Seed Pretreatment for Increased Hydrogen Production Using Mixed-Culture Systems with Advantages over Pure-Culture Systems
Abstract
:1. Introduction
Methodology
2. Mixed-Culture System: Pretreatment of Seed Inoculum
2.1. Heat-Treatment
2.2. Chemical-Treatment
2.3. Microwave-Treatment
2.4. Other Treatments
2.5. Combined Pretreatment
3. Substrate Pretreatment
4. Improvements in Mixed-Culture
5. Molecular Techniques Used in Mixed-Culture
6. Challenges for a Mixed-Culture System of Hydrogen Production
7. Advantages of Mixed-Culture for Hydrogen Production
8. Approaches and Future Perspectives for Mixed-Culture in Hydrogen Production
9. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Winter, C.-J. Hydrogen energy—Abundant, efficient, clean: A debate over the energy-system-of-change. Int. J. Hydrogen Energy 2009, 34, S1–S52. [Google Scholar] [CrossRef]
- Momirlan, M.; Veziroglu, T.N. The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet. Int. J. Hydrogen Energy 2005, 30, 795–802. [Google Scholar] [CrossRef]
- Pachapur, V.L. Fermentation du Glycérol Brut en Co-Culture Pour la Production D’hydrogène. Ph.D. Thesis, University of Quebec, National Institute of Scientific Research, Quebec City, QC, Canada, 2017. [Google Scholar]
- Billings, R.E. Hydrogen Storage in Automobiles Using Cryogenics and Metal Hydrides. In Proceedings of the Hydrogen Economy Miami Energy (THEME) Conference, Miami Beach, FL, USA, 1974; pp. S8–S51. [Google Scholar]
- Kloeppel, J.; Rogerson, S. The hydrogen economy. Electron. World Wirel. World 1991, 97, 668–671. [Google Scholar]
- Rajeshwar, K.; Ibanez, J.; Swain, G. Electrochemistry and the environment. J. Appl. Electrochem. 1994, 24, 1077–1091. [Google Scholar] [CrossRef]
- Basak, N.; Das, D. The prospect of purple non-sulfur (PNS) photosynthetic bacteria for hydrogen production: The present state of the art. World J. Microbiol. Biotechnol. 2007, 23, 31–42. [Google Scholar] [CrossRef]
- Prapinagsorn, W.; Sittijunda, S.; Reungsang, A. Co-Digestion of Napier Grass and Its Silage with Cow Dung for Bio-Hydrogen and Methane Production by Two-Stage Anaerobic Digestion Process. Energies 2017, 11, 47. [Google Scholar] [CrossRef]
- Hafez, H.; Nakhla, G.; El Naggar, H. Biological hydrogen production from corn-syrup waste using a novel system. Energies 2009, 2, 445–455. [Google Scholar] [CrossRef]
- Kleerebezem, R.; van Loosdrecht, M.C. Mixed culture biotechnology for bioenergy production. Curr. Opin. Biotechnol. 2007, 18, 207–212. [Google Scholar] [CrossRef]
- Pachapur, V.L.; Kutty, P.; Brar, S.K.; Ramirez, A.A. Enrichment of Secondary Wastewater Sludge for Production of Hydrogen from Crude Glycerol and Comparative Evaluation of Mono-, Co-and Mixed-Culture Systems. Int. J. Mol. Sci. 2016, 17, 92. [Google Scholar] [CrossRef]
- Baghchehsaraee, B.; Nakhla, G.; Karamanev, D.; Margaritis, A. Fermentative hydrogen production by diverse microflora. Int. J. Hydrogen Energy 2010, 35, 5021–5027. [Google Scholar] [CrossRef]
- Qiao, W.; Wang, W.; Zhu, C.; Zhang, Z. Biogas recovery from microwave heated sludge by anaerobic digestion. Sci. China Ser. E Technol. Sci. 2010, 53, 144–149. [Google Scholar] [CrossRef]
- Nath, K.; Das, D. Improvement of fermentative hydrogen production: Various approaches. Appl. Microbiol. Biotechnol. 2004, 65, 520–529. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Chen, S. Pretreatment of methanogenic granules for immobilized hydrogen fermentation. Int. J. Hydrogen Energy 2007, 32, 3266–3273. [Google Scholar] [CrossRef]
- Sattar, A.; Arslan, C.; Ji, C.; Sattar, S.; Ali Mari, I.; Rashid, H.; Ilyas, F. Comparing the bio-hydrogen production potential of pretreated rice straw co-digested with seeded sludge using an anaerobic bioreactor under mesophilic thermophilic conditions. Energies 2016, 9, 198. [Google Scholar] [CrossRef]
- Morvan, B.; Bonnemoy, F.; Fonty, G.; Gouet, P. Quantitative determination of H2-utilizing acetogenic and sulfate-reducing bacteria and methanogenic archaea from digestive tract of different mammals. Curr. Microbiol. 1996, 32, 129–133. [Google Scholar] [CrossRef] [PubMed]
- Cheong, D.-Y.; Hansen, C.L. Bacterial stress enrichment enhances anaerobic hydrogen production in cattle manure sludge. Appl. Microbiol. Biotechnol. 2006, 72, 635–643. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Banks, C.; Zhang, Y.; Heaven, S.; Longhurst, P. Quantifying the percentage of methane formation via acetoclastic and syntrophic acetate oxidation pathways in anaerobic digesters. Waste Manag. 2018, 71, 749–756. [Google Scholar] [CrossRef]
- Temudo, M.F.; Poldermans, R.; Kleerebezem, R.; van Loosdrecht, M. Glycerol fermentation by (open) mixed cultures: A chemostat study. Biotechnol. Bioeng. 2008, 100, 1088–1098. [Google Scholar] [CrossRef]
- Tanisho, S.; Kuromoto, M.; Kadokura, N. Effect of CO2 removal on hydrogen production by fermentation. Int. J. Hydrogen Energy 1998, 23, 559–563. [Google Scholar] [CrossRef]
- Mizuno, O.; Dinsdale, R.; Hawkes, F.R.; Hawkes, D.L.; Noike, T. Enhancement of hydrogen production from glucose by nitrogen gas sparging. Bioresour. Technol. 2000, 73, 59–65. [Google Scholar] [CrossRef]
- Fang, H.H.; Liu, H. Effect of pH on hydrogen production from glucose by a mixed culture. Bioresour. Technol. 2002, 82, 87–93. [Google Scholar] [CrossRef]
