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Abstract: This paper presents an integrated approach for assessing the impact that distributed
energy resources (DERs), including intermittent photovoltaic (PV) generation, might have on the
reliability performance of power networks. A test distribution system, based on a typical urban
MV and LV networks in the UK, is modelled and used to investigate potential benefits of the local
renewable generation, demand-manageable loads and coordinated energy storage. The conventional
Monte Carlo method is modified to include time-variation of electricity demand profiles and
failure rates of network components. Additionally, a theoretical interruption model is employed
to assess more accurately the moment in time when interruptions to electricity customers are
likely to occur. Accordingly, the impact of the spatio-temporal variation of DERs on reliability
performance is quantified in terms of the effect of network outages. The potential benefits from
smart grid functionalities are assessed through both system- and customer-oriented reliability
indices, with special attention to energy not supplied to customers, as well as frequency and
duration of supply interruptions. The paper also discusses deployment of an intelligent energy
management system to control local energy generation-storage-demand resources that can resolve
uncertainties in renewable-based generation and ensure highly reliable and continuous supply to all
connected customers.

Keywords: demand profiles; demand response; distributed (PV) generation; energy storage; failure
rate; Monte Carlo simulation; network reliability; renewable resources

1. Introduction

The “smart grid” concept generally denotes a flexible electricity network, capable of providing
different services and functionalities, such as improved control and balancing of power flows,
or enhanced fault protection. An important aspect of smart grid is the use of distributed generation
(DG), which should be controlled to ensure higher energy efficiency and maximum asset utilisation [1].
The paradigm shift to smart grids is driven by the fact that existing/legacy networks require high
investments to meet various techno-economic requirements of the increasingly dynamic energy
landscape. Within this context, smart grid technologies include demand side response (DSR), energy
storage (ES) and microgeneration (MG), collectively termed as distributed energy resources (DERs),
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as well as enhancement of enabling infrastructures for monitoring, communication and control of
network assets. Successful management of these smart grid technologies is expected to result in
higher energy efficiency and supply security, thus allowing for deferral of investments in network
reinforcement, upgrading and expansion [2]. Due to requirements for supply sustainability, renewable
energy resources (RERs) will be instrumental in realising changes to planning and operation of power
systems, culminating in significant economic and environmental benefits. These benefits include
provision of not only residential low-voltage (LV) customers, but also commercial and industrial
medium-voltage (MV) customers, with the capacity to reduce their electricity consumption and energy
bills, plus participate in ancillary service markets through the provision of frequency response services
and short-term operating reserves [3].

In realising the significant benefits of smart grid technologies, it is important to overcome
the reliance on the intermittent outputs of RERs and resolve uncertainties in network operation
introduced by their stochastic behaviour [4]. For example, the times of the peak photovoltaic (PV)
power generation might not, and typically do not coincide with the peak demands (depending on
the category of end consumer), which results in a less than optimal utilisation of the generated PV
power [5]. The deployment of RER must therefore be carefully analysed in terms of their impacts on
the network performance, quality of supply (QS) delivered to end customers, network reliability and
resulting financial implications, e.g., potential for creation of peer-to-peer energy trading and ancillary
service markets. In that context, the impact of DERs on supply interruptions is particularly important
as these traditionally have the highest social and economic implications to all stakeholders in the
electricity sector. Accordingly, regulators enforce legislation to make sure that the highest standards
of network reliability performance and supply continuity are provided to the electricity customers,
e.g., through the security and quality of supply (SQS) legislation in the UK [6,7]. To correctly quantify
the impact of different DER technologies on network reliability performance, distribution network
operators (DNOs) commonly use a set of standard indices [8] to measure system reliability and must
report these to regulatory bodies as a measure of their performance.

This paper builds on the previous work published in [4] and [9], where the impact from the
implementation of ES, renewable-based MG systems and DSR on actively managed distribution
networks was analysed. The analysis in this paper acknowledges that solar PV power production is
strongly impacted by unpredictable cloud movements and thus presents PV models that can evaluate
related temporal and spatial variations to correctly quantify potential benefits. In published literature,
different methods have been proposed to mitigate the power output fluctuations due to this ‘clouding’
effect, such as ramp-rate control using ES [10]. In the previous work, compensation of PV fluctuations
using ES to achieve flat feeder voltage profiles, to reduce number of voltage-regulation operations and
to lower system operational costs is discussed in [11]. Similarly, [12] discusses quantification of the
effects of PV on power system reliability, but mainly focuses on finding the optimal placement of PV
installations and employs a relatively low resolution time-step (1 day) for the presented probabilistic
models. Finally, [13] focuses on minimizing lifetime, energy and load-loss costs. Despite these
developments, there is a need to more accurately quantify the impact of these stochastically-behaving
local PV solutions on reliability performance and assess their direct implications on supply continuity
and, importantly, customer “willingness-to-pay”.

In order to address some of the above challenges, part of the contribution of this paper is to present
a more realistic PV modelling, in order to quantify clouding effects in reliability studies. Furthermore,
the paper presents a general methodology for the optimal design of an energy management system
(EMS), to control ES and realise an improved reliability performance. The importance of ES is
highlighted in several studies assessing the benefits from ES for peak shaving, frequency regulation and
operational optimisation, especially when the ES is installed in a centralised configuration, which is
usually a preferred option by the DNOs [14–16]. Although there are various studies that focus on ES
sizing, economic operation and optimization [17], less emphasis is put on the technical capabilities
of ES for devising smart functionalities to improve overall network reliability performance. In this
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paper, ES systems are modelled in a highly distributed configuration, i.e. as the small-size ES operating
together with the local PV-based MG units. This is assumed to be a typical smart grid configuration in
e.g., residential applications, and this paper demonstrates that these applications can be designed and
implemented to improve reliability performance and, in doing so, provide financial benefits to their
owners and system operators. The results illustrate how all stakeholders might benefit from a smart
grid deployment and control of ES, which can ensure higher reliability and continuity of supply.

This article is organised as follows: Section 2 presents the realistic large MV/LV urban distribution
network used for the analysis, detailing the aggregation techniques for reducing the complexity of
involved calculations. The reliability assessment methodology is presented in Section 3, while a number
of scenarios designed to demonstrate the comparative benefits in network reliability performance
by the deployment of different DERs is detailed in Section 4. The network reliability performance,
quantified by the standard set of reliability indices, such as energy not supplied (ENS), frequency and
duration of long (LI) and short (SI) interruptions, is presented and discussed in Section 5. Finally,
Section 6 lists the main conclusions from the presented work.

