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Abstract

:

Non-linear loads in circuits cause the appearance of harmonic disturbances both in voltage and current. In order to minimize the effects of these disturbances and, therefore, to control the flow of electricity between the source and the load, passive or active filters are often used. Nevertheless, determining the type of filter and the characteristics of their elements is not a trivial task. In fact, the development of algorithms for calculating the parameters of filters is still an open question. This paper analyzes the use of genetic algorithms to maximize the power factor compensation in non-sinusoidal circuits using passive filters, while concepts of geometric algebra theory are used to represent the flow of power in the circuits. According to the results obtained in different case studies, it can be concluded that the genetic algorithm obtains high quality solutions that could be generalized to similar problems of any dimension.
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1. Introduction


The introduction of distributed generation and microgrids in power networks allow an efficient energy management and integration with renewable energy sources [1]. However, these grids include an increasing number of power electronic devices and non-linear electronic loads, such as power inverters, cycloconverters, speed drives, batteries, household appliances, among others. These non-linear loads increase the harmonic disturbances both in voltage and current, causing detrimental effects to the supply system and user equipment [2]. In consequence, these grids are seriously affected by events that degrade the power quality [3], and provoke excessive heating, protection faults, and inefficiencies in the transmission of energy [4], hence it becomes a critical task to determine precisely the electrical energy balances on the microgrid.



Different authors have presented models and theories in the past [5,6,7], but while all of them coincide in the study of the sinusoidal case, there is some controversy in the analysis of non-sinusoidal systems with a high harmonic content, such as modern microgrids. In particular, well-known theories, such as those proposed by Budeanu [8] and Fryze [9], have been questioned by different authors after demonstrating inconsistency and errors [10,11,12]. Therefore, it is important to investigate how to improve the compensation of the power factor in non-sinusoidal systems in the presence of harmonics. Some investigations have highlighted that algorithms for calculating the parameters of filters have rarely been discussed [13], although in recent years some authors have applied computational optimization methods, including meta-heuristic approaches, for optimizing filter parameters in circuits having harmonic distortion [2,14,15,16]. More specifically, genetic algorithms have been successfully applied in [17,18,19].



In this paper, an evolutionary algorithm is used to optimize the type and characteristics of passive filters for power factor compensation. The rest of the paper is organized as follows: Section 2 introduces some basic ideas about geometric algebra and its application to power systems. Section 3 describes the problem at hand and the genetic algorithm used as solution method. Section 4 presents the empirical study, while the main conclusions obtained are detailed in Section 5.




2. Geometric Algebra and Power Systems


Traditionally, electrical engineers have been taught to solve sinusoidal electrical circuits using complex number algebra, exactly as Steinmetz theory [20] introduced in the 19th century. It stated that differential equations in time domain can be transformed into algebra equations in complex domain. Under these assumptions, the apparent power can be expressed as:


S→=U→I→*=P+jQ



(1)




where P is the active power, Q is the reactive power, and j is unit imaginary number.



The limitations of the algebra of complex numbers and the impossibility to apply the principle of conservation of energy to the apparent power quantity [21] have caused some researchers to propose alternative circuit analysis techniques, including those based on geometric algebra [22].



2.1. Basic Definitions of Geometric Algebra


Geometric algebra has its origins in the work of Clifford and Grassman in the 19th century and is considered as a unified language for mathematics and physics. It is based on the notion of an invertible product of vectors that captures the geometric relationship between two vectors, i.e., their relative magnitudes and the angle between them [23]. Some investigations have defined the properties of geometric algebra [24,25] applied to physics and engineering. Traditional concepts such as vector, spinor, complex numbers, or quaternions are naturally explained as members of subspaces in geometric algebra. It can be easily extended in any number of dimensions, this being one of its main strengths. Because these are geometrical objects, they all have direction, sense, and magnitude. The basics of GA properties are based on well established definitions around vectors. For example, a vector a=α1e1+α2e2 (a segment with direction and sense) can be multiplied by a vector b=β1e1+β2e2 in different ways, so the result has different meanings. In (2), the inner product is defined and the result is a scalar.


a·b=∥a∥∥b∥cosφ=∑αiβi



(2)







In (3) a new product is defined, the wedge product. The main difference with its cousin the outer product (see Figure 1) is that the result is neither a scalar nor a vector, but a new quantity called bivector.


a∧b=∥a∥∥b∥sinφe1e2



(3)







A bivector is known to have direction, sense and magnitude in the same way a vector has. It defines an area enclosed by the parallelogram formed by both vectors (see Figure 2). This product complies with the anti-commutative property, i.e., a∧b=−b∧a. A bivector is a key concept in geometrical algebra and cannot be found in linear algebra or vector calculus. The outer product of two vectors produces a new entity in a plane that can be operated like vectors, i.e., addition, product, or even inverse. Like vectors, a bivector can be written as the linear combination of a base of bivectors.