- Hwang, M.H.; Jang, N.J.; Hyun, S.H.; Kim, I.S. Anaerobic bio-hydrogen production from ethanol fermentation: The role of pH. J. Biotechnol. 2004, 111, 297–309. [Google Scholar] [CrossRef] [PubMed]
- Shizas, I.; Bagley, D. Fermentative hydrogen production in a system using anaerobic digester sludge without heat treatment as a biomass source. Water Sci. Technol. 2005, 52, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wan, W. Comparison of different pretreatment methods for enriching hydrogen-producing bacteria from digested sludge. Int. J. Hydrogen Energy 2008, 33, 2934–2941. [Google Scholar] [CrossRef]
- Kawagoshi, Y.; Hino, N.; Fujimoto, A.; Nakao, M.; Fujita, Y.; Sugimura, S.; Furukawa, K. Effect of inoculum conditioning on hydrogen fermentation and pH effect on bacterial community relevant to hydrogen production. J. Biosci. Bioeng. 2005, 100, 524–530. [Google Scholar] [CrossRef] [PubMed]
- Davila-Vazquez, G.; Arriaga, S.; Alatriste-Mondragón, F.; de León-Rodríguez, A.; Rosales-Colunga, L.M.; Razo-Flores, E. Fermentative biohydrogen production: Trends and perspectives. Rev. Environ. Sci. Bio/Technol. 2008, 7, 27–45. [Google Scholar] [CrossRef]
- Xiao, B.; Liu, J. Biological hydrogen production from sterilized sewage sludge by anaerobic self-fermentation. J. Hazard. Mater. 2009, 168, 163–167. [Google Scholar] [CrossRef] [PubMed]
- Ginkel, S.V.; Sung, S.; Lay, J.-J. Biohydrogen production as a function of pH and substrate concentration. Environ. Sci. Technol. 2001, 35, 4726–4730. [Google Scholar] [CrossRef]
- Koku, H.; Eroğlu, I.; Gündüz, U.; Yücel, M.; Türker, L. Aspects of the metabolism of hydrogen production by Rhodobacter sphaeroides. Int. J. Hydrogen Energy 2002, 27, 1315–1329. [Google Scholar] [CrossRef]
- Li, C.; Fang, H.H. Fermentative hydrogen production from wastewater and solid wastes by mixed cultures. Crit. Rev. Environ. Sci. Technol. 2007, 37, 1–39. [Google Scholar] [CrossRef]
- Lay, J.-J.; Lee, Y.-J.; Noike, T. Feasibility of biological hydrogen production from organic fraction of municipal solid waste. Water Res. 1999, 33, 2579–2586. [Google Scholar] [CrossRef]
- Sivagurunathan, P.; Sen, B.; Lin, C.-Y. Batch fermentative hydrogen production by enriched mixed culture: Combination strategy and their microbial composition. J. Biosci. Bioeng. 2014, 117, 222–228. [Google Scholar] [CrossRef] [PubMed]
- Selembo, P.A.; Perez, J.M.; Lloyd, W.A.; Logan, B.E. Enhanced hydrogen and 1, 3-propanediol production from glycerol by fermentation using mixed cultures. Biotechnol. Bioeng. 2009, 104, 1098–1106. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Li, C.; Lay, J.-J.; Hou, H.; Zhang, G. Optimization of initial substrate and pH levels for germination of sporing hydrogen-producing anaerobes in cow dung compost. Bioresour. Technol. 2004, 91, 189–193. [Google Scholar] [CrossRef]
- Mu, Y.; Yu, H.-Q.; Wang, G. A kinetic approach to anaerobic hydrogen-producing process. Water Res. 2007, 41, 1152–1160. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Li, X.-M.; Bo, X.; Yang, Q.; Zeng, G.-M.; Liao, D.-X.; Liu, J.-J. Impacts of sterilization, microwave and ultrasonication pretreatment on hydrogen producing using waste sludge. Bioresour. Technol. 2008, 99, 3651–3658. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.C.; Lancaster, J. Treatment of Secondary Sludge for Energy Recovery; Energy Recovery, Nova Science Publishers Inc.: New York, NY, USA, 2009; pp. 187–211. [Google Scholar]
- Phowan, P.; Danvirutai, P. Hydrogen production from cassava pulp hydrolysate by mixed seed cultures: Effects of initial pH, substrate and biomass concentrations. Biomass Bioenergy 2014, 64, 1–10. [Google Scholar] [CrossRef]
- Massanet-Nicolau, J.; Dinsdale, R.; Guwy, A. Hydrogen production from sewage sludge using mixed microflora inoculum: Effect of pH and enzymatic pretreatment. Bioresour. Technol. 2008, 99, 6325–6331. [Google Scholar] [CrossRef]
- Kim, M.; Liu, C.; Noh, J.-W.; Yang, Y.; Oh, S.; Shimizu, K.; Lee, D.-Y.; Zhang, Z. Hydrogen and methane production from untreated rice straw and raw sewage sludge under thermophilic anaerobic conditions. Int. J. Hydrogen Energy 2013, 38, 8648–8656. [Google Scholar] [CrossRef]
- Argun, H.; Kargi, F.; Kapdan, I.K. Microbial culture selection for bio-hydrogen production from waste ground wheat by dark fermentation. Int. J. Hydrogen Energy 2009, 34, 2195–2200. [Google Scholar] [CrossRef]
- Maintinguer, S.I.; Fernandes, B.S.; Duarte, I.C.; Saavedra, N.K.; Adorno, M.A.T.; Varesche, M.B. Fermentative hydrogen production by microbial consortium. Int. J. Hydrogen Energy 2008, 33, 4309–4317. [Google Scholar] [CrossRef]
- Mu, Y.; Zheng, X.-J.; Yu, H.-Q.; Zhu, R.-F. Biological hydrogen production by anaerobic sludge at various temperatures. Int. J. Hydrogen Energy 2006, 31, 780–785. [Google Scholar] [CrossRef]
- Ravindran, A.; Adav, S.; Yang, S.-S. Effect of heat pre-treatment temperature on isolation of hydrogen producing functional consortium from soil. Renew. Energy 2010, 35, 2649–2655. [Google Scholar] [CrossRef]
- Saraphirom, P.; Reungsang, A. Biological hydrogen production from sweet sorghum syrup by mixed cultures using an anaerobic sequencing batch reactor (ASBR). Int. J. Hydrogen Energy 2011, 36, 8765–8773. [Google Scholar] [CrossRef]