2. MV and LV Distribution Network Design

To demonstrate the impact of DERs on reliability performance, this research utilises a generic
distribution network as well as novel aggregation techniques to accurately model a large MV network.
Load may generally be classified as being residential, commercial and industrial at either LV or MV
level. After load identification at each network node, generic network models are used to represent
the actual distribution systems [18]. Network models emulate typical configurations e.g., enclosed
substations and short-length underground cables in cities (due to high load density), and outdoor
substations and overhead lines in rural areas. The aggregation methodology is detailed in the
next subsection, followed by the selected urban MV network model used for the reliability study,
which incorporates the LV network electrical and reliability equivalents.

2.1. Electrical and Reliability Network Equivalents

For a comprehensive QS analysis, it is important to build the accurate and flexible network
equivalents from generic models of LV and MV distribution networks, and identify the typical
associated components. These network equivalents can then be used to formulate corresponding
aggregate representations for each load subsector, in which network models are reduced to a single-line
equivalent impedance, Zeq, therefore reducing system complexity, as well as required computational
time and effort. Using the power component (PC) impedances from the LV and MV generic networks
from [15], the “bottom-up” aggregation method is applied, starting with the aggregation of individual
network components from each LV point of consumption, up to the supplying primary (MV/MV) or
secondary (MV/LV) substation [18].

Figure 1 illustrates building of the equivalent network for a LV distribution system, where the
equivalent impedance, Zeq,LV, represents the overall downstream network impedance. Similarly,
the aggregate demand is the sum of all LV customers’ loads connected downstream the point of aggregation.
The network aggregation methodology presented is based on the work in [19,20], where radial network
reduction into single line equivalent impedances was developed. The main purpose was for voltage stability
analysis and fast load-flow calculations. This technique is outlined below:

(1) Calculate equivalent impedance at every network load location. This includes multiple customers
at the same bus or supply point, and is expressed by Equation (1).

(2) Sum all equivalent impedances calculated in Step 1 to determine the overall network impedance.
This is described by Equation (2):

Zlocation(i) =
Ni

∑
ni=1

Zcustomer(ni) (1)
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Zeq = Req + jXeq =
I

∑
i=1

Zlocation(i) (2)

where: Ni is the number of customers at load location i, I is the number of load locations,
Zcustomer (ni) is the impedance of the customer ni at location i, Zlocation(i) is the sum of all customer
impedances at location i, and Zeq, Req and Xeq are the equivalent impedance, resistance and
reactance, respectively.
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Figure 1. Aggregate representation of LV distribution network, showing the equivalent impedance,
aggregate demand of all connected customers and reliability-equivalent model parameters.

The two inputs to the Monte Carlo Simulation (MCS) used for reliability assessment in this paper
are the failure rates (λ) and mean repair times (d). They describe the reliability-characteristics of all the
modelled network PCs [21–23]. However, simple bulk loads are usually used to represent LV and MV
parts of power systems due to calculation complexity when using very detailed and/or large models.
Reliability indices calculated with this method of aggregation are often inaccurate because failures of
PCs in aggregated parts of the network cannot be modelled accurately. Higher accuracy in reliability
equivalent models can be achieved if proper (equivalent) failure rates and repair times are allocated to
the bus where bulk load is attached. This will then facilitate network reduction through the aggregation
and reduction of simulation times. Figure 1 also illustrates the resulting aggregate LV network model
after the inclusion of reliability equivalents. The equivalent failure rate, λeq, and repair time, deq, of the
bus where the aggregate demand is connected are calculated as the sum of the failure rates of all
PCs and the average of their repair times, respectively. These are described by Equations (3) and (4).
Equivalent parameters, λeq and deq, are derived from the known λ and d values provided by historical
data for each relevant PC in the aggregated part of the system. These equivalent parameters consider
the reliability performance of every PC (e.g., buses, lines, protection equipment, etc.) downstream the
aggregation point and are utilised for ascertaining interruption frequency and duration within the
aggregated network [24]:

λeq =
M

∑
i=1

λi (3)

deq =
1
M
·

M

∑
i=1

di (4)

where M is the number of PCs, λi and di are individual PC failure rates and repair times, respectively,
and λeq and deq, are the equivalent failure rates and repair times, respectively, for the whole aggregated
network represented with the reliability equivalents.

2.2. Urban MV/LV Distribution Network

The residential load sector can be categorised into four subsectors, where a different network
model can represent each. These models are classified based on the location, size and type of dwellings
into four subsectors: highly-urban, urban, suburban and rural generic LV distribution networks.
For the urban residential subsector, Figure 2 provides a generic LV distribution model illustrating an
underground cable arrangement operated in a radial configuration. A transformer typically rated 500
kVA, 11/0.4 kV (for UK) is used for this type of networks, supplying a total of 19 load points, U1–U19,
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with a total of 190 single-phase connected customers. The network has four three-phase trunk feeders,
which are supplied from the LV busbars of the infeeding 11/0.4 kV secondary substation. The network
is characterised by relatively short conductor lengths, to ensure voltage regulation within the specified
limits, i.e. +10/−6% in the UK. Detailed data about line parameters are provided in [25].
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The use of the previously described aggregation techniques reduces the complexity and
computational times associated with modelling very detailed networks, such as the one shown in
Figure 2 [26]. To perform a reliability assessment study on a MV urban distribution network in Figure 3,
the LV network from Figure 2 is aggregated and represented by its electrical and reliability equivalents.
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Figure 2 (with corresponding equivalent failure rates and mean repair times).
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Afterwards, each 11 kV load supply point in the MV network can be substituted with the
aggregated urban generic LV network (Figure 2), where electrical characteristics, e.g., power flows and
voltage profiles, in the MV network, remain unchanged from the detailed network models. A typical
33 kV source strength of 543 MVA is considered for this type of network, which typically supplies a
significant percentage of residential loads, here modelled with only residential demand, spanning a
radius of approximately 3 km. The network has an underground meshed configuration and operates
with six identical trunk feeders, each supplying eight bulk supply points (BSPs), with the total of
48 BSPs. Each of these is supplied by a secondary substation (11/0.4 kV transformer), as in Figure 2,
representing the total aggregate demand of 9120 residential customers.