Finally, the third product between vectors is defined in (4) as the geometric product and can be described as one of the major contributions in geometric algebra. Not only can vectors be multiplied geometrically, but bivectors and other entities, in general, can be used.


ab=a·b+a∧b



(4)







The result is a linear combination of the inner product and the wedge product. Equation (4) can be expanded to further find out new insights.


A=ab=⟨A⟩0+⟨A⟩2=(α1β1+α2β2)+(α1β2−α2β1)e1e2



(5)




where ⟨A⟩0 is the scalar part and ⟨A⟩2 is the bivector part.




2.2. Application of Geometric Algebra to Power Systems


Recently, several researches have proven that geometric algebra or Clifford algebra is a powerful and flexible tool for representing the flow of energy or power in electrical systems [22,26]. Some authors have motivated the use of power theory based on geometric algebra as Physics’ unifying language, such that electrical magnitudes can be interpreted as Clifford multivectors [27]. More specifically, Clifford algebra is a valid mathematical tool to address the multicomponent nature of power in non-sinusoidal contexts [28,29,30] and has been used for analysis of harmonics [31].



The concept of non-active, reactive, or distorted power acquires a meaning that is more in line with its mathematical significance, making it possible to better understand energy balances and to verify the principle of energy conservation. Nevertheless, some authors have highlighted that the verification of the energy conservation law is only possible in sinusoidal situations [32]. To overcome these drawbacks, these authors proposed a new circuit analysis approach using geometric algebra to develop the most general proof of energy conservation in industrial building loads, with capability of calculating the voltage, current, and net apparent power in electrical systems in non-sinusoidal situations.



Different authors have proposed definitions to represent non-active power for distorted currents and voltages in electrical systems, although no single representation has been universally accepted. For example, in [33] a non-active power multivector from the most advanced multivectorial power theory based on the geometric algebra with the aim of analyzing the compensation of disturbing loads is presented, including the harmonic load compensation, identification, and metering between other applications. Other researches have shown that geometric algebra can be applied to analyze the apparent power defined in a poly-phase system having transmission lines with frequency-dependency under non-sinusoidal conditions [34].



Geometric Apparent Power


As several authors have shown, the use of apparent power loses its meaning under non-sinusoidal conditions, involving erroneous calculation of energy flows between the load and source. In contrast, [35] proposes the use of a new term called net apparent power or geometric apparent power M. This concept is the result of the geometric product of voltage and current in GN domain (6).


M=ui=u·i+u∧i



(6)




which results in a scalar and a bivector when the voltage and current are sinusoids


M=⟨M⟩0+⟨M⟩2



(7)







It can be easily shown from (1) and (7) that


P=⟨M⟩0Q=∥⟨M⟩2∥



(8)




so ⟨M⟩0 is the active power derived from the scalar part and ∥⟨M⟩2∥ is the reactive power derived from the bivector part of the net apparent power multivector.



For the non-sinusoidal case, i.e., when harmonics are present in the voltage and/or current, the apparent power loses its validity and only M can reflect the exact flow of energy in the circuit. Consider a general voltage waveform u(t)


u(t)=∑i=1nui(t)=α1cos(ωt)+β1sin(ωt)+∑h=2lαhcos(hωt)+∑h=2kβhsin(hωt)



(9)




that we can transfer to the geometric domain using [35]


φc1(t)=2cosωt⟷e1φs1(t)=2sinωt⟷−e2φc2(t)=2cos2ωt⟷e2e3φs2(t)=2sin2ωt⟷e1e3⋮φcn(t)=2cosnωt⟷⋀i=2n+1eiφsn(t)=2sinnωt⟷⋀i=1i≠2n+1ei



(10)




where ⋀ei represents the product of n vectors and the subscripts c and s denote cosine and sine, respectively. Using (10), any waveform x(t) can be translated to the geometric domain GN, so the final result for the voltage is


u=α1e1−β1e2+∑h=2lαh⋀i=2h+1ei+∑h=2kβh⋀i=1,i≠2h+1ei



(11)