- Saripan, A.F.; Reungsang, A. Simultaneous saccharification and fermentation of cellulose for bio-hydrogen production by anaerobic mixed cultures in elephant dung. Int. J. Hydrogen Energy 2014, 39, 9028–9035. [Google Scholar] [CrossRef]
- Sreela-or, C.; Imai, T.; Plangklang, P.; Reungsang, A. Optimization of key factors affecting hydrogen production from food waste by anaerobic mixed cultures. Int. J. Hydrogen Energy 2011, 36, 14120–14133. [Google Scholar] [CrossRef]
- Datar, R.; Huang, J.; Maness, P.-C.; Mohagheghi, A.; Czernik, S.; Chornet, E. Hydrogen production from the fermentation of corn stover biomass pretreated with a steam-explosion process. Int. J. Hydrogen Energy 2007, 32, 932–939. [Google Scholar] [CrossRef]
- Liu, C.-z.; Cheng, X.-y. Improved hydrogen production via thermophilic fermentation of corn stover by microwave-assisted acid pretreatment. Int. J. Hydrogen Energy 2010, 35, 8945–8952. [Google Scholar] [CrossRef]
- Gilroyed, B.H.; Chang, C.; Chu, A.; Hao, X. Effect of temperature on anaerobic fermentative hydrogen gas production from feedlot cattle manure using mixed microflora. Int. J. Hydrogen Energy 2008, 33, 4301–4308. [Google Scholar] [CrossRef]
- Kim, S.-H.; Han, S.-K.; Shin, H.-S. Feasibility of biohydrogen production by anaerobic co-digestion of food waste and sewage sludge. Int. J. Hydrogen Energy 2004, 29, 1607–1616. [Google Scholar] [CrossRef]
- Lee, K.-S.; Hsu, Y.-F.; Lo, Y.-C.; Lin, P.-J.; Lin, C.-Y.; Chang, J.-S. Exploring optimal environmental factors for fermentative hydrogen production from starch using mixed anaerobic microflora. Int. J. Hydrogen Energy 2008, 33, 1565–1572. [Google Scholar] [CrossRef]
- Luo, G.; Xie, L.; Zou, Z.; Zhou, Q.; Wang, J.-Y. Fermentative hydrogen production from cassava stillage by mixed anaerobic microflora: Effects of temperature and pH. Appl. Energy 2010, 87, 3710–3717. [Google Scholar] [CrossRef]
- Agler, M.T.; Wrenn, B.A.; Zinder, S.H.; Angenent, L.T. Waste to bioproduct conversion with undefined mixed cultures: The carboxylate platform. Trends Biotechnol. 2011, 29, 70–78. [Google Scholar] [CrossRef]
- Oh, S.-E.; Van Ginkel, S.; Logan, B.E. The relative effectiveness of pH control and heat treatment for enhancing biohydrogen gas production. Environ. Sci. Technol. 2003, 37, 5186–5190. [Google Scholar] [CrossRef] [PubMed]
- Laxman Pachapur, V.; Jyoti Sarma, S.; Kaur Brar, S.; Le Bihan, Y.; Ricardo Soccol, C.; Buelna, G.; Verma, M. Co-culture strategies for increased biohydrogen production. Int. J. Energy Res. 2015, 39, 1479–1504. [Google Scholar] [CrossRef]
- Moosbrugger, R.; Wentzel, M.; Ekama, G.; Marais, G. Weak acid/bases and pH control in anaerobic systems-A review. WATER SA-PRETORIA 1993, 19, 1. [Google Scholar]
- Gujer, W.; Zehnder, A. Conversion processes in anaerobic digestion. Water Sci. Technol. 1983, 15, 127–167. [Google Scholar] [CrossRef]
- Leitão, R.C.; Van Haandel, A.C.; Zeeman, G.; Lettinga, G. The effects of operational and environmental variations on anaerobic wastewater treatment systems: A review. Bioresour. Technol. 2006, 97, 1105–1118. [Google Scholar] [CrossRef]
- Chen, C.-C.; Lin, C.-Y.; Lin, M.-C. Acid–base enrichment enhances anaerobic hydrogen production process. Appl. Microbiol. Biotechnol 2002, 58, 224–228. [Google Scholar]
- Zhu, H.; Béland, M. Evaluation of alternative methods of preparing hydrogen producing seeds from digested wastewater sludge. Int. J. Hydrogen Energy 2006, 31, 1980–1988. [Google Scholar] [CrossRef]
- Liu, H.; Wang, G.; Zhu, D.; Pan, G. Enrichment of the hydrogen-producing microbial community from marine intertidal sludge by different pretreatment methods. Int. J. Hydrogen Energy 2009, 34, 9696–9701. [Google Scholar] [CrossRef]
- Ozkan, L.; Erguder, T.H.; Demirer, G.N. Effects of pretreatment methods on solubilization of beet-pulp and bio-hydrogen production yield. Int. J. Hydrogen Energy 2011, 36, 382–389. [Google Scholar] [CrossRef]
- Mohan, S.V.; Babu, V.L.; Sarma, P. Effect of various pretreatment methods on anaerobic mixed microflora to enhance biohydrogen production utilizing dairy wastewater as substrate. Bioresour. Technol. 2008, 99, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.S.; Wu, J.F.; Lo, Y.S.; Lo, Y.C.; Lin, P.J.; Chang, J.S. Anaerobic hydrogen production with an efficient carrier--induced granular sludge bed bioreactor. Biotechnol. Bioeng. 2004, 87, 648–657. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.-D.; Lee, K.-S.; Lo, Y.-C.; Chen, W.-M.; Wu, J.-F.; Lin, C.-Y.; Chang, J.-S. Batch and continuous biohydrogen production from starch hydrolysate by Clostridium species. Int. J. Hydrogen Energy 2008, 33, 1803–1812. [Google Scholar] [CrossRef]
- Tao, Y.; Chen, Y.; Wu, Y.; He, Y.; Zhou, Z. High hydrogen yield from a two-step process of dark-and photo-fermentation of sucrose. Int. J. Hydrogen Energy 2007, 32, 200–206. [Google Scholar] [CrossRef]
- Kotay, S.M.; Das, D. Biohydrogen as a renewable energy resource—Prospects and potentials. Int. J. Hydrogen Energy 2008, 33, 258–263. [Google Scholar]
- Oremland, R.S. Biogeochemistry of methanogenic bacteria. In Biology of Anaerobic Microorganisms; John Wiley & Sons, Inc.: New York, NY, USA, 1988; pp. 641–705. [Google Scholar]
- Bouwer, E.J.; McCarty, P.L. Effects of 2-bromoethanesulfonic acid and 2-chloroethanesulfonic acid on acetate utilization in a continuous-flow methanogenic fixed-film column. Appl. Environ. Microbiol. 1983, 45, 1408–1410. [Google Scholar]
