Simulations
3.3. Additional Remarks
4. Flow-Field Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Manwell, J.; McGowan, J.; Rogers, A. Wind Energy Explained: Theory, Design and Application; John Wiley and Sons, Ltd.: Chichester, UK, 2009. [Google Scholar]
- Tropea, C.; Yarin, A.; Foss, J. Handbook of Experimental Fluid Mechanics; Springer: Berlin, Germany, 2007. [Google Scholar]
- Cao, H. Aerodynamics Analysis of Small Horizontal Axis Wind Turbine Blades by Using 2D and 3D CFD Modelling. Master’s Thesis, University of Central Lancashire, Preston, UK, 2011. [Google Scholar]
- Sanz, J.M. CFD Study of Thick Flatback Airfoils Using OpenFOAM. Master’s Thesis, Technical University of Denmark, Copenhagen, Denmark, 2011. [Google Scholar]
- Yao, J.; Yuan, W.; Wang, J.; Xie, J.; Zhou, H.; Peng, M.; Sun, Y. Numerical simulation of aerodynamic performance for two dimensional wind turbine airfoils. Procedia Eng. 2012, 31, 80–86. [Google Scholar] [CrossRef]
- Rahimi, H.; Medjroubi, W.; Stoevesandt, B.; Peinke, J. 2D Numerical Investigation of the Laminar and Turbulent Flow Over Different Airfoils Using OpenFoam. J. Phys. Conf. Ser. 2014, 555, 012070. [Google Scholar] [CrossRef]
- Shah, H.; Mathew, S.; Lim, C. Numerical simulation of flow over an airfoil for small wind turbines using the γ-Reθ model. Int. J. Energy Environ. Eng. 2015, 6, 419–429. [Google Scholar] [CrossRef]
- Sørensen, N.; Méndez, B.; Noz, A.M.; Sieros, G.; Jost, E.; Lutz, T.; Papadakis, G.; Voutsinas, S.; Barakos, G.; Colonia, S.; et al. CFD code comparison for 2D airfoil flows. J. Phys. Conf. Ser. 2016, 753, 082019. [Google Scholar] [CrossRef]
- Athadkar, M.; Desai, S. Importance of the extent of far-field boundaries and of the grid topology in the CFD simulation of external flows. Int. J. Mech. Prod. Eng. 2014, 2, 69–72. [Google Scholar]
- Eleni, D.; Athanasios, T.; Dionissios, M. Evaluation of the turbulence models for the simulation of the flow over a National Advisory Committee for Aeronautics (NACA) 0012 airfoil. J. Mech. Eng. Res. 2012, 4, 100–111. [Google Scholar]
- Kasibhotla, V.; Tafti, D. Large eddy simulation of the flow past pitching NACA0012 airfoil at 1e5 Reynolds number. In Proceedings of the ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting, Chicago, IL, USA, 3–7 August 2014. [Google Scholar]
- Li, S.; Zhang, L.; Yang, K.; Xu, J.; Li, X. Aerodynamic Performance ofWind Turbine Airfoil DU 91-W2-250 under Dynamic Stall. Appl. Sci. 2018, 8, 1111. [Google Scholar] [CrossRef]
- Zhu, C.; Wang, T. Comparative Study of Dynamic Stall under Pitch Oscillation and Oscillating Freestream on Wind Turbine Airfoil and Blade. Appl. Sci. 2018, 8, 1242. [Google Scholar] [CrossRef]
- Hawley, J. An OpenFoam Analysis—The Joukowski Airfoil at Different Viscosities. Technical Report. Available online: http://jimhawley.ca/downloads/Joukowski_airfoil_at_different_viscosities.pdf (accessed on 16 January 2018).
- Douvi, D.; Margaris, D.; Davaris, A. Aerodynamic Performance of a NREL S809 Airfoil in an Air-Sand Particle Two-Phase Flow. Computation 2017, 5, 13. [Google Scholar] [CrossRef]
- Li, X.; Yang, K.; Hu, H.; Wang, X.; Kang, S. Effect of Tailing-Edge Thickness on Aerodynamic Noise for Wind Turbine Airfoil. Energies 2019, 12, 270. [Google Scholar] [CrossRef]
- Mendez, B.; Noz, A.M.; Munduate, X. Study of distributed roughness effect over wind turbine airfoils performance using CFD. In Proceedings of the 33rd Wind Energy Symposium, Kissimmee, FL, USA, 5–9 January 2015. [Google Scholar]
- Schramm, M.; Rahimi, H.; Stoevesandt, B.; Tangager, K. The Influence of Eroded Blades on Wind Turbine Performance Using Numerical Simulations. Energies 2017, 10, 1420. [Google Scholar] [CrossRef]
- Obeid, S.; Jha, R.; Ahmadi, G. RANS Simulations of Aerodynamic Performance of NACA 0015 Flapped Airfoil. Fluids 2017, 2, 2. [Google Scholar] [CrossRef]
- Fernandez-Gamiz, U.; Gomez-Mármol, M.; Chacón-Rebollo, T. Computational Modeling of Gurney Flaps and Microtabs by POD Method. Energies 2018, 11, 2091. [Google Scholar] [CrossRef]
- Liang, C.; Li, H. Aerofoil optimization for improving the power performance of a vertical axis wind turbine using multiple streamtube model and genetic algorithm. R. Soc. Open Sci. 2018, 5, 180540. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Li, Y.; Yang, C.; Zhang, X.; Wang, Q.; Li, D.; Zhong, W.; Wang, T. Design and Testing of a LUT Airfoil for Straight-Bladed Vertical AxisWind Turbines. Appl. Sci. 2018, 8, 2266. [Google Scholar] [CrossRef]