The total load is approximately 3.4 MW during minimum and 21 MW during maximum
loading conditions. Although the underground MV networks are typically designed in a meshed
configuration, they are normally operated radially, with the support of another supply point, e.g.,
another similar/same MV primary substation. A closed-loop design that guarantees the supply in
case of an N−1 failure is achieved through normally open tie-switches at the end of feeders. This is
illustrated in Figure 3 by the cable ‘0’, i.e., feeder connecting both ends of the network (no load in
normal operation).

3. Reliability Assessment Methodology

As mentioned, the main reliability parameters used as inputs to the MCS in this paper are failure
rates and mean repair times. These are allocated to each PC before system reliability is assessed.
It is previously shown that they are not static average values, but vary over time and are therefore
more accurately represented using probability density functions (PDFs). Accordingly, the inverse
transform method is used in this paper to generate random variates that follow exponential and
Rayleigh distributions for failure rates and repair times respectively. This is necessary to convert failure
rates and repair times into the two main system states, Time to Fail (TTF) and Time to Repair (TTR),
based on various PC operating and failure stages. Equations (5) and (6) provide general formulae
of the considered PDFs as input for MCS. Also, PC failure rates are modelled based on a ‘bathtub’
distribution curve (time-varying failure rate). This is a more realistic approach, because it captures the
fact that there is a higher likelihood of failure when the PC has just been installed and when it is near
to the end of its service [27]:

TTFExponential = inv{1− exp(λt)} (5)

TTRRayleigh = inv{1− exp

(
−0.5

(
t
σ

)2
)
} (6)

Each simulation run is performed on a year-by-year time basis in 40-year cycles (assumed
component’s lifetime) and halted when convergence is met, or when 1000 years elapse. Whenever a
component fails, a power flow calculation is run to evaluate the number and demand of affected loads.
The algorithm is implemented using a combination of MatLab code and PSS/E software, automated
using Python. The main steps of the MCS approach used in this paper are encapsulated in Figure 5.
Previous work has validated that 1000 years is a sufficient simulation time length to maintain the
accuracy of the MCS tool employed for reliability assessment [25]. Notably, MCS (using parallel
computing for one-year simulation runs) is used to assess reliability of distribution systems in [28].
However, PC failure rates are not varied over their expected lifecycle and the general simulation
resolution is relatively lower (1 h) than that utilised in this study. Furthermore, this MCS method is
enhanced by the use of time-varying electricity demand profiles, as opposed to the regularly used
peak or maximum demand [4]. These profiles represent residential load models containing demand
decomposition into different load types over the 24 h of the day, and therefore more accurately
representing actual values of both active and reactive power demands.

An important feature of the presented analysis is that there is more accurate correlation between
the moments when faults occur and the actual load demand interrupted (i.e. not simply the rated
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power). This further improves the overall accuracy especially when calculating energy reliability
indices (e.g., ENS index). This MCS procedure also examines the extents to which the probabilities
of network outages are affected by the overall system loading and network conditions. A theoretical
supply interruption model in Figure 4 is integrated into the analysis for assessing more accurately the
moment in time when interruptions to electricity customers are likely to occur. This is implemented by
incorporating probability profiles of both SI and LI, giving “time of the day interruption probabilities”
over the 24 h of the day into the MCS algorithm, as presented in Figure 5. The theoretical model [29]
is constructed from previously recorded SI and LI statistics by two different European DNOs.
These were particularly important for producing the empirical interruption probability models,
which are applicable when specific SI/LI statistics are unavailable.

Together with a comprehensive database of PCs from the UK DNOs, this model allows to
reproduce more accurately the stochastic characteristics of the network reliability performance.
Different sets of DER schemes are then deployed on this base case network, e.g., using ES systems
to compensate for the intermittency of PV DGs, as well as tailored DSR schemes, based on the
theoretical interruption model. Design and implementation of these smart grid technologies and
functionalities, denoted in the further text as “smart interventions”, are described in detail in the next
section. The replicability and flexibility of this methodology is thoroughly justified in published work
by the authors, e.g., in [2,4,9,24,29,30], where the same core technique is applied to different ranges
of high-to-low voltage network configurations, load subsectors, and different type and penetration
of DERs.
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4. Network Scenarios Incorporating Smart Interventions

The test MV distribution system used for analysis (Figure 3) is modelled, scripted and simulated
for different network scenarios and functionalities through Python with PSS/E software package.
These scenarios are specified in order to evaluate possible improvement or deterioration of network
reliability performance, which is quantified through the calculated reliability indices. Accordingly,
these scenarios (summarised in Table 1 and detailed in the further text) consider a number of
functionalities and aspects of DERs relevant for reliability analysis. The presented analysis provides
results not only for the average values of standard reliability indices, but also for their PDFs, to assess
more comprehensively the network performance (e.g., risks associated with certain events).

Table 1. Summary of Network Scenarios.

ID Network Scenario Description

SC-1 Base case Inclusion of backup capability and SQS regulations
SC-2 DSR Demand-side response for reliability improvement
SC-3 PV Uncontrolled MG using the most probable PV power output
SC-4 PV + DSR Combination of PV and DSR
SC-5 ES EMS-Controlled MG supplying energy per customer per fault
SC-6 ES + DSR Application of ES after DSR

4.1. SC-1: Base Case

The reliability performance of the urban MV network shown in Figure 3 is assessed to establish
a base case used as a reference for assessing the benefits of other considered scenarios. This base
case network is modelled to include backup capability (through normally open switches at the end
of the MV feeders), as well as the implementation of SQS regulation—both of which are standard
functionalities of urban MV distribution network operation. The merit of the proposed method is that
the relative reliability indices are calculated and compared with each other (and against the base case)
to quantify the relative improvement. This ensures that uncertainties in data and system requirements
are embedded in all the indices. It also ensures that reasonable confidence can be placed in the relative
differences and potential benefits of considered scenarios [21].