In (11), the transformation given in [35] has been used and is reproduced here to make this paper more readable. [35] also demonstrates that the admittance of typical passive load is Yh=Gh+Bhe1e2, so the harmonic current associated to h-th voltage harmonic is


ih=(Gh+Bhe1e2)uh



(12)




and the total current


i=∑h=1nih=ig+ib



(13)




where ig is the in-phase current where ib is the quadrature current. The geometric apparent power is then


M=ui=Mg+Mb=P+CNd+Mb



(14)




where Mg is the in-phase geometric apparent power, CNd is the degraded power (summation of cross-frequency products between voltage and current) and Mb is the quadrature geometric apparent power.



Based on Equations (8) and (14), the power factor in GN domain can be defined as


pf=PM=M0M†M0



(15)




in contrast to the clasical approach where S is used. As demonstrated by [21], S and M are different concepts for non-sinusoidal scenarios, but reduces to the same in the sinudoidal case. Other power theories like Czarnecki’s based their power factor definition on the concept of apparent power S, so it leads to different power factor results in non-sinusoidal situations.






3. Problem Description and Solution Strategy


This section describes the proposed problem in this research and details the characteristics of the genetic algorithm used to solve it.



3.1. Problem Description


Power systems operating under harmonic distortion must be optimized to reduce power losses and improve power quality [36,37]. Whether the system is linear or non-linear, it is necessary to provide reactances in parallel with the load in order to reduce these harmonics. The typical design of compensators is based on the knowledge of the susceptances of the system to different frequencies [38], something that is not easy to achieve when you have highly distorted systems. The main objective of non active power compensation is to minimize the source root mean square (RMS) current [5]. However, it is not a trivial task since it involves to determine which type of filter and characteristics of their components is more suitable for compensation purposes in a given circuit. For example, a capacitor with an optimal value connected in parallel to the load is an easy solution but this does not produce the absolute minimum of the distortion power [39], while other alternatives could improve it.



Some studies have highlighted that algorithms for calculating the parameters of filters has not been studied in detail [13], although some authors have implemented optimization algorithms for optimizing the configuration of the filters in circuits having harmonic distortion. For example, in [15] it was proposed a genetic algorithm to minimize current total harmonic distortion using LC passive harmonic filters. Other recent studies have applied swarm intelligence methods to comparatively evaluate single-tuned, double-tuned, triple-tuned, damped-double tuned, and C-type filters in order to improve the loading capability of a set of transformers under non-sinusoidal conditions [16]. In addition to the use of passive filters, some studies proposed algorithms for estimating the optimal parameters of active and hybrid filters. For example, in [2] it was proposed the use of direct neural intelligent techniques to improve performance of a shunt active filters. In other recent studies, it has been proposed the use of differential evolution (DE) algorithms to optimize the parameters of hybrid filters (combining active and passive filters) in order to minimize harmonic pollution [14]. The problem to be solved involves the determination of the most suitable type of passive filter and its parameters to minimize the source RMS current Is in order to get the optimal value Iscp.




3.2. Solution Approach


Genetic algorithms are optimization methods based on principles of natural selection and genetics [40]. Figure 3 shows the flowchart describing the operation of the genetic algorithm. It consists of a set (population) of solutions, each of which is called individual or phenotype, that evolve to reach solutions of high quality in terms of a fitness function. As an initialization step, a genetic algorithm randomly generates a set of solutions to a problem (a population of genomes). As Figure 4 shows, each individual is represented by a string of real numbers. Specifically, the data structure of each individual consists of three possible values for inductors L (Henry) and three possible values for capacitors C (Farad). All or some of these values will be considered in the optimization process depending on the filter choosed, which will be specified in the FT field (filter type), as described below. The actual values that can be assigned to inductors and capacitors are preset between two limits (upper and lower), so that the search space of the evolutionary algorithm is limited within reasonable margins. After calculating the fitness values for all solutions in a current population, the individuals for mating pool are selected using the operator of reproduction according to a given fitness function defined for the problem to be solved. In our problem the fitness function is


minf(L,C)=Is(L,C)



(16)




where Is is the source current calculated according to geometric algebra operations. These selection strategies aim to introduce a certain degree of elitism in the population. These solutions evolve by applying mutation and crossover operators that modify the genotype of the individuals. Offspring solutions substitute some old solutions of the population, and the new generation of individuals repeats the evolution process until a termination criterion is fulfilled (e.g., a maximum number of generations has been reached).