- Claessens, M. The Design and Testing of Airfoils for Application in Small Vertical Axis Wind Turbines. Master’s Thesis, TU Delft, Delft, The Netherlands, 2006. [Google Scholar]
- Tucker, P. Unsteady Computational Fluid Dynamics in Aeronautics; Springer: Berlin, Germany, 2014. [Google Scholar]
- Drela, M. XFOIL: An Analysis and Design System for Low Reynolds Number Airfoils. In Proceedings of the Low Reynolds Number Aerodynamics, Notre Dame, IN, USA, 5–7 June 1989; pp. 1–12. [Google Scholar]
- Dahlström, S.; Davidson, L. Large eddy simulation of the flow around an aerospatiale A-aerofoil. In Proceedings of the European Congress on Computational Methods in Applied Sciences and Engineering ECCOMAS 2000, Barcelona, Spain, 1–3 September 2000; pp. 1–20. [Google Scholar]
- Davidson, L.; Dahlström, S. Hybrid LES-RANS: An approach to make LES applicable at high Reynolds number. Int. J. Comput. Fluid Dyn. 2005, 19, 415–427. [Google Scholar] [CrossRef]
- Pope, S. Turbulent Flows; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Tucker, P. Computation of unsteady turbomachinery flows: Part 2—LES and hybrids. Prog. Aerosp. Sci. 2011, 47, 546–569. [Google Scholar] [CrossRef]
- Chapman, D. Computational Aerodynamics Development and Outlook. AIAA J. 1979, 17, 1293–1313. [Google Scholar] [CrossRef]
- Menter, F. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 1994, 32, 1598–1605. [Google Scholar] [CrossRef]
- White, F. Fluid Mechanics; WCB/McGraw-Hill: Boston, MA, USA, 1999. [Google Scholar]
- Sarlak, H.; Frère, A.; Mikkelsen, R.; Sørensen, J. Experimental Investigation of Static Stall Hysteresis and 3-Dimensional Flow Structures for an NREL S826 Wing Section of Finite Span. Energies 2018, 11, 1418. [Google Scholar] [CrossRef]
- Argyropoulos, C.; Markatos, N. Recent advances on the numerical modelling of turbulent flows. Appl. Math. Model. 2015, 39, 693–732. [Google Scholar] [CrossRef]
- Haller, G. An objective definition of a vortex. J. Fluid Mech. 2005, 525, 1–26. [Google Scholar] [CrossRef]
- Alam, M.; Zhou, Y.; Yang, H.; Guo, H.; Mi, J. The ultra-low Reynolds number airfoil wake. Exp. Fluids 2010, 48, 81–103. [Google Scholar] [CrossRef]
- Yarusevych, S.; Sullivan, P.; Kawall, J. On vortex shedding from an airfoil in low-Reynolds-number flows. J. Fluid Mech. 2009, 632, 245–271. [Google Scholar] [CrossRef]
- Rodríguez, I.; Lehmkuhl, O.; Borrel, R.; Oliva, A. Direct numerical simulation of a NACA0012 in full stall. Int. J. Heat Fluid Flow 2013, 43, 194–203. [Google Scholar] [CrossRef]
Authors | Distance to the Inlet/Sides | Distance to the Outlet |
---|---|---|
This work | 12.5c | 20c |
Cao (2011) [3] | 12.5c | 20c |
Eleni et al. (2012) [10] | 10c | 20c |
Hawley (2013) [14] | 5c | 6c |
Athadkar and Desai (2014) [9] | 10c | 15c |
Kasibhotla and Tafti (2014) [11] | 15c | 60c |
Mendez et al. (2015) [17] | 12.5c | 12.5c |
Shah et al. (2015) [7] | 15c | 25c |
Sørensen et al. (2016) [8] | 20c | 20c |
Douvi et al. (2017) [15] | 12.5c | 20c |
Obeid et al. (2017) [19] | 12.5c | 30c |
Liang and Li (2018) [21] | 25c | 25c |
Turbulence Model Family | Time Step (s) | Average Simulation Time per Case (h) |
---|---|---|
Reynolds-Averaged Navier–Stokes Equation (U-RANS) | 6 | |
Scale-Adaptive Simulation (SAS) | 200 | |
Wall-Modeled Large Eddy Simulations (WMLES) | 250 | |
Wall-Resolved LES Resolution (WRLES)/DES | 500 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meana-Fernández, A.; Fernández Oro, J.M.; Argüelles Díaz, K.M.; Velarde-Suárez, S. Turbulence-Model Comparison for Aerodynamic-Performance Prediction of a Typical Vertical-Axis Wind-Turbine Airfoil. Energies 2019, 12, 488. https://doi.org/10.3390/en12030488
Meana-Fernández A, Fernández Oro JM, Argüelles Díaz KM, Velarde-Suárez S. Turbulence-Model Comparison for Aerodynamic-Performance Prediction of a Typical Vertical-Axis Wind-Turbine Airfoil. Energies. 2019; 12(3):488. https://doi.org/10.3390/en12030488
Chicago/Turabian StyleMeana-Fernández, Andrés, Jesús Manuel Fernández Oro, Katia María Argüelles Díaz, and Sandra Velarde-Suárez. 2019. "Turbulence-Model Comparison for Aerodynamic-Performance Prediction of a Typical Vertical-Axis Wind-Turbine Airfoil" Energies 12, no. 3: 488. https://doi.org/10.3390/en12030488
APA StyleMeana-Fernández, A., Fernández Oro, J. M., Argüelles Díaz, K. M., & Velarde-Suárez, S. (2019). Turbulence-Model Comparison for Aerodynamic-Performance Prediction of a Typical Vertical-Axis Wind-Turbine Airfoil. Energies, 12(3), 488. https://doi.org/10.3390/en12030488