4.2. SC-2: Demand-Side Response (DSR)

Using the theoretical interruption model presented in Figure 4, a novel DSR scheme is evaluated.
During the period with a high fault probability, which is before the evening ramp period, 9:00–17:00 h,
“wet load” (including domestic washing machines, dishwashers, etc.) are disconnected. This scenario
represents application of ‘DSR for reliability improvement’, as it should ensure an enhanced reliability
performance, as opposed to the more commonly applied DSR techniques, aimed at reducing the
evening peak demand [30]. This scenario is not expected to result in significant improvements
in reliability, since only a relatively small percentage (10%) of the load is disconnected. However,
it highlights the potential for reliability improvement and can support further assumptions that more
sophisticated DSR schemes can result in significant reliability-performance improvements.

4.3. SC-3: Uncontrolled PV

For assessment of reliability benefits from connecting PV MG, the PV power output is modelled
considering same output for each residential dwelling. Given that future networks will feature high
levels of penetration of DERs [31,32], this scenario illustrates potential benefits of PV integration
(with 50% penetration) and assesses the impact of the spatio-temporal variation of PV systems.
Furthermore, the use of a realistic, rather than an ideal PV profile also avoids overestimation of the
benefits by accounting for the clouding effect [4], which is detailed in the following sub-subsections.
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4.3.1. Temporal Variation of Solar Energy Resources

Most DNOs are reluctant to depend on the PV generation for power delivery capacity, because
it does not directly reduce the peak demand. However, it shortens the duration of the peak load,
which further benefits loading patterns of PCs [33]. However, unpredictable cloud movements
affect the power fluctuations of PV installations and cause voltage fluctuations that often require
implementing network controls, or even changing settings of associated protection systems [34,35].
The ‘randomness’ of input solar irradiance is modelled using the raw measured hourly data from
field recordings on a 110-kilowatt peak (kWp) rooftop PV system. Figure 6a shows the measured
distribution of PV output power values for each hour of a ‘typical’ summer day.
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Figure 6. PV power output modelling: (a) Probabilistic variations of hourly output power; (b) Temporal
power output variations for different power output models.

As expected, the probability of low PV output values is high during morning and evening hours,
e.g., 0.07 p.u. is the most probable PV power output (0.36 probability) at 07:00 h. The use of the
most probable values enables modelling of the hourly PV power output for a ‘typical’ (realistic) day,
which is used in the proposed analysis. This is more accurate than using statistical averages, as it
accounts for realistic changes in the solar irradiation patterns. The analysis is repeated for cloudless
conditions (which are rarely occurring for the whole day), herein termed ‘ideal’. Both power output
profiles for the realistic and ideal PV generation over a day are compared in Figure 6b, illustrating
not only the associated energy loss, but also indicating possible variations in calculated reliability
indicators when either PV profile is used for the analysis. For the analysed PV penetration level of 50%,
modelled as a uniform distribution of equal-size individual customer PV installations [32], the obtained
results quantify the possible overestimation of reliability-based benefits when the ‘clouding’ effect
in PV outputs is not accounted for. Figure 6b also shows the average values for hourly PV, output
exemplifying the potential underestimation of reliability indices if average values are used.

4.3.2. Impact of Clouding Effect on Reliability Performance

Through comparative analysis, reliability benefits of PV integration into the test MV network are
assessed using both the realistic PV output profile and the ideal summer maximum one, to represent the
range of variation. The results in Table 2 indicate that when a realistic PV profile is used, the reduction
in ENS from a base case (i.e., no PV integration) is 16.7%, while it is 38.9% when the ideal PV output
profile is used. This represents a possible overestimation of the benefits of PV by 22.2%, when the
variability of input solar irradiance and unpredictable cloud movements is neglected. It means that
the projected increase in reliability from the use of ideal PV generation is more than double the
expected increase from a realistic PV generation. Similarly, there is an overestimation of the benefits
of PV, by at least 22%, for each of the following indices: the system average interruption duration
index (SAIDI), average duration of interruptions to only affected customers (CAIDI), and the average
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customer curtailment index (ACCI) [21], which measures ENS for only the customers affected by
supply interruptions.

Table 2. Impact of clouding effect on reliability indices.

Index Base case PV * Ideal PV * Clouding Effect

ENS (kWh/cust./y) 146.37 121.90 16.7% 89.42 38.9% 22.2%
ACCI (kWh/cust. int.) 1090.41 909.75 16.6% 664.17 39.1% 22.5%
SAIDI (hours/cust./y) 0.550 0.453 17.7% 0.332 39.6% 22.0%

CAIDI (hours/cust. int.) 3.678 3.043 17.3% 2.228 39.4% 22.2%

* Reduction from Base Case; cust. = customer; y = year; int. = interrupted.

However, average sustained-interruption frequency indices for the system (SAIFI) and customers
(CAIFI), as well as for momentary interruptions (MAIFI), are not presented in Table 2, as they indicate
no over-estimation (0%). This is because the major causes of interruptions are system faults and PC
failures, which do not affect the solar irradiance and associated PV energy availability, and therefore
do not affect interruption frequency indices. PV alleviates effects of LI by providing energy thereby
only lessening their duration, but not frequency, as perceived by the customer.

The probability distributions of reliability indices offer more details about the network
performance. Figure 7 illustrates the impact of clouding on ENS when PDFs are compared. It shows a
reduction in the long tail of the PDF when either ‘PV’ (most probable) or ‘Ideal PV’ is integrated
into the network. This represents a reduction in the maximum value of the expected range of
interruptions, and is a major benefit as the probabilities of lower ENS values increase. There exists a
clear overestimation, due to different PV operating conditions, as the maximum ENS values range
from 1700 to 2100 kWh/customer/year.