- Sparling, R.; Risbey, D.; Poggi-Varaldo, H.M. Hydrogen production from inhibited anaerobic composters. Int. J. Hydrogen Energy 1997, 22, 563–566. [Google Scholar] [CrossRef]
- Wang, C.-C.; Chang, C.-W.; Chu, C.-P.; Lee, D.-J.; Chang, B.-V. Sequential production of hydrogen and methane from wastewawter sludge using anaerobic fermentation. J. Chin. Inst. Chem. Eng. 2003, 34, 683–687. [Google Scholar]
- Kenealy, W.; Zeikus, J. Influence of corrinoid antagonists on methanogen metabolism. J. Bacteriol. 1981, 146, 133–140. [Google Scholar] [PubMed]
- Jones, D.T.; Woods, D.R. Acetone-butanol fermentation revisited. Microbiol. Rev. 1986, 50, 484. [Google Scholar] [PubMed]
- Thebrath, B.; Mayer, H.-P.; Conrad, R. Bicarbonate-dependent production and methanogenic consumption of acetate in anoxic paddy soil. FEMS Microbiol. Lett. 1992, 86, 295–302. [Google Scholar] [CrossRef]
- Chidthaisong, A.; Conrad, R. Specificity of chloroform, 2-bromoethanesulfonate and fluoroacetate to inhibit methanogenesis and other anaerobic processes in anoxic rice field soil. Soil Biol. Biochem. 2000, 32, 977–988. [Google Scholar] [CrossRef]
- Parker, D.J.; Wu, T.-F.; Wood, H.G. Total Synthesis of Acetate from CO2: Methyltetrahydrofolate, an Intermediate, and a Procedure for Separation of the Folates. J. Bacteriol. 1971, 108, 770–776. [Google Scholar] [PubMed]
- Decareau, R.V. Microwaves in the Food Processing Industry; Academic Press: Cambridge, MA, USA, 1985. [Google Scholar]
- Thostenson, E.; Chou, T.-W. Microwave processing: Fundamentals and applications. Compos. Part A Appl. Sci. Manuf. 1999, 30, 1055–1071. [Google Scholar] [CrossRef]
- Kaatze, U. Fundamentals of microwaves. Radiat. Phys. Chem. 1995, 45, 539–548. [Google Scholar] [CrossRef]
- Wojciechowska, E. Application of microwaves for sewage sludge conditioning. Water Res. 2005, 39, 4749–4754. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.M.; Park, J.K.; Lee, Y. Mechanisms of microwave irradiation involved in the destruction of fecal coliforms from biosolids. Water Res. 2004, 38, 1615–1625. [Google Scholar] [CrossRef] [PubMed]
- Eskicioglu, C.; Kennedy, K.J.; Droste, R.L. Enhancement of batch waste activated sludge digestion by microwave pretreatment. Water Environ. Res. 2007, 79, 2304–2317. [Google Scholar] [CrossRef]
- Song, Z.-X.; Wang, Z.-Y.; Wu, L.-Y.; Fan, Y.-T.; Hou, H.-W. Effect of microwave irradiation pretreatment of cow dung compost on bio-hydrogen process from corn stalk by dark fermentation. Int. J. Hydrogen Energy 2012, 37, 6554–6561. [Google Scholar] [CrossRef]
- Singhal, Y.; Singh, R. Effect of microwave pretreatment of mixed culture on biohydrogen production from waste of sweet produced from Benincasa hispida. Int. J. Hydrogen Energy 2014, 39, 7534–7540. [Google Scholar] [CrossRef]
- Jones, D.; Lelyveld, T.; Mavrofidis, S.; Kingman, S.; Miles, N. Microwave heating applications in environmental engineering—A review. Resour. Conserv. Recycl. 2002, 34, 75–90. [Google Scholar] [CrossRef]
- Kittiphoom, S.; Sutasinee, S. Effect of microwaves pretreatments on extraction yield and quality of mango seed kernel oil. Int. Food Res. J. 2014, 22, 960–964. [Google Scholar]
- Appleton, T.; Colder, R.; Kingman, S.; Lowndes, I.; Read, A. Microwave technology for energy-efficient processing of waste. Appl. Energy 2005, 81, 85–113. [Google Scholar] [CrossRef]
- Mukherjee, A.; Dumont, M.-J.; Raghavan, V. Sustainable production of hydroxymethylfurfural and levulinic acid: Challenges and opportunities. Biomass Bioenergy 2015, 72, 143–183. [Google Scholar] [CrossRef]
- Giordano, A.; Sarli, V.; Lavagnolo, M.C.; Spagni, A. Evaluation of aeration pretreatment to prepare an inoculum for the two-stage hydrogen and methane production process. Bioresour. Technol. 2014, 166, 211–218. [Google Scholar] [CrossRef]
- Terentiew, A.; Bagley, D. Production of hydrogen under anaerobic conditions: Effects of pre-treatment and operating conditions. In Proceedings of the 32nd Annual WEAO Tech Symp, Toronto, Canada, 31 March–2 April 2003. [Google Scholar]
- Han, W.; Wang, B.; Zhou, Y.; Wang, D.-X.; Wang, Y.; Yue, L.-R.; Li, Y.-F.; Ren, N.-Q. Fermentative hydrogen production from molasses wastewater in a continuous mixed immobilized sludge reactor. Bioresour. Technol. 2012, 110, 219–223. [Google Scholar] [CrossRef]
- Roychowdhury, S. Process for Production of Hydrogen from Anaerobically Decomposed Organic Materials. Google Patents US7138046 B2, 21 November 2006. [Google Scholar]
- Vesilind, P.A.; Wallinmaa, S.; Martel, C.J. Freeze-thaw sludge conditioning and double layer compression. Can. J. Civ. Eng. 1991, 18, 1078–1083. [Google Scholar] [CrossRef]
- Kawasaki, K.; Matsuda, A.; Mizukawa, Y. Compression characteristics of excess activated sludges treated by freezing-and-thawing process. J. Chem. Eng. Jpn. 1991, 24, 743–748. [Google Scholar] [CrossRef]
- Lee, D.; Hsu, Y. Measurement of bound water in sludges: A comparative study. Water Environ. Res. 1995, 67, 310–317. [Google Scholar] [CrossRef]