In this paper we have adapted a genetic algorithm solver for mixed-integer or continuous-variable optimization, constrained or unconstrained, included in the MATLAB Global Optimization Toolbox [41]. This toolbox allows to solve smooth or non-smooth optimization problems with constraints using different mutation and crossover operators. The original source code has been adapted to deal with the problem at hand. It also has been adapted to take into account the particularities of the proposed problem through GA. More specifically, an opensource implementation of GA “Clifford multivector toolbox” has been used, available at https://sourceforge.net/projects/clifford-multivector-toolbox/. A preliminary sensitivity analysis has been performed to determine the parameters of the algorithm, such that the values used in our study are: Population size: 100 individuals; crossover rate: 0.8; mutation rate: 0.2; selection criteria: roulette wheel selection; termination criteria: 50 iterations.





4. Empirical Study


This section presents the results obtained by the genetic algorithm in three different case studies.



4.1. Case Studies


	
Czarnecki’s case study [39]: this example consists of simple circuit with a harmonic polluted ideal voltage source of normalized frequency ω=1 rad/s


u(t)=1002cost+502cos2t+302cos3t



(17)




with an active power P=344.23 W. Figure 5a shows the circuit load, while Figure 5b shows the solution found by Czarnecki with L1=5.906H, L2=19H, C1=0.034F, and C2=0.012F, who compensates the reactive power of the harmonic components by the 1-port X of a precalculated admitance. The method proposed by Czarnecki was able to compensate the source RMS current to 3.10 A from the initial 12.24 A [39].



Using (10), the voltage in GN domain can be expressed as


u=100e1+50e23+30e234



(18)







	
Castro-Nuñez and Castro-Puche’s case study [26]: this example (already studied by Czarnecki) consists of a circuit with a highly distorted voltage source with fundamental plus 2 harmonics and a linear load, being the voltage


u(t)=1002sint+100112sin11t+100132sin13t



(19)




which translates to


u=−100e2+10011⋀i=1,i≠212ei+10013⋀i=1,i≠214ei



(20)




where the uncompensated current is 44.72 A. Figure 6a shows the circuit with the distorted voltage source and the linear load, while Figure 6b displays the compensator for this linear load. The compensator design by Castro-Nuñez reduced the source RMS current to 20.10 A [22].



	
Castilla’s case study [33]: this example consists of a circuit with a distorted voltage source with three harmonics given by:


u(t)=2002cosωt+2002cos(3ωt−30)+1002cos(5ωt+30).



(21)




which translates to


u=200e2+1003e234+100e134+503e23456−50e13456



(22)




with an uncompensated RMS current of I = 4.21 A. Although the structure of this compensator was not described in the paper published by Castilla [33], this author indicated that it reduced the source RMS current to 3.21 A.







4.2. Filter Optimization


The genetic algorithm has been adapted to manage different types of filters widely used in the literature for compensating purposes and mitigation of current harmonics. Based on Equation (12), the admittance for a general load Yl and harmonic h, is equal to


Ylh=Glh+Blhe1e2=Glh+Blhe12



(23)







If we connect a pure reactive impedance in parallel with the load for current compensation, its admittance Ycph will be


Ycph=Bcphe12



(24)







For example, if we choose a simple LC series compensator, we have


Zh=XLh+XCh=−hLωe12+1hωCe12Yh=1Zh=1−hLω+1hωCe12=hwCh2ω2LC−1e12



(25)







So we need to make equal Bcp=−Bl for every harmonic h to fully compensate the quadrature term. For the opmital case, the total current i is reduced to ig since ib+icp is equal to 0 after applying Kirchhoff laws.



Figure 7, Figure 8, Figure 9, Figure 10, Figure 11 and Figure 12 show the configurations used based on very well-known type of filters:

	
C-type filter: it is is mainly used for suppressing the low order of harmonics [13].



	
Series LC-type filter: this filter is also considered to reduce line current harmonics [42].



	
Parallel LC-type filter: it provides low impedance shunt branches to the load’s harmonic current, which allows to reduce the harmonic current flowing into the line [42].



	
Triple tuned filter: this type of filter is electrically equivalent to three parallel tuned filters connected in series [43].



	
Foster’s filter: this filter combines in parallel single L-type and C-type filters and also parallel LC-type filters.