Given that these results are reliant on measured data from PV installations to deduce the most
probable PV generation profile, there is a strong correlation between the variation of realistic PV power
output and its geographical (or meteorological) location [36], as well as its accuracy and resolution.
Higher incidence of unpredictable cloud-movements would lower the overall energy availability,
thereby lowering the PV’s value in increasing reliability performance. Furthermore, the variability of
wind (both stand-alone and in hybrid PV-wind systems) would result in similarly skewed reliability
performance results, when the modelling accuracy is the same as in this study.
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4.3.3. SC-4: PV+DSR

This scenario models a coordinated application of PV (with most probable outputs) and DSR
strategies from SC-2 to quantify possible additional benefits for both system and customer reliability.
The additional effect of preventive DSR actions on top of the variable PV generation is expected to
reduce uncertainty resultant from unpredictable PV power outputs and provide an improved level of
supply continuity to customers.
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4.4. SC-5: Energy Storage (ES)

While many control techniques for ES focus on peak shaving applications and energy cost
reduction [5,37], this paper analyses specific smart application of ES, which is designed to improve
reliability performance by providing a backup capacity per customer, per fault, with the intention
of reducing the ENS and duration of sustained interruptions. The selected backup capacity is
3.67 kWh, based on the energy networks association (ENA) G83 engineering recommendation
in [38] for peak power that can be provided by a small-scale single-phase rooftop PV. ES operation is
controlled by an EMS to provide seamless power switching capabilities and continuous supply to the
end-customers. The energy is stored from PV MG operating in islanded mode and is expected to result
in a better reliability performance than the uncontrolled PV (SC-3). While similar scenarios in previous
work [4,30] modelled ES systems with constant state of charge (SOC) characteristics, this paper uses a
realistic SOC-level variation and thus provides more realistic results. The SOC is modelled based on
solar irradiation, load demand, and electricity tariff during grid supply conditions. Therefore, the EMS
is modelled to capture more accurately the SOC and the available ES output power. The temporal
variations of these quantities then determine SOC variations. Accordingly, this model utilises PV
generation, residential load demand, and electricity tariff data. To prevent overheating and ensure
long battery lifetime, SOC limits are set to 40% and 100% as previously utilised in [39,40]. The ES SOC
capacity is modelled following equation (7) [41] which fully considers both charging and discharging
efficiencies of the ES system; the latter being higher as fully detailed in [42,43]:

SOC(t) = SOC(t− 1) + ηch·(Pch(t)∆t)− Pdis(t)∆t
ηdis

(7)

where SOC(t) = SOC of the battery at time t (kWh), Pch and Pdis are the electrical power input and
output respectively at time t, while ηch and ηdis are charging and discharging efficiencies respectively.

4.4.1. ES System Configuration

The EMS configuration shown in Figure 8 is based on a real microgrid system tested in the Smart
Grid Laboratory at the University of Bath, UK. The designed 12-panel PV system has rated peak power
of 3.67 kW and voltage of 444 V [44]. A 4 kW DC/DC buck converter steps down the voltage to a
24 V rated battery bank (made by series-parallel connection of four 12 V batteries), which can supply
maximum current of 200 A (corresponding to maximum power of 4.8 kW). The converter, battery bank
and 10 kVA inverter are linked with a common coupling 24 V DC bus. The inverter is also connected
to the DC bus and allows for a bi-directional energy exchange (and energy trading) via one-phase of a
three-phase mains supply [39]. The EMS controls power output from PV either directly, or through the
ES, since a grid-connected mode is not designed for ES-charging in this study.
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4.4.2. ES System Operation

Figure 9a presents the SOC for the ES system. For a typical day, system operation is suitably
described as follows: the initial SOC may be assumed 40% at 00:30 h. It essentially remains at this level
until 05:00, when PV starts to generate and charge the ES by 07:00. Between 07:00 and 11:00, ES remains
at approximately 100% SOC. It then discharges due to increased demand (between 11:00–15:00) and
charges up again during a relatively low tariff period (15:00–18:30). Evening peak demand is met,
partly, by discharging the ES system up to 22:00 where the EMS takes advantage of the low demand
and low rate late-night tariffs to charge the ES. Figure 9b shows the power output: positive values
indicate discharging while negative values correspond to charging. System operation assumptions
include no charge-discharge losses, no occurrence of unexpected failures (no failure rate), and ES
apparatus is not damaged by large upstream network faults [9].
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Figure 9. Battery SOC and power output for a typical summer day: (a) State of charge; (b) Power output.

4.4.3. SC-6: ES + DSR

In this scenario, ES provides backup capabilities by providing supply to individual customers in
the event of a network outage. The EMS-controlled ES is deployed as a well-designed corrective action
on top of a preventive DSR application (SC-2). In case of an upstream fault (whose effect is reduced
due to DSR action), the EMS will provide additional power, available from either PV system, or ES,
or both, in order to supply all loads and thus significantly reduce the duration of supply interruptions,
or even completely prevent them. Therefore, this combination of several smart grid technologies for a
localised and smart energy management (“smart interventions”) is expected to result in the highest
benefits for system and customer reliability performance.

5. Reliability Performance Assessment

The average values of system reliability indices are presented in this section. These include
indices that measure the frequency of SI (MAIFI) and LI (SAIFI and CAIFI), the duration of LI (SAIDI
and CAIDI) and energy not supplied (ENS and ACCI). Additionally, PDFs and cumulative density
functions (CDFs) of these indices are also presented, to illustrate the stochastic variability as well as
the potential benefits that may not be immediately obvious. Notably, the application of DSR on its
own in SC-2 (Table 1) does not offer significant benefits, as only the wet loads are disconnected during
a span of about 10 h in the day. This results in a 7.7% reduction of ENS from the base case, but offers
no significant improvements in other indices, related to frequency and duration of outages. This is
why SC-2 is not assessed individually in the following reliability performance analyses. Major benefits
from this scenario are realised mainly through the aggregation with other smart grid technologies,
such as PV and ES, which are related to scenarios SC-4 and SC-6, respectively.
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5.1. Impact on Frequency of Interruptions

Table 3 presents the results for the network reliability performance by considered smart
interventions, where their benefits are quantified by the reductions of index values relative to the
base case. The results show that the controllability of MG using ES is important for reduction of
SAIFI-71.5% and 75% reduction in the ES and ES + DSR scenarios, respectively. Furthermore, the
results illustrate that even the interruption frequency when assessed only for those customers affected
by interruptions (CAIFI) is reduced significantly, i.e. CAIFI is 19.4% and 22.6% lower than for the base
case, when ES and ES + DSR are deployed, respectively. The enhancement offered by ES is further
highlighted when the number of customers affected is assessed before/after the application of ES.
It can be seen that the average number of load supply points affected by interruptions reduces from
nearly 7 in the base case, to roughly 2 when either ES scenario is deployed. However, Table 3 highlights
the advantages of PV—shown by no change in MAIFI, which is better than the 4.4% and 3.7% increases
when ES scenarios are deployed, as this can not only negatively affect the power quality, but also
require changes to the settings of the main substation protection schemes [45]. This increase in MAIFI
index is due to the use of backup ES, which can alleviate faults in the upstream network, either by
total removal of the outage or by converting LI into SI. However, this is not an evident result from the
PV scenarios (SC-3 and SC-4), as no intelligent control is designed.