- Fan, Y.-T.; Zhang, Y.-H.; Zhang, S.-F.; Hou, H.-W.; Ren, B.-Z. Efficient conversion of wheat straw wastes into biohydrogen gas by cow dung compost. Bioresour. Technol. 2006, 97, 500–505. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.-X.; Dai, Y.; Fan, Q.-L.; Li, X.-H.; Fan, Y.-T.; Hou, H.-W. Effects of pretreatment method of natural bacteria source on microbial community and bio-hydrogen production by dark fermentation. Int. J. Hydrogen Energy 2012, 37, 5631–5636. [Google Scholar] [CrossRef]
- Kongjan, P.; Min, B.; Angelidaki, I. Biohydrogen production from xylose at extreme thermophilic temperatures (70 C) by mixed culture fermentation. Water Res. 2009, 43, 1414–1424. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.-L.; Fan, Y.-T.; Xing, Y.; Pan, C.-M.; Zhang, G.-S.; Lay, J.-J. Enhanced biohydrogen production from cornstalk wastes with acidification pretreatment by mixed anaerobic cultures. Biomass Bioenergy 2007, 31, 250–254. [Google Scholar] [CrossRef]
- Fangkum, A.; Reungsang, A. Biohydrogen production from sugarcane bagasse hydrolysate by elephant dung: Effects of initial pH and substrate concentration. Int. J. Hydrogen Energy 2011, 36, 8687–8696. [Google Scholar] [CrossRef]
- Cai, J.; Wang, G.; Li, Y.; Zhu, D.; Pan, G. Enrichment and hydrogen production by marine anaerobic hydrogen-producing microflora. Chin. Sci. Bull. 2009, 54, 2656–2661. [Google Scholar] [CrossRef]
- Liu, D.; Zeng, R.J.; Angelidaki, I. Effects of pH and hydraulic retention time on hydrogen production versus methanogenesis during anaerobic fermentation of organic household solid waste under extreme—Thermophilic temperature (70 °C). Biotechnol. Bioeng. 2008, 100, 1108–1114. [Google Scholar] [CrossRef] [PubMed]
- Arreola-Vargas, J.; Celis, L.B.; Buitrón, G.; Razo-Flores, E.; Alatriste-Mondragón, F. Hydrogen production from acid and enzymatic oat straw hydrolysates in an anaerobic sequencing batch reactor: Performance and microbial population analysis. Int. J. Hydrogen Energy 2013, 38, 13884–13894. [Google Scholar] [CrossRef]
- Rossi, D.M.; Da Costa, J.B.; De Souza, E.A.; Peralba, M.d.C.R.; Samios, D.; Ayub, M.A.Z. Comparison of different pretreatment methods for hydrogen production using environmental microbial consortia on residual glycerol from biodiesel. Int. J. Hydrogen Energy 2011, 36, 4814–4819. [Google Scholar] [CrossRef]
- Mohan, S.V.; Mohanakrishna, G.; Ramanaiah, S.; Sarma, P. Simultaneous biohydrogen production and wastewater treatment in biofilm configured anaerobic periodic discontinuous batch reactor using distillery wastewater. Int. J. Hydrogen Energy 2008, 33, 550–558. [Google Scholar]
- Su, H.; Cheng, J.; Zhou, J.; Song, W.; Cen, K. Hydrogen production from water hyacinth through dark-and photo-fermentation. Int. J. Hydrogen Energy 2010, 35, 8929–8937. [Google Scholar] [CrossRef]
- Assawamongkholsiri, T.; Reungsang, A.; Pattra, S. Effect of acid, heat and combined acid-heat pretreatments of anaerobic sludge on hydrogen production by anaerobic mixed cultures. Int. J. Hydrogen Energy 2013, 38, 6146–6153. [Google Scholar] [CrossRef]
- Barber, W. The effects of ultrasound on anaerobic digestion of sludge. In Proceedings of the 7th Eur. Biosolids and Organic Residuals Conference, Leeds, UK, 18–20 November 2002. [Google Scholar]
- Weemaes, M.P.; Verstraete, W.H. Evaluation of current wet sludge disintegration techniques. J. Chem. Technol. Biotechnol. 1998, 73, 83–92. [Google Scholar] [CrossRef]
- Chu, C.; Chang, B.-V.; Liao, G.; Jean, D.; Lee, D. Observations on changes in ultrasonically treated waste-activated sludge. Water Res. 2001, 35, 1038–1046. [Google Scholar] [CrossRef]
- Yu, G.-H.; He, P.-J.; Shao, L.-M.; Zhu, Y.-S. Extracellular proteins, polysaccharides and enzymes impact on sludge aerobic digestion after ultrasonic pretreatment. Water Res. 2008, 42, 1925–1934. [Google Scholar] [CrossRef] [PubMed]
- Akinbomi, J.; Taherzadeh, M.J. Evaluation of fermentative hydrogen production from single and mixed fruit wastes. Energies 2015, 8, 4253–4272. [Google Scholar] [CrossRef]
- Hafez, H.; Nakhla, G.; Naggar, M.H.E.; Elbeshbishy, E.; Baghchehsaraee, B. Effect of organic loading on a novel hydrogen bioreactor. Int. J. Hydrogen Energy 2010, 35, 81–92. [Google Scholar] [CrossRef]
- Singh, R.; White, D.; Demirel, Y.; Kelly, R.; Noll, K.; Blum, P. Uncoupling fermentative synthesis of molecular hydrogen from biomass formation in Thermotoga maritima. Appl. Environ. Microbiol. 2018, 84. [Google Scholar] [CrossRef]
- Wang, J.; Wan, W. Factors influencing fermentative hydrogen production: A review. Int. J. Hydrogen Energy 2009, 34, 799–811. [Google Scholar] [CrossRef]
- Varrone, C.; Giussani, B.; Izzo, G.; Massini, G.; Marone, A.; Signorini, A.; Wang, A. Statistical optimization of biohydrogen and ethanol production from crude glycerol by microbial mixed culture. Int. J. Hydrogen Energy 2012, 37, 16479–16488. [Google Scholar] [CrossRef]
- Mullai, P.; Yogeswari, M.; Sridevi, K. Optimisation and enhancement of biohydrogen production using nickel nanoparticles–A novel approach. Bioresour. Technol. 2013, 141, 212–219. [Google Scholar] [CrossRef]
- Pandu, K.; Joseph, S. Comparisons and limitations of biohydrogen production processes: A review. Int. J. Adv. Eng. Technol. 2012, 2, 342–356. [Google Scholar]
- Yokoi, H.; Maki, R.; Hirose, J.; Hayashi, S. Microbial production of hydrogen from starch-manufacturing wastes. Biomass Bioenergy 2002, 22, 389–395. [Google Scholar] [CrossRef]