	
Czarnecki’s 4-elements filter: it is a filter that combines two L and two C elements using a series/parallel configuration [39].









4.3. Simulation Results


Table 1, Table 2 and Table 3 show the results obtained by the genetic algorithm in the three case studies described above, being the RMS current through the supply source the objective to be minimized. The best, mean, and standard deviation of 10 independent runs are provided.



As it can be seen in Table 1, in the case study proposed by Czarnecki [39], the filters “Triple tune”, “Foster”, and “Czarnecki 4” obtain high quality results, while “C-type”, “Series LC”, and “Parallel LC” filters are far from the optimal solution. Some similar conclusions are obtained when analyzing the date from Table 2, corresponding to the circuit proposed by Castro-Nuñez and Castro-Puche [22]. It is important to point out that better results are obtained in the case of Castro-Nuñez with the same choice of compensator (20.02 A vs. 20.10 A), although Castro-Nuñez does not specify the criterion for choosing the values of the L and C components, apart from discretionary choosing an LC series type compensator. Finally, the analysis of the results provided in Table 3 regarding to the filter proposed by Castilla [33], indicate that “Triple tune”, “Foster”, “Czarnecki”, and the series LC-type filter obtain high quality solutions. In summary, the genetic algorithm is able not only to equal but also to slightly improve the results obtained in these three case studies, which demonstrates that evolutionary approaches can be used to compensate the source current in different circuits using a variety of filters.



Table 4 shows the optimal values achieved for the 3 cases of study and the 6 proposed filters. The optimal current is also included for readability purposes.



Table 5 shows a summary comparison for each of the problems solved showing current values without compensation Is, the optimum current that a passive filtering can achieve Iopt, provided by each author Iauth, and the optimum current obtained by applying the technique used in this work IGAcp. The value of the power factor for each of the above situations is also indicated plus the power factor without compensation using GA, PFGA. It should be noted that the power factor may differ between what is calculated by complex numbers and what is calculated by geometric algebra due to the different nature of the apparent power S and the geometric apparent power M. For the first case, the power factor is calculated as P/S while for the second case it is P/M. For example, for the Czarnecki case study, the apparent power S without compensating is worth 1417 VA while compensated is worth 358.8 VA. However, using geometric algebra the power M is worth 1842 VA and compensated is worth 359.25 VA. It should be noted that the final result of the compensation is quite similar since the proposed example is of low complexity as it only has 3 harmonics and low order. If we take into account the case of Castro-Nuñez or Castilla, the power of the proposed method is verified since with only 2 elements (LC filter series) or 3 elements, an almost optimal compensated current is obtained, unlike the original proposal of the author where the filter involved has many more elements and, therefore, much less economic. It should also be noted that the methodology proposed by Castro-Núñez indicates the path to follow when it comes to compensate for the correct power terms, Mb, which is not possible to cancel with the traditional power theory because it does not account for those terms arising from crossed products between voltage and currents.





5. Conclusions


In recent years, different authors have shown that geometric algebra, also known as Clifford algebra, can be applied to analyze electric circuits. Having in mind that different studies have shown that geometric algebra is more appropriate than the algebra of complex numbers for the analysis of circuits with non-sinusoidal sources and linear loads, this investigation is an important contribution in estimating the type of filter and its parameters to optimize the quadrature current in electrical circuits. This leads to the compensation of new power terms like quadrature apparent power Mb not included in the commonly accepted definition of electrical power standards. The traditional compensation of reactive power is exceeded by the compensation of cross products between current and voltage that have not been previously taken into account. The proposed approach is based on the use of a genetic algorithm, which is able to optimize the parameters of different types of passive filters. In particular, six widely used filters (single-tuned, double-tuned, triple-tuned, damped-double tuned, and C-type) were compared by regarding their contribution on the loading capability improvement of the transformers under non-sinusoidal conditions.