Table 3. Frequency of long and short interruptions.

Scenario MAIFI
(Ints/c/y) * SAIFI

(Ints/c/y) *
CAIFI

(Ints/Affected
Customer)

* Load Points
Affected (avg) *

Base case 0.208 - 0.157 - 0.720 - 6.644 -
PV 0.208 0% 0.157 0% 0.720 0% 6.644 0%

PV +
DSR 0.208 0% 0.157 0% 0.720 0% 6.644 0%

ES 0.218 −4.4% 0.045 71.5% 0.581 19.4% 1.841 72.3%
ES + DSR 0.216 −3.7% 0.039 75.0% 0.557 22.6% 1.643 75.3%

* Reduction from Base Case; ints = interruptions; c/y = customer/year.

5.1.1. System-Oriented Frequency of Interruption Indices

Figure 10 provides important additional information to the average values in Table 3, showing
the PDFs of SAIFI and MAIFI indices, respectively. Figure 10a illustrates that ES + DSR significantly
increases the probability of ‘zero’ LI, while PV + DSR offers almost no improvement to the base case.
This can be attributed to the fact that in SC-6, the energy stored is utilised as a corrective action when
network faults occur, yet no control measures are implemented in SC-4. The PDF for the frequency
of SI is plotted in Figure 10b, showing that the little to no degradation from the base case MAIFI.
Therefore, this methodology is capable of accounting for both SI and LI; producing accurate results that
correspond to the estimated reliability performance. As expected, both scenarios do not significantly
affect average MAIFI values as discussed in Section 4.3.2. Furthermore, both graphs in Figure 10 show
a spiky increase in the probability value at 1 interruption/customer/year, which is due to system faults
affecting all supplied customers, e.g., due to a fault at the primary substation (when both supplying
33/11 kV transformers fail) with no alternative (backup) supply to customers.
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Figure 10. Probability distribution of the frequency of (a) sustained and (b) momentary interruptions.

5.1.2. Customer-Oriented Frequency of Interruption Indices

CAIFI is particularly useful in recognising chronological trends in the reliability of a distribution
network, highlighting the years when not all supplied customers are affected by interruptions,
and many experience continuity of supply [21]. Table 4 further analyses this index by focusing
on the probability of supply interruptions to a particular number of load points. It shows that while
PV + DSR offers no discernible improvement to the number of load points affected by interruptions,
ES + DSR increases the probability of not having any load point affected by interruptions by almost
60%. Furthermore, using ES + DSR increases the probability of having only one load point affected
by 55%. As a direct consequence of those increments, Table 4 also shows that the probability of LI
affecting anywhere between 2 and 47 load points is nearly halved in this scenario.

Table 4. Probability of the number of load points affected by supply interruptions.

Number of Load
Points Affected

SC-1: Base Case SC-4: PV + DSR SC-6: ES + DSR

Probability Probability * Probability *

0 0.320 0.320 0% 0.508 −58.8%
1 0.147 0.147 0% 0.228 −55.1%

2–47 0.471 0.471 0% 0.261 44.6%
48 0.062 0.062 0% 0.003 95.2%

* Reduction from Base Case.

Most importantly, the results illustrate a significant improvement for SC-6, as this intervention
can lower by 95% the probability of having all load points (48) affected by interruptions. The results
show that in 1000 years, all load points are affected by interruptions only 3 times when ES + DSR is
used, as compared to 62 times when no smart interventions are deployed. The results in Table 4 are
further detailed in Figure 11. It can be seen that ES + DSR significantly increases the probability of
having a lower number of load points affected by interruptions, while substantially decreasing the
probability of having a greater number of load points affected. In some cases, the reduction is so great
that it completely negates number of interruptions experienced by that number of load points. This is
exemplified by the zero probabilities for the number of interrupted load points of 17–24, 26, 30, 32 and
33, where the use of ES + DSR results in no interruptions for these number of load points.
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The scatter plot in Figure 12 further demonstrates the capability of ES + DSR to ‘confine’ the
effect of supply interruptions to much fewer load points than in the base case scenario and also lower
the total number of affected customers. The equivalent CAIFI results presented in Figure 13 further
confirm the benefits of the ES + DSR scenario.Energies 2019, 12, x 16 of 24 
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Figure 12. Number of load points affected by supply interruptions.
Notably, all considered scenarios (SC-1, SC-4 and SC-6) do not have any values occurring within

the range 0-1, because CAIFI is only calculated for customers affected by interruptions, implying
that the individual average CAIFI values can only be less than one if they are zero (when no load
point is affected by interruption)—i.e. no values between 0-1. From a base case CAIFI average value
of 0.72 interruptions per customer interrupted, SC-4 (PV + DSR) does not alter this average value.
However, this CAIFI value is further reduced by 22.6% to 0.557 when SC-6 (ES + DSR) is deployed.
This illustrates the substantial improvement offered by coordinated ES + DSR technologies in terms of
frequency of interruptions of affected customers.

Figure 13 also proves that while SC-6 (ES + DSR) can benefit the system reliability performance by
increasing the probability of a lower number of interruptions for affected customers, it simultaneously
increases the largest plausible number of interruptions that can be experienced at a single load point:
from 2.8 in the base case to 4. This effect is best explained by the fact that the EMS-controlled ES
is deployed as a corrective action when faults occur. While in most cases it can completely ensure
supply continuity by alleviating the effects of upstream network faults, in the cases where it only
lowers the interruption duration, the net effect is to have fewer customers affected for the same
number of interruptions, therefore resulting in a higher ratio of interruptions per affected customer,
i.e., higher CAIFI.
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This is further discussed in Section 5.3, where results for the ACCI index are presented.
In summary, ES + DSR reduces the number of customers affected significantly more than it reduces
the total number of customer interruptions, thus resulting in a highly plausible CAIFI. In addition,
Figure 13 illustrates a ‘peak’ around the value of CAIFI = 1 due to the coincidence of faults and number
of affected customers, especially when system faults affect large parts of the network and lead directly
to interruptions of loads, as highlighted in Figure 10.