- Panagiotopoulos, I.; Bakker, R.; Budde, M.; De Vrije, T.; Claassen, P.; Koukios, E. Fermentative hydrogen production from pretreated biomass: A comparative study. Bioresour. Technol. 2009, 100, 6331–6338. [Google Scholar] [CrossRef]
- Song, J.; An, D.; Ren, N.; Zhang, Y.; Chen, Y. Effects of pH and ORP on microbial ecology and kinetics for hydrogen production in continuously dark fermentation. Bioresour. Technol. 2011, 102, 10875–10880. [Google Scholar] [CrossRef]
- Kongjan, P.; Angelidaki, I. Extreme thermophilic biohydrogen production from wheat straw hydrolysate using mixed culture fermentation: Effect of reactor configuration. Bioresour. Technol. 2010, 101, 7789–7796. [Google Scholar] [CrossRef]
- Lee, M.-J.; Song, J.-H.; Hwang, S.-J. Effects of acid pre-treatment on bio-hydrogen production and microbial communities during dark fermentation. Bioresour. Technol. 2009, 100, 1491–1493. [Google Scholar] [CrossRef]
- Muyzer, G.; De Waal, E.C.; Uitterlinden, A.G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 1993, 59, 695–700. [Google Scholar]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Pachapur, V.L.; Das, R.K.; Brar, S.K.; Le Bihan, Y.; Buelna, G. Valorization of crude glycerol and eggshell biowaste as media components for hydrogen production: A scale-up study using co-culture system. Bioresour. Technol. 2017, 225, 386–394. [Google Scholar] [CrossRef] [PubMed]
- Koskinen, P.E.; Lay, C.-H.; Beck, S.R.; Tolvanen, K.E.; Kaksonen, A.H.; Örlygsson, J.; Lin, C.-Y.; Puhakka, J.A. Bioprospecting thermophilic microorganisms from Icelandic Hot Springs for hydrogen and ethanol production†. Energy Fuels 2007, 22, 134–140. [Google Scholar] [CrossRef]
- Huang, Y.; Kuan, W.; Lo, S.; Lin, C. Hydrogen-rich fuel gas from rice straw via microwave-induced pyrolysis. Bioresour. Technol. 2010, 101, 1968–1973. [Google Scholar] [CrossRef] [PubMed]
- Pachapur, V.L.; Sarma, S.J.; Brar, S.K.; Le Bihan, Y.; Buelna, G.; Verma, M. Biological hydrogen production using co-culture versus mono-culture system. Environ. Technol. Rev. 2015, 4, 55–70. [Google Scholar] [CrossRef]
- Reungsang, A.; Sreela-or, C. Bio-hydrogen production from pineapple waste extract by anaerobic mixed cultures. Energies 2013, 6, 2175–2190. [Google Scholar] [CrossRef]
- Sittijunda, S.; Reungsang, A. Biohydrogen production from waste glycerol and sludge by anaerobic mixed cultures. Int. J. Hydrogen Energy 2012, 37, 13789–13796. [Google Scholar] [CrossRef]
- Varrone, C.; Rosa, S.; Fiocchetti, F.; Giussani, B.; Izzo, G.; Massini, G.; Marone, A.; Signorini, A.; Wang, A. Enrichment of activated sludge for enhanced hydrogen production from crude glycerol. Int. J. Hydrogen Energy 2013, 38, 1319–1331. [Google Scholar] [CrossRef]
- Mangayil, R.; Aho, T.; Karp, M.; Santala, V. Improved bioconversion of crude glycerol to hydrogen by statistical optimization of media components. Renew. Energy 2015, 75, 583–589. [Google Scholar] [CrossRef]
- Bharathiraja, B.; Sudharsana, T.; Jayamuthunagai, J.; Praveenkumar, R.; Chozhavendhan, S.; Iyyappan, J. Biogas production–A review on composition, fuel properties, feed stock and principles of anaerobic digestion. Renew. Sustain. Energy Rev. 2018, 90, 570–582. [Google Scholar] [CrossRef]
- Hajjaji, N.; Martinez, S.; Trably, E.; Steyer, J.-P.; Helias, A. Life cycle assessment of hydrogen production from biogas reforming. Int. J. Hydrogen Energy 2016, 41, 6064–6075. [Google Scholar] [CrossRef]
- Evangelisti, S.; Lettieri, P.; Borello, D.; Clift, R. Life cycle assessment of energy from waste via anaerobic digestion: A UK case study. Waste Manag. 2014, 34, 226–237. [Google Scholar] [CrossRef] [PubMed]
- Taherdanak, M.; Zilouei, H.; Karimi, K. Investigating the effects of iron and nickel nanoparticles on dark hydrogen fermentation from starch using central composite design. Int. J. Hydrogen Energy 2015, 40, 12956–12963. [Google Scholar] [CrossRef]
- Valdez-Vazquez, I.; Sparling, R.; Risbey, D.; Rinderknecht-Seijas, N.; Poggi-Varaldo, H.M. Hydrogen generation via anaerobic fermentation of paper mill wastes. Bioresour. Technol. 2005, 96, 1907–1913. [Google Scholar] [CrossRef] [PubMed]
- Ueno, Y.; Otsuka, S.; Morimoto, M. Hydrogen production from industrial wastewater by anaerobic microflora in chemostat culture. J. Ferment. Bioeng. 1996, 82, 194–197. [Google Scholar] [CrossRef]
- Van Ginkel, S.W.; Oh, S.-E.; Logan, B.E. Biohydrogen gas production from food processing and domestic wastewaters. Int. J. Hydrogen Energy 2005, 30, 1535–1542. [Google Scholar] [CrossRef]
- Nishio, N.; Nakashimada, Y. High rate production of hydrogen/methane from various substrates and wastes. In Recent Progress of Biochemical and Biomedical Engineering in Japan I; Springer: Berlin, Germany, 2004; pp. 63–87. [Google Scholar]
- Hussy, I.; Hawkes, F.; Dinsdale, R.; Hawkes, D. Continuous fermentative hydrogen production from sucrose and sugarbeet. Int. J. Hydrogen Energy 2005, 30, 471–483. [Google Scholar] [CrossRef]
- Pachapur, V.L.; Sarma, S.J.; Brar, S.K.; Le Bihan, Y.; Buelna, G.; Soccol, C.R. Evidence of metabolic shift on hydrogen, ethanol and 1, 3-propanediol production from crude glycerol by nitrogen sparging under micro-aerobic conditions using co-culture of Enterobacter aerogenes and Clostridium butyricum. Int. J. Hydrogen Energy 2015, 40, 8669–8676. [Google Scholar] [CrossRef]