The results obtained in three test circuits found in the literature show that the application of genetic algorithms based on geometric algebra representations are powerful methods that are able to equal or even improve the results previously obtained by other authors using analytical methods. These results open the door to investigate the use of computational optimization methods for compensating the reactive power in complex circuits. As future work, it is planned to extend the analysis to larger circuits using these and other type of filters. Furthermore, multi-objective optimization methods will be considered to simultaneously optimize the reactive power compensation and to minimize the economic cost of the filters.
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Appendix A. General Concepts


Given an ortho-normal base {σk} with k=1,...,N for a vector space RN, it is possible to define a new space called geometrical algebra GN. This new space is characterized by bases not only composed of {σk}, but also of external products between these vectors. For example, in the case of a 3D Euclidean space, there is an ortho-normal base {σ1,σ2,σ3} where σn2=1. Applying the concept of Grassmann product or exterior product, you get


σl∧σm=σlσm=σlm



(26)




which is a new entity, different from a scalar or a vector because


(σl∧σm)2=(σlσm)(σlσm)=σl(σmσl)σm=σl(−σlσm)σm==−(σlσl)2(σmσm)2=−(1)(1)=−1



(27)




σlσm squares to −1 so we can conclude that we are facing a new element, which is called a bivector. In the same way, the external product of more than 3 vectors is called trivector, and in general, the product of k vectors is called k-vector. In this way, algebra G3 can be developed with the base


{1,σ1,σ2,σ3,σ12,σ13,σ23,σ123}



(28)







Generally speaking, the elements of a geometric algebra are called multivectors (M) and can be expressed as a linear combination of the different bases


M=⟨M⟩0+⟨M⟩1+⟨M⟩2+...+⟨M⟩n=∑k=0n⟨M⟩k



(29)




where each ⟨M⟩k is an element of grade k, representing scalars (grade 0), vectors (grade 1), bivectors (grade 2), or in general k-vectors (grade k).




Appendix B. Geometric Operations


The geometric product is the cornerstone of geometric algebra and is indebted to the contributions of Grassman and Clifford. It is defined as the sum of the scalar product and the external product, and for the case of 2 vectors vi and vj


vivj=vi·vj+vi∧vj



(30)




for the base vectors σi and σj with i≠j, we get bivectors


σiσj=σi·σj+σi∧σj=σi∧σj=σij



(31)




base vectors anticommute for i≠j because


σiσj=σi∧σj=−σj∧σi=−σji



(32)







On the other hand, unlike vectors which square to 1, bivectors square to −1


σijσij=σiσjσiσj=−σjσiσiσj=−σjσj=−1



(33)







Finally, we detail some important operations that are used extensively in multivector operations. One of these properties is the reversion or Mdagger which consists of


M†=∑k=0n⟨M†⟩k=(−1)k(k−1)/2⟨M⟩k



(34)







The norm of a multivector M (∥M∥) is always a scalar and can be obtained


M=M†M0=MM†0=∑k⟨⟨M⟩k⟨M†⟩k⟩0



(35)
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Figure 1. Outer product of vectors a and b. The result is a vector n, perpendicular to the plane formed by a and b. 






Figure 1. Outer product of vectors a and b. The result is a vector n, perpendicular to the plane formed by a and b.



[image: Energies 12 00692 g001]







[image: Energies 12 00692 g002 550]





Figure 2. Representation of a bivector a∧b. 
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Figure 3. Flowchart of the genetic algorithm. 
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Figure 4. Chromosome representation for the population. Note that the genes are real values for L, C, and integer for FT (Filter Type). 
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Figure 5. Load and compensator used by Czarnecki in [39]. 
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Figure 6. Circuit with distorted voltage source and a linear load used by Castro-Nuñez and Castro-Puche [22]. 
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Figure 7. C-type filter. 
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Figure 8. Series LC-type filter. 
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Figure 9. Parallel LC-type filter. 
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Figure 10. Triple tune filter. 
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Figure 11. Foster’s filter. 
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Figure 12. Czarnecki’s 4-elements filter. 






Figure 12. Czarnecki’s 4-elements filter.



[image: Energies 12 00692 g012]







[image: Table]





Table 1. Compensated root mean square (RMS) current (Iscp) obtained by the genetic algorithm in Czarnecki’s case study [39].
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Type of Filter

	

	




	

	
C

	
Series LC

	
Parallel LC

	
Triple Tune

	
Foster

	
Czarnecki 4






	
Best (A)

	
12.2409

	
7.5015

	
12.7235

	
3.0954

	
3.0948

	
3.0987




	
Mean (A)

	
12.2415

	
7.5017

	
12.7249

	
3.1040

	
3.1079

	
3.1454




	
Std. dev.