5.2. Impact on Duration of Sustained Interruptions

Deployment of PV+DSR in SC-4 results in a reduction of interruption duration times by 26%
(Table 5). Moreover, a more controlled application of this RER using an EMS-controlled ES combined
with DSR (SC-6) results in nearly a halving (48.7%) of the expected average interruption duration times.
This is a significant result for DNOs, as they can use such a proposed technique as a planning tool to
take advantage of this improvement of reliability performance in both technical and commercial terms
i.e. in avoiding regulator-imposed penalties for non-satisfactory performance. However, these results
suggest that coordinated operation of ES increases CAIDI, which is shown by a 67.8% and 69.7%
increase of CAIDI for SC-5 and SC-6, respectively. However, this ‘increase’ is due to the fact that CAIDI
is directly calculated from the ratio of SAIDI to SAIFI, and thus it is dominated by the greater reduction
of SAIFI (71.5%) than the reduction of SAIDI (43.7%).

Table 5. Duration of sustained interruptions: system and customer-based indices.

ID Scenario SAIDI
(hours/cust./y) * CAIDI

(hours/cust. int.) *
Average

Duration of LI
(hours)

*

SC-1 Base case 0.550 - 3.678 - 3.507 -
SC-3 PV 0.453 17.7% 3.043 17.3% 2.888 17.7%
SC-4 PV + DSR 0.407 26.0% 2.751 25.2% 2.595 26.0%
SC-5 ES 0.310 43.7% 6.172 −67.8% 1.975 43.7%
SC-6 ES + DSR 0.282 48.7% 6.243 −69.7% 1.800 48.7%

* Reduction from Base Case; cust. = customer; y = year; int. = interruption.

5.2.1. System-Oriented Duration of Interruption Indices

The resulting PDFs for SAIDI index in Figure 14 reveals that ES (SC-5) and ES + DSR (SC-6)
scenarios have reduced tails, which translates to lower probabilities of long-duration interruptions,
as compared to the base case. Both ES scenarios also increase the probabilities of the short-duration
interruptions, increasing their probability from only 0.33 in the base case, to 0.54 and 0.56 in SC-5
and SC-6, respectively. Similarly, PV scenarios (SC-3 and SC-4) reduce the duration of the longest
interruptions, as well as marginally increase the probability of short-duration interruptions. This result
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is due to ES being applied as a corrective action after the faults, while PV is applied as a preventive
measure. Therefore, ES does not offer as much reduction in the duration of the longest interruptions
as PV, whose deployment offers available energy to alleviate effects from upstream network faults,
even without intelligent control from EMS. This might place the use of standalone PV systems, without
ES, as a more economical option. However, when pros and cons of either technology are weighed,
the impact of ES is controllable and therefore far more predictable than the uncontrolled PV. The larger
benefits from ES + DSR are exemplified by nearly a halving of the maximum plausible duration
of individual interruptions, which reduces from over 300 h in the base case, to only 156 h in the
SC-6 scenario.Energies 2019, 12, x 18 of 24 
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Finally, Figure 15 shows the resulting CDFs for the duration of interruptions from three scenarios:
SC-1, SC-4 and SC-6. It illustrates that the probability of up to 1-h supply interruptions increases
from 54% in the base case to 81% when SC-4 is deployed, and finally to 91% for SC-6. The results in
Figure 15 actually quantify the risk of paying compensation to customers experiencing interruptions
longer than the specified duration threshold (as in the UK SQS, [6]). This can be associated with the
considered scenarios and smart grid functionalities, which then can be used to evaluate potential
cost-benefit effects at both the planning and operational stages. Furthermore, it can be analysed in
terms of not only QS improvements to customers, i.e. through the reductions of average duration of
long interruptions, but also in terms of the higher probabilities of shorter-duration interruptions.
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5.2.2. Customer-Oriented Duration of Interruption Indices

Figure 16 presents the PDF plots of the CAIDI index, where both ES-based scenarios (SC-5 and
SC-6) increase the CAIDI average values, as well as the duration of longest interruptions (i.e., tails of
PDFs) for the affected customers only. It can be seen that PV scenarios (SC-3 and SC-4) contribute to
a reduction in CAIDI index, which seems preferable, but is ultimately unfeasible. It is explained by
the fact that PV does not reduce SAIFI, but it lowers SAIDI index by 17.7% in SC-3 and 26% in SC-4,
respectively. Comparatively, ES-based scenarios reduce SAIFI much more than SAIDI (Table 5).Energies 2019, 12, x 19 of 24 
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Strict targets set by SQS regulations [7], along with penalty/reward schemes based on network
reliability performance, incentivise DNOs to invest in operational tools to ensure lower frequency and
duration of supply interruptions. In the UK, for a meshed urban network (as in Figure 3), depending
on the interrupted bulk-supplied group demands (GD), different time limits are established to restore
supply after the first circuit outage, e.g., 15 mins for GD ≥ 12 MW, 3 h for GD ≥1 MW, or 12 h
(regulator-imposed) to protect customers from excessive LI events [6]. Therefore, the results from
the presented reliability assessment methodology demonstrate the benefits of the considered smart
grid functionalities and interventions, and their commercial and technical value in terms of improved
system and customer reliability performance.

5.3. Impact on Energy Not Supplied

Regarding the risk associated with the energy not supplied to customers, Table 6 presents the
results for ENS and ACCI indices. As expected, SC-6 results in the most significant reduction to ENS
(41.8%), because ES is applied as a controlled reliability-corrective action, additionally enhanced by
a reliability-oriented DSR scheme. Uncontrolled PV, in combination with DSR, not only reduces the
average ENS (by 24.4%), but also positively affects the average ENS for the customers experiencing
supply interruptions, i.e. ACCI index, reducing it by 16.6% and 24% in SC-3 and SC-4, respectively.
Accordingly, PV has no net effect on the average number of load points affected by interruptions, as it
is locally uncontrolled and therefore cannot prevent the occurrence of upstream network faults. Since
PV provides additional energy during faults, it can reduce the average ENS per affected customer.
It is important to note that the percentage increases of ACCI, of 64.5% and 64.2% in SC-5 and SC-6,
respectively, should not be interpreted as a weakness of the EMS-controlled ES technology. The reason
for this ‘increase’, as applied in the presented analysis, is the net effect from the ES technology is to
greatly reduce the number of interruptions – in most cases, ensuring continuous supply. This means
that the total number of affected customers reduce so greatly that the denominator for the calculation of
ACCI renders the resulting value higher than in the base case. Implementation of ES in SC-5 and SC-6
is therefore especially efficient in reducing the ACCI, as it also lowers the number of affected customers
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(by over 70% in both ES-based scenarios). This is deemed to be of great importance to stakeholders,
such as DNOs and especially customers who require highly reliable and continuous supply.