- Majizat, A.; Mitsunori, Y.; Mitsunori, W.; Michimasa, N.; Jun’ichiro, M. Hydrogen gas production from glucose and its microbial kinetics in anaerobic systems. Water Sci. Technol. 1997, 36, 279–286. [Google Scholar] [CrossRef]
- Palazzi, E.; Fabiano, B.; Perego, P. Process development of continuous hydrogen production by Enterobacter aerogenes in a packed column reactor. Bioprocess Eng. 2000, 22, 205–213. [Google Scholar] [CrossRef]
- Hawkes, F.R.; Hussy, I.; Kyazze, G.; Dinsdale, R.; Hawkes, D.L. Continuous dark fermentative hydrogen production by mesophilic microflora: Principles and progress. Int. J. Hydrogen Energy 2007, 32, 172–184. [Google Scholar] [CrossRef]
- Chen, X.; Shen, S.; Guo, L.; Mao, S.S. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 2010, 110, 6503–6570. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Chang, C.; Chu, C.; Lee, D.; Chang, B.-V.; Liao, C.; Tay, J. Using filtrate of waste biosolids to effectively produce bio-hydrogen by anaerobic fermentation. Water Res. 2003, 37, 2789–2793. [Google Scholar] [CrossRef]
- Pachapur, V.L.; Sarma, S.J.; Brar, S.K.; Bihan, Y.L.; Buelna, G.; Verma, M. Energy balance of hydrogen production from wastes of biodiesel production. Biofuels 2018, 9, 129–138. [Google Scholar] [CrossRef]
- Pachapur, V.L.; Brar, S.K.; Le Bihan, Y.; Buelna, G. Alternate green approach of spent media utilization for hydrogen and for lipid production. Int. J. Hydrogen Energy 2017, 42, 5832–5839. [Google Scholar] [CrossRef]
Inoculum Source | Substrate Used | Method Description | Control Production | Hydrogen Production | Ref. |
---|---|---|---|---|---|
Mesophilic sludge | Primary sewage sludge | 110 °C for 20 min | No hydrogen production | 18.14 mL H2/g of solid or 0.37 mol H2/mol hexose | [41] |
Sewage Sludge | Sewage sludge | 121 °C for 30 min | 0.35 mL H2/g of VS | 16.26 mL H2/g of volatile solid (VS) | [29] |
Anaerobic digester sludge | Sewage sludge | 100 °C for 15 min | 21 mL H2/g of VS | 25.5 mL H2/g of VS | [42] |
Anaerobic wastewater sludge | Ground wheat waste | 90 °C for 10 h | NA | 200.47 mL H2/g of solid | [43] |
Swine wastewater UASB | Sucrose | 90 °C for 15 min | No hydrogen production | 3.2 mL H2/g of total solid (TS) or 1.6 mol H2/mol | [44] |
Anaerobic sewage sludge | Glucose | 85 °C for 1 h | 2112 mL H2/g of TS | 3780 mL H2/g of TS or 1.67 mol H2/mol glucose | [45] |
UASB granules of a local brewery company | Cassava pulp | 105 °C for 2 h | 1.7 mL H2/g of VS | 343 mL H2/g of VS | [40] |
Mountain soil | Glucose | 95–105 °C for 1 h | 40–60 mL H2/g of solid | 318 mL H2/g of solid or 1.93 mol H2/mol glucose | [46] |
UASB anaerobic brewery sludge | Sweet sorghum | 105 °C for 2 h | NA | 925.76 mL H2/L of substrate or 0.68 mol H2/mol hexose | [47] |
Elephant dung | Cellulose fraction of sugarcane bagasse | 105 °C for 2 h | NA | 46.15 mL H2/g of TS or 7.1 mmol/g cellulose | [48] |
Cow dung, sewage sludge, and pig slurry | Glucose | 80 °C for 30 min | NA | 2330 mL H2/L of substrate or 2 mol H2/mol glucose | [34] |
UASB brewery sludge | Food waste | 105 °C for 3 h | NA | 104.79 mL H2/g of VS | [49] |
Digested sewage Sludge | Glucose | 100 °C for 15 min | 65 mL H2/g of glucose | 221 mL H2/g of glucose or 1.8 mol H2/mol glucose | [26] |
Wastewater sludge | Corn Stover | 105 °C for 2 h | NA | 1196 mL H2/g of TS or 3.0 mol H2/mol glucose | [50] |
Anaerobic winery Sludge | Corn Stover | 100 °C for 30 min | 102 mL H2/g of VS | 182 mL H2/g of TS or 1.53 mol H2/mol glucose | [51] |
Beef Manure | Beef Manure | 90 °C for 3 h | NA | 65 L H2/kg TS | [52] |
Anaerobic digester sludge | Food waste and sewage sludge | 90 °C for 10 min | NA | 11 mL H2/g of VS | [53] |
Municipal sewage plant sludge | Cassava Starch | 95–100 °C for 1 h | 9.36 mL H2/g of VS | 62 mL H2/g of VS | [54] |
Mesophilic sludge from UASB | Cassava stillage | 90 °C for 1 h | 17.8 mL H2/g VS | 53.8 mL H2/g of VS | [55] |
Tomato and wheat soil, compost, sludge | Glycerol | 121 °C for 30 min | NA | 131 mL H2/g of TS or 0.28 mol-H2/mol-glycerol | [35] |
Inoculum Source | Substrate | Pretreatment Method of Inoculum | Description (Optimum Method) | Control Production | Hydrogen Production | Ref. |
---|---|---|---|---|---|---|
Sewage sludge | Glucose | Acid and Alkali | Acid: 1 N hydrochloric acid and Alkali: 1 N sodium hydroxide | No hydrogen production | 80 mL H2/g of TS | [62] |
Anaerobic mixed wastewater culture | Sugar-beet pulp | Alkali | Alkali-pH 12, 2 M NaOH for 30 min, Heat-121 °C, 1.5 bar, autoclave 30 min, Microwave-700 W, 170 °C, 30 min | 10 mL H2/g of COD | 115.6 mL H2/g of COD | [65] |
Digested wastewater sludge | Sucrose | Alkali | Acid-pH 3 using 1 N HCl 30 min, Base: 10 with 2 N NaOH, 2-bromoethane sulphonic acid (BESA)/ Iodo propane-10 mmol for 30 min | 22 mL H2/g of TS | 32 mL H2/g of TS or 6.12 mol/mol sucrose | [63] |
Beach sludge | Glucose | Acid | Acid-1 M HCl to pH 3 Alkali-1 M NaOH to pH 4 | 0.20 mol H2/mol glucose | 0.86 mol H2/mol glucose | [64] |
UASB Anaerobic chemical waste water sludge | Dairy waste water | Sodium BESA | Chemical-BESA at 0.2 g/L for 24 h | 0.01 mL H2/g of COD | 0.20 mL H2/g of COD | [66] |
Methanogenic granules | Glucose | Chloroform | Chloroform-0.05 to 0.1% added Acid-pH 3 using 0.1 N HCl | 124.99 mL H2/g of TS | 145.32 mL H2/g of TS | [15] |