	
0.0008

	
0.0002

	
0.0011

	
0.0124

	
0.0155

	
0.0468
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Table 2. Compensated RMS current (Iscp) obtained by the genetic algorithm in Castro-Nuñez and Castro-Puche’s case study [22].
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Type of Filter

	

	




	

	
C

	
Series LC

	
Parallel LC

	
Triple Tune

	
Foster

	
Czarnecki 4






	
Best (A)

	
38.0511

	
20.0275

	
75.5999

	
20.0288

	
20.0094

	
20.0271




	
Mean (A)

	
38.0513

	
20.0313

	
75.7476

	
20.5668

	
20.0807

	
20.0415




	
Std. dev.

	
0.0003

	
0.0030

	
0.1411

	
0.7039

	
0.0617

	
0.0150
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Table 3. Compensated RMS current (Iscp) obtained by the genetic algorithm in Castilla’s case study [33].
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Type of Filter

	

	




	

	
C

	
Series LC

	
Parallel LC

	
Triple Tune

	
Foster

	
Czarnecki 4






	
Best (A)

	
3.7938

	
3.5236

	
3.8242

	
3.2024

	
3.2131

	
3.5268




	
Mean (A)

	
3.7938

	
3.5437

	
3.8242

	
3.2613

	
3.2722

	
3.5313




	
Std. dev.

	
0.0000

	
0.0210

	
0.0000

	
0.0369

	
0.0304

	
0.0067
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Table 4. Optimal values for L, C achieved by the genetic algorithm for the 3 cases of study and the 6 proposed filters.
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Czarnecki

	
Castro-Nuñez

	
Castilla






	

	
C

	
Series LC

	
Parallel LC

	
Triple Tune

	
Foster

	
Czarnecki 4

	
C

	
Series LC

	
Parallel LC

	
Triple Tune

	
Foster

	
Czarnecki 4

	
C

	
Series LC

	
Parallel LC

	
Triple Tune

	
Foster

	
Czarnecki 4




	
L1 (H)

	
-

	
10.2116

	
99.995

	
0.794

	
17.457

	
5.906

	
-

	
1.953

	
2.000

	
0.256

	
1.511

	
1.977

	
-

	
15.6537

	
10.000

	
0.082

	
10.000

	
9.998




	
L2 (H)

	
-

	
-

	
-

	
0.724

	
6.555

	
19.000

	
-

	
-

	
-

	
0.063

	
1.641

	
-

	
-

	
-

	
-

	
0.072

	
6.651

	
9.903




	
L3 (H)

	
-

	
-

	
-

	
1.920

	
5.945

	
-

	
-

	
-

	
-

	
0.020

	
1.198

	
0.320

	
-

	
-

	
-

	
0.021

	
0.660

	
-




	
C1 (μF)

	
0.010

	
43,373.492

	
13.0128

	
264,930.386

	
2991.689

	
34,530.000

	
135,667.470

	
224,040.6422

	
304,711.7123

	
650,723.116

	
21,800.000

	
172,388.219

	
7.157

	
0.636

	
7.291

	
20.098

	
5.797

	
2.079




	
C2 (μF)

	
-

	
-

	
-

	
106,280.564

	
59,192.627

	
12,880.000

	
-

	
-

	
-

	
985,889.243

	
366,000.000

	
50,406.350

	
-

	
-

	
-

	
165.469

	
1.451

	
16.065




	
C3 (μF)

	
-

	
-

	
-

	
586,142.767

	
26,682.668

	
-

	
-

	
-

	
-

	
89,338.809

	
107,600.000

	
-

	
-

	
-

	
-

	
21.464

	
0.844

	
-




	
Iopt (A)

	
12.240

	
7.501

	
12.723

	
3.095

	
3.094

	
3.098

	
38.051

	
20.027

	
75.599

	
20.028

	
20.009

	
20.027

	
3.793

	
3.523

	
3.824

	
3.202

	
3.213

	
3.526
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Table 5. Comparison table for currents and power factor.
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Current

	
Power Factor






	

	
Is

	
Iopt

	
Iauth

	
IGAcp

	
PFs

	
PFopt

	
PFauth

	
PFGA

	
PFGAcp




	
Czarnecki

	
12.24

	
3.09

	
3.10

	
3.09

	
0.243

	
0.959

	
0.959

	
0.186

	
0.959




	
Castro-Nuñez

	
44.72

	
20.00

	
20.10

	
20.00

	
0.445

	
0.993

	
0.988

	
0.445

	
0.992




	
Castilla

	
4.21

	
3.20

	
3.21

	
3.20

	
0.630

	
0.829

	
0.829

	
0.630

	
0.829
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