Table 6. Energy not supplied and customer curtailment indices.

ID Scenario ENS
(kWh/c/y) *

ACCI
(kWh/Affected

Customer)
* Load Points

Affected (avg) *

SC-1 Base case 146.37 - 1090.41 - 6.644 -
SC-3 PV 121.90 16.7% 909.75 16.6% 6.644 0%
SC-4 PV + DSR 110.63 24.4% 828.99 24.0% 6.644 0%
SC-5 ES 93.03 36.4% 1793.87 −64.5% 1.841 72.3%
SC-6 ES + DSR 85.21 41.8% 1790.79 −64.2% 1.643 75.3%

* Reduction from Base Case; c/y = customer/year.

5.3.1. Average Energy Not Supplied

A significant improvement in average ENS values for different load supply points in the test
network, especially when SC-6 is implemented, is further illustrated in Figure 17. The resulting average
ENS values exhibit a repetitive pattern from one MV feeder to the next (each with 8 load supply points)
due to the symmetry of the network design (Figure 3).

Furthermore, the use of time-varying failure rates and repair times for network PCs, incorporated
in the PDFs used as inputs in the MCS algorithm, ensure that the ‘randomness’ of network behaviour
is more accurately modelled. For example, in Figure 17 ES has a higher impact on the ENS reduction
at some load supply points, e.g., 27 and 41 on feeders 3 and 6, respectively (over 80% reduction),
than it does at other load supply points, such as 37 and 38 on feeder 5 (approximately 20% reduction).
Overall, ES contributes much more to ENS reduction than DSR, as it represents a post-fault corrective
action, while DSR is deployed as a preventive measure to reduce the ENS during the high fault
probability periods.
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Figure 17. Average ENS for different load supply points.

5.3.2. Average Customer Curtailment

Figure 18 illustrates the positive effects of ES + DSR by assessing the probability of different
amounts of energy not supplied per interrupted customer (ACCI). It can be seen that SC-6 greatly
improves the probability of having no energy curtailment to nearly 0.5, from 0.32 in the base case,
which is directly related to the enhancement of reliability performance and continuity of supply.
However, an important feature in Figure 18 is the higher probability of larger values of ENS
(>4000 kWh/customer interrupted) when ES + DSR is deployed, as compared to values from the
uncontrolled PV cases, or the base case. Although it is seemingly a weakness, this is explained by the
fact that ES effectively prevents occurrence of system interruptions by providing a back-up continuous
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microgrid-based supply to the customers. For the calculation of ACCI, this means relatively short
sustained interruptions will be “converted” to continuous supply, based on the available SOC of
the ES, rendering load points with these DERs no longer affected by the upstream faults. However,
this is not the case for the relatively longer sustained interruptions, resulting in a lower number of
affected customers, but relatively unchanged individual interruption durations and energy unsupplied.
This may be clarified by using an example from the presented results, where for one particular year
(before any smart intervention-base case), there were eight affected load points, with one relatively
long LI and seven relatively short LIs. After the application of ES, the seven relatively short LIs were
converted to continuous supply, but one relatively long LI was largely the same, somewhat reducing
only the ENS for that period. This results in a much higher ACCI for this particular year when ES is
deployed, due to the modified (i.e. reduced) number of customers affected, as compared to the base
case. Therefore, it is important to emphasise that ES is undoubtedly the most effective DER technology
for improving reliability performance, even though this may not be apparent and immediately clear
from the presented results for some indices.
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6. Conclusions

This paper provides an in-depth analysis of the potential reliability performance improvements
from the implementation of three smart grid DER functionalities: PV-generation, energy storage (ES)
and demand-side response (DSR). The potentials of these technologies are assessed by percentage
improvements in the calculated standard reliability indices over the base case (no DERs). The presented
methodology is illustrated for a typical meshed underground MV distribution system, in which
supplied LV networks are modelled by equivalent aggregate representations. Details of the
methodology, modelled urban MV and LV networks, power components data, DER characteristics and
all modelling assumptions have been thoroughly described, including the corresponding deployment
of the proposed DER scenarios (SC-2 to SC-6). The key benefits of the proposed methodology are in
its wider applicability to varying system configurations and load mixes, as well as its capability to
demonstrate the relative reliability-performance benefits of different DER technologies. However, it is
important to note that when assessing very large systems, i.e. combining multiple MV/LV networks
or even different energy vectors, this method is only limited in efficacy by the computational time and
burden required, as well as the aggregation techniques to lower system complexity. For that purpose,
specifically tailored aggregation techniques should be integrated within this methodology, which will
form part of further work by the authors.

A detailed analysis of the presented results provides valuable information as to how to address the
stochastic behaviour of PV generation, in order to optimise network reliability performance. It is shown
that using an intelligent energy management system (EMS) that controls operation of an ES installation,
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while taking into account variations in state of charge levels of ES, significantly improves network
reliability performance through the reductions of frequency and duration of interruptions, as well as
energy not supplied to the customers (ENS). In analysing PV-based generation, the paper addresses the
impact of cloud movements and transients on the solar PV power output, the associated energy loss
and the effects of these on system reliability performance. It is generally found that overestimation of
the benefits offered by PV (over 22%) is possible if the effects of clouding are not accurately accounted
for in the PV models. Results demonstrate the capability of ES to be especially efficient in reducing
the number of interrupted customers, and more importantly, the energy not supplied to affected
customers. The presented work provides contributions in terms of developing more flexible and more
accurate reliability assessment tools and improved techniques that can be easily deployable in real-life
applications for the evaluation of most cost-effective DER solutions. DNOs can take advantage of such
tools for use in system planning operations whereby relative reliability performance benefits, tied to
the deployment of various DERs, can be justified both technically and financially.
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