Sewage sludge | Sucrose-based synthetic wastewater | Acid and Alkali | Acid: ~3.0 by 0.1 N HCl for 24 h and restored to 7.0 by 0.1 N NaOH | NA | Batch: 3.03 Continuous: 1.5 mol/mol sucrose | [67] |
Sewage sludge | Starch | Acid and Alkali | Acid: ~3.0 by 0.1 N HCl for 24 h and restored to 7.0 by 0.1 N NaOH | 0.0018 mmol H2/g | 0.22 mL H2/g of COD or 0.0317 mmol H2/g COD | [68] |
Inoculum Source | Substrate | Description (Optimum Method) | Control Production | Hydrogen Production | Ref. |
---|---|---|---|---|---|
local municipal wastewater sludge | Organic substrate from sludge | Heating temperature 80–170 °C and time 1 to 30 min | 540–560 mL of H2/g of VSS | 720–740 mL of H2/g of VSS | [13] |
Cow dung | Sweet solid waste | 320 W for 5 min at 95 °C | NA | 90–100 mL of H2/g of VSS or 14 mmol H2/ mol sugar | [87] |
Cow dung | Corn stalk | Microwave 1.5 min at 2450 W | 71.1 mL H2/g of corn stalk | 144.3 mL H2/g of corn stalk | [86] |
Inoculum Source | Substrate | Pretreatment Method of Inoculum | Description (Optimum Method) | Control Production | Hydrogen Production | Ref. |
---|---|---|---|---|---|---|
Cow dung Compost | Cornstalk wastes | Aeration | Using forced air for 3 h at 50 °C | NA | 149.69 mL H2/g of VS | [102] |
Waste water sludge | Molasses | Aeration | Settled for 10 days, aerated for 30 days | NA | 848 mL H2/g of VS | [94] |
Solid waste CSTR | Household solid waste and Xylose | Repeated batch cultivations | Repeated transfers: culture from the first generation with the highest hydrogen production was used as the inoculum for the second batch | NA | 1.36 mol H2/mol xylose | [101] |
Elephant dung | Acid hydrolyzed sugarcane bagasse | Boiling | Boiling water at 100 °C for 2 h | NA | 109.5 mL of H2/g of VS or 2.49 mol H2/mol sugar | [103] |
Intertidal Anaerobic Sludge | Sea water + butyrate + glutamate | Boiling | Boiling water at 100 °C for 90 m | 84 mL of H2/L of substrate | 1225 mL of H2/L of substrate | [104] |
CSTR methanogenic reactor fed with manure Methanogenic reactor fed with manure | Household Solid Waste | Control pH | pH at 7.0 using 1 N NaOH | 11 mL of H2/L of substrate | 107 mL of H2/L of substrate | [105] |
Inoculum Source | Substrate | Pretreatment Method of Inoculum | Description (Optimum Method) | Control Production | Hydrogen Production | Ref. |
---|---|---|---|---|---|---|
Anaerobic granular sludge | Glucose and oat straw hydroxylase | Heat and Grinding | 104 °C for 24 h Grinding with a mortar and sieved using 850 µm filter | NA | 29.6 mL of H2/L of substrate or 0.81 mol H2/mol of glucose | [106] |
UASB soya sludge | Raw glycerol | Dry heat and Desiccation | Heat-100 °C for 15 min, Acid-pH 3 using 1 M HCl, Alkali-pH 10 using 1 M NaOH Dry heat & Desiccation-2 h in a hot oven at 105 °C, and desiccating jar for 2 h, Freezing at —10 °C for 24 h, thawing at 30 °C for 6 h | NA | 0.15 mL of H2/L of TS | [107] |
Anaerobic mixed consortia | Distillery wastewater | Heat-shock and Acid treatment | heat-shock treatment (100 °C; 2 h) and acid treatment (adjusted to pH 3 with orthophosphoric acid; 24 h) | 45.4 mL of H2/L of COD | 169 mL of H2/L of COD | [108] |
Cattle manure sludge | Glucose | Pre- and Post-Acidification | Pre-acidified to pH 3 with 10 N HCl, Chemical Acid- Perchloric acid for 10 min to bring pH to 2, BESA-0.5% for 10 min, Freezing and thawing-at-10 °C for 24 h, thawed for 6 h at 30 °C, Desiccation-2 h in oven at 105 °C, and desiccating jar for 2 h | NA | 130 mL of H2/g of COD or 0.88–0.92 mol H2/mol of hexose | [18] |
UASB Anaerobic chemical wastewater sludge | Dairy wastewater | Acid + Sodium BESA + Heating | Chemical- BESA at 0.2 g/L for 24 h, Acid-pH 5 orthophosphoric acid and heating at 100 °C for 1 h | NA | 0.07 mL H2/g of COD | [66] |
Activated anaerobic methane plant sludge | Water hyacinth | Steam heating, microwave heating/alkali and enzymatic hydrolysis | Steam heating: 112 °C with 15 min, microwave heating/alkali: 1.0% (w/v) NaOH solution for 24 h at 45 °C and heated for 1.0 min at 420 W and cellulase (5% of substrates) with 0.05 g CaCl2 for 48 h at 45 °C in a shaker at 120 rpm | NA | 76.7 ml H2/g TVS | [109] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pachapur, V.L.; Kutty, P.; Pachapur, P.; Brar, S.K.; Le Bihan, Y.; Galvez-Cloutier, R.; Buelna, G. Seed Pretreatment for Increased Hydrogen Production Using Mixed-Culture Systems with Advantages over Pure-Culture Systems. Energies 2019, 12, 530. https://doi.org/10.3390/en12030530
Pachapur VL, Kutty P, Pachapur P, Brar SK, Le Bihan Y, Galvez-Cloutier R, Buelna G. Seed Pretreatment for Increased Hydrogen Production Using Mixed-Culture Systems with Advantages over Pure-Culture Systems. Energies. 2019; 12(3):530. https://doi.org/10.3390/en12030530
Chicago/Turabian StylePachapur, Vinayak Laxman, Prianka Kutty, Preetika Pachapur, Satinder Kaur Brar, Yann Le Bihan, Rosa Galvez-Cloutier, and Gerardo Buelna. 2019. "Seed Pretreatment for Increased Hydrogen Production Using Mixed-Culture Systems with Advantages over Pure-Culture Systems" Energies 12, no. 3: 530. https://doi.org/10.3390/en12030530
APA StylePachapur, V. L., Kutty, P., Pachapur, P., Brar, S. K., Le Bihan, Y., Galvez-Cloutier, R., & Buelna, G. (2019). Seed Pretreatment for Increased Hydrogen Production Using Mixed-Culture Systems with Advantages over Pure-Culture Systems. Energies, 12(3), 530. https://doi.org/10.3390/en12030530